Squalene Biochemistry, Molecular Biology, Process Biotechnology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Download
What’s On Your Mind? Percy Lavon Julian PhD — The Man Who Wouldn’t Give Up Richard J. Barohn In the Volume 2, Issue 1 of this journal, I told the story of Vivien Thomas, an incredibly bright and technically adept laboratory technician who had to take a role behind the physician Alfred Blalock, literally in the operating room where he would tell Dr. Blalock how to proceed in the new open heart surgeries Vivien developed, and throughout his whole life as he struggled as a black man in the scientific world. He is indeed a scientific hero worthy of honor for Black History Month. Let me tell you the story of another black pioneer in health care science that has touched millions of lives but Figure 1. Percy Julian is seen here in this 1920 photo at who you may never have heard of, and while February DePauw University. was officially Black History month, we should consider any month or day a good time to honor great scientists of and was that year’s valedictorian, majoring in chemistry. all backgrounds. The scientists I will tell you about now He applied to graduate school at DePauw and at many will be of particular interest to neuromuscular health care other institutions around the country, but he was denied researchers and providers. admission. In 1960 he told this story as follows: Percy Lavon Julian, PhD was born in Montgomery, Alabama in 1899, the son of a railway mail clerk and the I shall never forget the week of anxious waiting in 1920 grandson of slaves. -
33 34 35 Lipid Synthesis Laptop
BI/CH 422/622 Liver cytosol ANABOLISM OUTLINE: Photosynthesis Carbohydrate Biosynthesis in Animals Biosynthesis of Fatty Acids and Lipids Fatty Acids Triacylglycerides contrasts Membrane lipids location & transport Glycerophospholipids Synthesis Sphingolipids acetyl-CoA carboxylase Isoprene lipids: fatty acid synthase Ketone Bodies ACP priming 4 steps Cholesterol Control of fatty acid metabolism isoprene synth. ACC Joining Reciprocal control of b-ox Cholesterol Synth. Diversification of fatty acids Fates Eicosanoids Cholesterol esters Bile acids Prostaglandins,Thromboxanes, Steroid Hormones and Leukotrienes Metabolism & transport Control ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Synthesis Degradation Ketone body Utilization Isoprene Biosynthesis 1 Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates are transferred stepwise from ATP to mevalonate. • A third phosphate from ATP is added at the hydroxyl, followed by decarboxylation and elimination catalyzed by pyrophospho- mevalonate decarboxylase creates a pyrophosphorylated 5-C product: D3-isopentyl pyrophosphate (IPP) (isoprene). • Isomerization to a second isoprene dimethylallylpyrophosphate (DMAPP) gives two activated isoprene IPP compounds that act as precursors for D3-isopentyl pyrophosphate Isopentyl-D-pyrophosphate all of the other lipids in this class isomerase DMAPP Cholesterol and Steroid Biosynthesis mevalonate kinase Mevalonate to Activated Isoprenes • Two phosphates -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
WO 2009/005519 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 8 January 2009 (08.01.2009) WO 2009/005519 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/19 (2006.01) A61K 31/185 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/20 (2006.01) A61K 31/225 (2006.01) AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, (21) International Application Number: ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, PCT/US2007/072499 IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, ME, MG, MK, MN, MW, (22) International Filing Date: 29 June 2007 (29.06.2007) MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, (25) Filing Language: English TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (26) Publication Language: English (71) Applicant (for all designated States except US): AC- (84) Designated States (unless otherwise indicated, for every CERA, INC. [US/US]; 380 Interlocken Crescent, Suite kind of regional protection available): ARIPO (BW, GH, 780, Broomfield, CO 80021 (US). GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), (72) Inventor; and European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, (75) Inventor/Applicant (for US only): HENDERSON, FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, Samuel, T. -
Steroid Interference with Antifungal Activity of Polyene Antibiotics
APPLIED MICROBIOLOGY, Nov., 1966 Vol. 14, No. 6 Copyright © 1966 American Society for Microbiology Printed in U.S.A. Steroid Interference with Antifungal Activity of Polyene Antibiotics WALTER A. ZYGMUNT AND PETER A. TAVORMINA Department of Microbiology and Natural Products Research, Mead Johnson & Company, Evansville, Indiana Received for publication 21 April 1966 ABSTRACT ZYGMUNT, WALTER A. (Mead Johnson & Co., Evansville, Ind.), AND PETER A. TAVORMINA. Steroid interference with antifungal activity of polyene antibiotics. Appl. Microbiol. 14:865-869. 1966.-Wide differences exist among the polyene antibiotics, nystatin, rimocidin, filipin, pimaricin, and amphotericin B, with ref- erence to steroid interference with their antifungal activities against Candida albicans. Of the numerous steroids tested, ergosterol was the only one which ef- fectively antagonized the antifungal activity of all five polyene antibiotics. The antifungal activities of nystatin and amphotericin B were the least subject to vitia- tion by the addition of steroids other than ergosterol, and those of filipin, rimo- cidin, and pimaricin were the most sensitive to interference. Attempts to delineate the structural requirements of steroids possessing polyene-neutralizing activity in growing cultures of C. albicans are discussed. The ultraviolet absorbance of certain antibiotic steroid combinations was also studied. It has been suggested (1, 9, 13) that the polyene While studying the effects of various steroids antibiotics become bound to the fungal cell mem- on the antimonilial activity of pimaricin, we brane and cause permeability changes with observed that ergostenol was almost as effective attendant depletion of essential cellular con- as the above A5-3/3-hydroxy steroids in antag- stituents. Loss of potassium and ammonium onizing pimaricin. -
The Coordinated Upregulated Expression of Genes Involved In
plants Article The Coordinated Upregulated Expression of Genes Involved in MEP, Chlorophyll, Carotenoid and Tocopherol Pathways, Mirrored the Corresponding Metabolite Contents in Rice Leaves during De-Etiolation Xin Jin 1,2,3,†, Can Baysal 3,†, Margit Drapal 4, Yanmin Sheng 5, Xin Huang 3, Wenshu He 3, Lianxuan Shi 6, Teresa Capell 3, Paul D. Fraser 4, Paul Christou 3,7 and Changfu Zhu 3,5,* 1 Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; [email protected] 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China 3 Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain; [email protected] (C.B.); [email protected] (X.H.); [email protected] (W.H.); [email protected] (T.C.); [email protected] (P.C.) 4 Biochemistry, School of Life Sciences and Environment, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK; [email protected] (M.D.); [email protected] (P.D.F.) 5 School of Life Sciences, Changchun Normal University, Changchun 130032, China; [email protected] 6 School of Life Sciences, Northeast Normal University, Changchun 130024, China; [email protected] 7 ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain Citation: Jin, X.; Baysal, C.; Drapal, * Correspondence: [email protected] M.; Sheng, Y.; Huang, X.; He, W.; Shi, † These authors contributed equally to this work. L.; Capell, T.; Fraser, P.D.; Christou, P.; et al. -
Squalene, Olive Oil, and Cancer Risk: a Review and Hypothesis
Vol. 6, 1101-1103, December 1997 Cancer Epidemiology,Blornarkers & Prevention 1101 Review Squalene, Olive Oil, and Cancer Risk: A Review and Hypothesis Harold L. Newmark’ of unsaturated fatty acids. In Italy, about 80% of edible oil is Strang Cancer Research Laboratory, The Rockefeller University, New York, olive oil,2 suggesting a protective effect of olive oil intake. In New York 10021, and Laboratory for Cancer Research, College of Pharmacy, another Italian case-control study of diet and pancreatic cancer Rutgers University, Piscataway, New Jersey 08855-0789 (8), increased frequency of edible oil consumption was associ- ated with a trend toward decreased risk. Edible oil in Italy consists of about 80% olive oil, thus suggesting a protective Abstract effect of olive oil in pancreatic cancer.2 Epidemioiogical studies of breast and pancreatic cancer Animal studies on fat and cancer have generally shown in several Mediterranean populations have demonstrated that olive oil either has no effect or a protective effect on the that increased dietary intake of olive oil is associated with prevention of a variety of chemically induced tumors. Olive oil a small decreased risk or no increased risk of cancer, did not increase tumor incidence or growth, in contrast to corn despite a higjier proportion of overall lipid intake. and sunflower oil, in some mammary cancer models (9 -1 1) and Experimental animal model studies of high dietary fat also in colon cancer models (12, 13), although in an earlier and cancer also indicate that olive oil has either no effect report, olive oil exhibited mammary tumor-promoting proper- or a protective effect on the prevention of a variety of ties similar to that ofcorn oil (14), in contrast to the later studies chemically induced tumors. -
Gas Chromatographic-Mass Spectrometric Investigation of Seep
RICE UNIVERSITY GAS CHROHATOGRAP! 11 C-i IASS SPECTROMCTRIC iriVESTIGATION OF SEEP OIL ISOPRENOID ALKANES by' David James Curry A THESIS SUBMITTED III PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS Thesis Director's' signature ■ficCt rfc Houston, Texas August, 1072 TABLE OF COKTENTS ACSC'IOMLEDGEMEHTS ' 1 ABSTRACT... 2 INTRODUCTION TO GEOCHEMISTRY 4. ISOPRENOID ALKANES. 10 SAMPLE DESCRIPTION ....1C EXPERIMENTAL METHODS.-. ;...20 INTERPRETATION AND DISCUSSION OF RESULTS.......20 SUMMARY. .01 POSSIBILITIES FOR FUTURE STUDY ........64 TABLES.'..... ........SO CHROMATOGRAMS 71 FOOTNOTES..... 74 SELECTED BIBLIOGRAPHY. 76 MASS SPECTRA MS 1 (Phytane) 15,43 I IS 2 (Authenti c Pri s tane)..... .. .25 MS 3 (Pristane).' 26,40 I IS 4 (Au then ti c P r.i s tane) . ...27 MS 5 (C^ Isoprenoid) ...31 OO MS 6 (3-,7-,ll-trin;ethyl tetradecana) • • « sJsJ MS 7 (C1? Unknown) ... 33 MS 8 (C10 Isoorenoid) ...36 MS 9 (Pristane) ,38 MS 18 (Ci Unknown) 41 MS 11 (C22 Isoprenoicl) 44 MS 12 (C23 Isoprenoid),. 46 IIS 13- (C2* Isoprenoicl) 48 MS 14 (C2g Isoprenoicl) 50 MS 15 (C2Q Iscprenoid)...: 51 MS 15 (COQ Isoprenoid) MS 17 (Proposed C2C Isoprenoid) 64 CHROMATOGRAMS GC I (Total Branched alkane-cycloalkane Fraction) 71 GC II (Still Residue Branched Alkane-cycloalkane Fraction)72 GC III (Total, normal Alkane Fraction) 73 (GC I,II,III were taken on 3% SE-30 phase) TABLES I: Composition of Distillation and 56 Column'Chromatography Fractions II: Approximate Relative and Absoluts 67 Amounts of Isoprenoid Components III: Off Scale Intensities of Mass..... !...68 Spectrometric Peaks IV: Initial Separatory Gas Chroma- _ 69 tographic Conditions V: . -
Orthologs of the Archaeal Isopentenyl Phosphate Kinase Regulate Terpenoid Production in Plants
Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants Laura K. Henrya, Michael Gutensohnb, Suzanne T. Thomasc, Joseph P. Noelc,d, and Natalia Dudarevaa,b,1 aDepartment of Biochemistry, Purdue University, West Lafayette, IN 47907; bDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907; cJack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA 92037; and dHoward Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037 Edited by Rodney B. Croteau, Washington State University, Pullman, WA, and approved July 2, 2015 (received for review March 9, 2015) Terpenoids, compounds found in all domains of life, represent the distributed among the three domains of life: eukaryotes, archaea, largest class of natural products with essential roles in their hosts. and bacteria. Although the MEP pathway is found in most bacteria, All terpenoids originate from the five-carbon building blocks, the MVA pathway resides in the cytosol and peroxisomes of isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphos- eukaryotic cells. Plants contain both the MEP and MVA pathways, phate (DMAPP), which can be derived from the mevalonic acid which act independently in plastids and cytosol/peroxisomes, re- (MVA) and methylerythritol phosphate (MEP) pathways. The ab- spectively (Fig. 1). Nevertheless, metabolic cross-talk between these sence of two components of the MVA pathway from archaeal two pathways occurs via the exchange of IPP—andtoalesserextent genomes led to the discovery of an alternative MVA pathway with of DMAPP—in both directions (1, 2). IPP and DMAPP are sub- isopentenyl phosphate kinase (IPK) catalyzing the final step, the sequently used in multiple compartments by short-chain prenyl- formation of IPP. -
A Key Mammalian Cholesterol Synthesis Enzyme, Squalene Monooxygenase, Is Allosterically Stabilized by Its Substrate
A key mammalian cholesterol synthesis enzyme, squalene monooxygenase, is allosterically stabilized by its substrate Hiromasa Yoshiokaa, Hudson W. Coatesb, Ngee Kiat Chuab, Yuichi Hashimotoa, Andrew J. Brownb,1, and Kenji Ohganea,c,1 aInstitute for Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan; bSchool of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and cSynthetic Organic Chemistry Laboratory, RIKEN, 351-0198 Saitama, Japan Edited by Brenda A. Schulman, Max Planck Institute of Biochemistry, Martinsried, Germany, and approved February 18, 2020 (received for review September 20, 2019) Cholesterol biosynthesis is a high-cost process and, therefore, is the cognate E3 ligase for SM (9, 10), catalyzing its ubiquitination tightly regulated by both transcriptional and posttranslational in the N100 region (11). negative feedback mechanisms in response to the level of cellular Despite its importance in cholesterol-accelerated degradation, cholesterol. Squalene monooxygenase (SM, also known as squalene the structure and function of the SM-N100 region has not been epoxidase or SQLE) is a rate-limiting enzyme in the cholesterol fully resolved. Thus far, biochemical analyses have revealed the biosynthetic pathway and catalyzes epoxidation of squalene. The presence of a reentrant loop anchoring SM to the ER membrane stability of SM is negatively regulated by cholesterol via its and an amphipathic helix required for cholesterol-accelerated N-terminal regulatory domain (SM-N100). In this study, using a degradation (7, 8), while X-ray crystallography has revealed the SM-luciferase fusion reporter cell line, we performed a chemical architecture of the catalytic domain of SM (12). However, the genetics screen that identified inhibitors of SM itself as up-regulators highly hydrophobic and disordered nature of the N100 region of SM. -
Short-Step Synthesis of Chenodiol from Stigmasterol
Biosci. Biotechnol. Biochem., 68 (6), 1332–1337, 2004 Short-step Synthesis of Chenodiol from Stigmasterol y Toru UEKAWA, Ken ISHIGAMI, and Takeshi KITAHARA Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Received February 3, 2004; Accepted March 11, 2004 Chenodiol is an important bile acid widely used for the hydroxyl group (C-3 position), 2) construction of gallstone dissolution and cholestatic liver diseases. We cis-fused rings by hydrogenation (C-5 position), 3) succeeded in a short-step synthesis of chenodiol, starting allylic oxidation and stereoselective reduction (C-7 from the safer phytosterol, stigmasterol. position), and 4) ozonolysis of the side chain and subsequent transformation, including the Wittig reac- Key words: chenodiol; stigmasterol; gallstone dissolu- tion. tion; bovine spongiform encephalopathy Our first synthetic route is outlined in Scheme 2. The hydroxyl group of stigmasterol (2) was inverted by Chenodiol is an important bile acid contained in many mesylation4,5) and the subsequent treatment with cesium vertebrates. This compound is widely used in clinical acetate.6) Inversion under Mitsunobu conditions gave a applications for the dissolution of cholesterol gallstones diastereomixture at the C-3 position, and elimination of and cholestatic liver diseases.1) At present, chenodiol is the hydroxyl group was also observed. Allylic oxidation industrially synthesized from cholic acid,2,3) a major of the C-7 position was accomplished by N-hydroxy- component of bovine bile. BSE (bovine spongiform phthalimide-catalyzed air oxidation, using benzoyl per- encephalopathy) has recently become a global problem oxide as a radical initiator.7,8) The resulting hydroper- and it is now prohibited to use the specified bovine risk oxide was dehydrated to give enone 4. -
Inhibition of Sterol Biosynthesis by Bacitracin (Mevalonic Acid/CQ-Isopentenyl Pyrophosphate/C15-Farnesyl Pyrophosphate) K
Proc. Nat. Acad. Sci. USA Vol. 69, No. 5, pp. 1287-1289, May 1972 Inhibition of Sterol Biosynthesis by Bacitracin (mevalonic acid/CQ-isopentenyl pyrophosphate/C15-farnesyl pyrophosphate) K. JOHN STONE* AND JACK L. STROMINGERt Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138 Contributed by Jack L. Strominger, March 14 1972 ABSTRACT Bacitracin is an inhibitor of the biosyn- muslin eliminated floating particles of fat from the enzyme thesis of squalene and sterols from mevalonic acid, C5- solution enzyme). In some the isopentenyl pyrophosphate, or C15-farnesyl pyrophosphate (Sio experiments, S10 enzyme catalyzed by preparations from rat liver. The antibiotic was centrifuged at 105,000 X g for 90 min to remove micro- is active at extremely low ratios of antibiotic to substrate. somal particles, and this supernatant is referred to as the Sc1t The mechanism of inhibition appears to be the formation enzyme. of a complex between bacitracin, divalent cation, and C15- Bacitracin was generously provided by the Upjohn Co., farnesyl pyrophosphate and other isoprenyl pyrophos- phates. It is similar to the formation of the complex with Kalamazoo, Mich. [2-14C]3RS-mevalonic acid was obtained C55-isopropenyl pyrophosphate in microbial systems. The from New England Nuclear Co., [SH]farnesyl pyrophosphate toxicity of bacitracin for animal cells could be due in part and [2-'4C]isopentenyl pyrophosphate were generous gifts to the formation of these complexes. from Dr. Konrad Bloch. The Enzyme incubations (about 0.5-ml samples) were termi- antibacterial properties of bacitracin result, in part, from nated by in a water bath for 1 an inhibition of the heating boiling min.