The Multiple Facets of Per2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Distinct Patterns of Period Gene Expression in the Suprachiasmatic Nucleus Underlie Circadian Clock Photoentrainment by Advances Or Delays
University of Massachusetts Medical School eScholarship@UMMS Neurobiology Publications and Presentations Neurobiology 2011-10-11 Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays William J. Schwartz University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/neurobiology_pp Part of the Neuroscience and Neurobiology Commons Repository Citation Schwartz WJ, Tavakoli-Nezhad M, Lambert CM, Weaver DR, de la Iglesia HO. (2011). Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Neurobiology Publications and Presentations. https://doi.org/10.1073/ pnas.1107848108. Retrieved from https://escholarship.umassmed.edu/neurobiology_pp/114 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Neurobiology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays William J. Schwartza,1, Mahboubeh Tavakoli-Nezhada, Christopher M. Lambertb, David R. Weaverb, and Horacio O. de la Iglesiac,1 Departments of aNeurology and bNeurobiology, University of Massachusetts Medical School, Worcester, MA 01655; and cDepartment of Biology, University of Washington, Seattle, WA 98195 Edited by Michael Rosbash, Howard Hughes Medical Institute, Waltham, MA, and approved September 9, 2011 (received for review May 19, 2011) The circadian clock in the mammalian hypothalamic suprachias- and Per3) genes is activated. PER proteins accumulate in the matic nucleus (SCN) is entrained by the ambient light/dark cycle, cytoplasm, are regulated through their phosphorylation and their which differentially acts to cause the clock to advance or delay. -
Regulation of Drosophila Circadian Rhythms by Mirna Let-7 Is Mediated by a Regulatory Cycle
ARTICLE Received 10 Jul 2014 | Accepted 10 Oct 2014 | Published 24 Nov 2014 DOI: 10.1038/ncomms6549 Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle Wenfeng Chen1,*, Zhenxing Liu1,*, Tianjiao Li1, Ruifeng Zhang1, Yongbo Xue1, Yang Zhong1, Weiwei Bai1, Dasen Zhou1 & Zhangwu Zhao1 MicroRNA-mediated post-transcriptional regulations are increasingly recognized as important components of the circadian rhythm. Here we identify microRNA let-7, part of the Drosophila let-7-Complex, as a regulator of circadian rhythms mediated by a circadian regulatory cycle. Overexpression of let-7 in clock neurons lengthens circadian period and its deletion attenuates the morning activity peak as well as molecular oscillation. Let-7 regulates the circadian rhythm via repression of CLOCKWORK ORANGE (CWO). Conversely, upregulated cwo in cwo-expressing cells can rescue the phenotype of let-7-Complex overexpression. Moreover, circadian prothoracicotropic hormone (PTTH) and CLOCK- regulated 20-OH ecdysteroid signalling contribute to the circadian expression of let-7 through the 20-OH ecdysteroid receptor. Thus, we find a regulatory cycle involving PTTH, a direct target of CLOCK, and PTTH-driven miRNA let-7. 1 Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to Z.Z. (email: [email protected]). NATURE COMMUNICATIONS | 5:5549 | DOI: 10.1038/ncomms6549 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6549 lmost all animals display a wide range of circadian bantam-dependent regulation of Clk expression is required for rhythms in behaviour and physiology, such as locomotor circadian rhythm. -
A Circadian Biomarker Associated with Breast Cancer in Young Women
268 Cancer Epidemiology, Biomarkers & Prevention Period3 Structural Variation: A Circadian Biomarker Associated with Breast Cancer in Young Women Yong Zhu,1 Heather N. Brown,1 Yawei Zhang,1 Richard G. Stevens,2 and Tongzhang Zheng1 1Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut and 2University of Connecticut Health Center, Farmington, Connecticut Abstract Circadian disruption has been indicated as a risk factor for blood samples collected from a recently completed breast breast cancer in recent epidemiologic studies. A novel cancer case-control study in Connecticut. There were 389 finding in circadian biology is that genes responsible for Caucasian cases and 432 Caucasian controls included in our circadian rhythm also regulate many other biological path- analysis. We found that the variant Per3 genotype (heterozy- ways, including cell proliferation, cell cycle regulation, and gous + homozygous 5-repeat alleles) was associated with an apoptosis. Therefore, mutations in circadian genes could increased risk of breast cancer among premenopausal women conceivably result in deregulation of these processes and (odds ratio, 1.7; 95% confidence interval, 1.0-3.0). Our find- contribute to tumor development, and be markers for ing suggests that the circadian genes might be a novel panel susceptibility to human cancer. In this study, we investi- of potential biomarkers for breast cancer and worth further gated the association between an exonic length variation in a investigation. (Cancer Epidemiol Biomarkers Prev circadian gene, Period3 (Per3), and breast cancer risk using 2005;14(1):268–70) Introduction Genetic determinants have been found to be responsible for a Per2 gene can activate c-Myc signaling pathways leading to fundamental biological phenomenon: a universal 24-hour genomic instability and cell proliferation. -
NPAS2 As a Transcriptional Regulator of Non-Rapid Eye Movement Sleep: Genotype and Sex Interactions
NPAS2 as a transcriptional regulator of non-rapid eye movement sleep: Genotype and sex interactions Paul Franken*†‡, Carol A. Dudley§, Sandi Jo Estill§, Monique Barakat*, Ryan Thomason¶, Bruce F. O’Hara¶, and Steven L. McKnight‡§ §Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390; *Department of Biological Sciences, Stanford University, Stanford, CA 94305; ¶Department of Biology, University of Kentucky, Lexington, KY 40506; and †Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne-Dorigny, Switzerland Contributed by Steven L. McKnight, March 13, 2006 Because the transcription factor neuronal Per-Arnt-Sim-type sig- delta frequency range is a sensitive marker of time spent awake (4, nal-sensor protein-domain protein 2 (NPAS2) acts both as a sensor 7) and local cortical activation (8) and is therefore widely used as and an effector of intracellular energy balance, and because sleep an index of NREMS need and intensity. is thought to correct an energy imbalance incurred during waking, The PAS-domain proteins, CLOCK, BMAL1, PERIOD-1 we examined NPAS2’s role in sleep homeostasis using npas2 (PER1), and PER2, play crucial roles in circadian rhythm gener- knockout (npas2؊/؊) mice. We found that, under conditions of ation (9). The NPAS2 paralog CLOCK, like NPAS2, can induce the increased sleep need, i.e., at the end of the active period or after transcription of per1, per2, cryptochrome-1 (cry1), and cry2. PER and sleep deprivation (SD), NPAS2 allows for sleep to occur at times CRY proteins, in turn, inhibit CLOCK- and NPAS2-induced when mice are normally awake. Lack of npas2 affected electroen- transcription, thereby closing a negative-feedback loop that is cephalogram activity of thalamocortical origin; during non-rapid thought to underlie circadian rhythm generation. -
Spatial and Temporal Expression of the Period and Timeless Genes in the Developing Nervous System of Drosophila
The Journal of Neuroscience, September 1, 1997, 17(17):6745–6760 Spatial and Temporal Expression of the period and timeless Genes in the Developing Nervous System of Drosophila: Newly Identified Pacemaker Candidates and Novel Features of Clock Gene Product Cycling Maki Kaneko,1 Charlotte Helfrich-Fo¨ rster,2 and Jeffrey C. Hall1 1Department of Biology, Brandeis University, Waltham, Massachusetts 02254, and 2Botanisches Institut, 72076 Tu¨ bingen, Germany The circadian timekeeping system of Drosophila functions from onward, throughout metamorphosis and into adulthood. There- the first larval instar (L1) onward but is not known to require the fore, they are the best candidates for being pacemaker neurons expression of clock genes in larvae. We show that period ( per) responsible for the larval “time memory” (inferred from previous and timeless (tim) are rhythmically expressed in several groups experiments). In addition to the LNs, a subset of the larval of neurons in the larval CNS both in light/dark cycles and in dorsal neurons (DNLs) expresses per and tim. Intriguingly, two constant dark conditions. Among the clock gene-expressing neurons of this DNL group cycle in PER and TIM immunoreac- cells there is a subset of the putative pacemaker neurons, the tivity almost in antiphase to the other DNLs and to the LNs. “lateral neurons” (LNs), that have been analyzed mainly in adult Thus, the temporal expression of per and tim are regulated flies. Like the adult LNs, the larval ones are also immunoreac- differentially in different cells. Furthermore, the light sensitivity tive to a peptide called pigment-dispersing hormone. Their associated with levels of the TIM protein is different from that in putative dendritic trees were found to be in close proximity to the heads of adult Drosophila. -
Overexpression of C-Myc in -Cells of Transgenic Mice Causes Proliferation and Apoptosis, Downregulation of Insulin Gene Expression, and Diabetes D
Overexpression of c-Myc in -Cells of Transgenic Mice Causes Proliferation and Apoptosis, Downregulation of Insulin Gene Expression, and Diabetes D. Ross Laybutt,1 Gordon C. Weir,1 Hideaki Kaneto,1 Judith Lebet,1 Richard D. Palmiter,2 Arun Sharma,1 and Susan Bonner-Weir1 To test the hypothesis that c-Myc plays an important role in -cell growth and differentiation, we generated transgenic mice overexpressing c-Myc in -cells under ancreatic -cell failure is fundamental to the control of the rat insulin II promoter. F1 transgenic pathogenesis of all forms of diabetes (1,2). Stud- mice from two founders developed neonatal diabetes ies from animal models suggest that, for the most (associated with reduced plasma insulin levels) and part, -cells have a remarkable capacity to in- died of hyperglycemia 3 days after birth. In pancreata of P crease their mass and secretion to maintain plasma glu- transgenic mice, marked hyperplasia of cells with an altered phenotype and amorphous islet organization cose levels within a narrow range, even in the presence of was displayed: islet volume was increased threefold obesity and insulin resistance (1–4). Diabetes develops versus wild-type littermates. Apoptotic nuclei were in- only when this compensation is inadequate. creased fourfold in transgenic versus wild-type mice, In animal models of diabetes, -cells have been found to suggesting an increased turnover of -cells. Very few lose the unique differentiation that optimizes glucose- cells immunostained for insulin; pancreatic insulin induced insulin secretion and synthesis (5,6). Thus, mRNA and content were markedly reduced. GLUT2 genes that are highly expressed (insulin, GLUT2, and  mRNA was decreased, but other -cell–associated genes PDX-1 [pancreatic and duodenal homeobox-1]) are de- (IAPP [islet amyloid pancreatic polypeptide], PDX-1 [pancreatic and duodenal homeobox-1], and BETA2/ creased with diabetes, whereas several genes that are NeuroD) were expressed at near-normal levels. -
Melatonin Synthesis and Clock Gene Regulation in the Pineal Organ Of
General and Comparative Endocrinology 279 (2019) 27–34 Contents lists available at ScienceDirect General and Comparative Endocrinology journal homepage: www.elsevier.com/locate/ygcen Review article Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences T ⁎ Saurav Saha, Kshetrimayum Manisana Singh, Braj Bansh Prasad Gupta Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India ARTICLE INFO ABSTRACT Keywords: The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian Aanat gene rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) – the rate-limiting enzyme in melatonin Circadian rhythm synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased ex- Clock genes pression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In Melatonin synthesis mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, Pineal organ and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the Photoperiod fi Temperature nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the sh pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. -
Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm. -
Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries -
The Period of the Circadian Oscillator Is Primarily Determined by the Balance Between Casein Kinase 1 and Protein Phosphatase 1
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1 Hyeong-min Leea,1,2, Rongmin Chena,1, Hyukmin Kima, Jean-Pierre Etchegarayb,3, David R. Weaverb, and Choogon Leea,4 aDepartment of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306; and bDepartment of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved August 30, 2011 (received for review May 4, 2011) Mounting evidence suggests that PERIOD (PER) proteins play a PAGE—occurs progressively over several hours (12, 19), which is central role in setting the speed (period) and phase of the circadian critical for stretching the feedback loop to ∼24 h. However, PER2 clock. Pharmacological and genetic studies have shown that changes can be maximally phosphorylated by CK1ε in vitro kinase reac- in PER phosphorylation kinetics are associated with changes in tions within 30 min (20, 21), suggesting that PER phosphorylation circadian rhythm period and phase, which can lead to sleep disorders must be counterbalanced by phosphatases in vivo. such as Familial Advanced Sleep Phase Syndrome in humans. We Because the phase and period of the clock are primarily de- and others have shown that casein kinase 1δ and ε (CK1δ/ε) are termined by temporal regulation of PER phosphorylation (12, 15, essential PER kinases, but it is clear that additional, unknown mech- 21–26), the characterization of PER kinases and phosphatases is anisms are also crucial for regulating the kinetics of PER phosphor- vital to understanding the circadian clock mechanism. -
BMAL1 and Modulates Tissue-Specific Circadian Networks
Nuclear receptor HNF4A transrepresses CLOCK: BMAL1 and modulates tissue-specific circadian networks Meng Qua, Tomas Duffyb, Tsuyoshi Hirotac, and Steve A. Kaya,1 aKeck School of Medicine, University of Southern California, Los Angeles, CA 90089; bDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; and cInstitute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan Contributed by Steve A. Kay, November 6, 2018 (sent for review September 24, 2018; reviewed by Carla B. Green and John B. Hogenesch) Either expression level or transcriptional activity of various nuclear NRs canonically function as ligand-activated transcription receptors (NRs) have been demonstrated to be under circadian factors that regulate the expression of their target genes to control. With a few exceptions, little is known about the roles of affect physiological pathways (19). The importance of NRs in NRs as direct regulators of the circadian circuitry. Here we show maintaining optimal physiological homeostasis is illustrated in that the nuclear receptor HNF4A strongly transrepresses the their identification as potential targets for therapeutic drug transcriptional activity of the CLOCK:BMAL1 heterodimer. We development to combat a diverse array of diseases, including define a central role for HNF4A in maintaining cell-autonomous reproductive disorders, inflammation, cancer, diabetes, car- circadian oscillations in a tissue-specific manner in liver and colon diovascular disease, and obesity (20). Various NRs have been cells. Not only transcript level but also genome-wide chromosome implicated as targets of the circadian clock, which may con- binding of HNF4A is rhythmically regulated in the mouse liver. tribute to the circadian regulation of nutrient and energy me- ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK: tabolism. -
Circadian Rhythm-Related Genes: Implication in Autoimmunity And
Diabetes, Obesity and Metabolism 17 (Suppl. 1): 134–138, 2015. review article © 2015 John Wiley & Sons Ltd REVIEW ARTICLE Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes B. Lebailly1,2,C.Boitard1 &U.C.Rogner1 1Institut Cochin (INSERM U1016, CNRS UMR-S8104, Département “Endocrinologie, Métabolisme et Diabètes), Paris, France 2Cellule Pasteur, University Pierre and Marie Curie, Paris, France Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system. Keywords: circadian rhythm, cytokine, immune system, transcription factor, type 1 diabetes Date submitted 10 April 2015; date of final acceptance 5 May 2015 Circadian Genes and Diabetes pathway [8]. Absence of this key circadian clock component leads to the activation of this signalling system and elevated lev- Thereisgrowingevidenceabouttheimplicationofthecirca- els of inflammatory molecules in the body. Low-grade constant dian rhythm in diabetes development [1]. Studies in mice have inflammation could be the underlying cause of chronic dis- shown that the disruption of circadian rhythms can acceler- easessuchasdiabetes.Furtherexamplesoftheinvolvementof ate diabetes and -cell loss [2].