Early Doors (Edo) Mutant Mouse Reveals the Importance of Period 2 (PER2) PAS Domain Structure for Circadian Pacemaking

Total Page:16

File Type:pdf, Size:1020Kb

Early Doors (Edo) Mutant Mouse Reveals the Importance of Period 2 (PER2) PAS Domain Structure for Circadian Pacemaking Early doors (Edo) mutant mouse reveals the importance of period 2 (PER2) PAS domain structure for circadian pacemaking Stefania Militia,1, Elizabeth S. Maywoodb,1, Colby R. Sandatec, Johanna E. Cheshamb, Alun R. Barnarda,2, Michael J. Parsonsa, Jennifer L. Viberta, Greg M. Joynsona, Carrie L. Partchc, Michael H. Hastingsb, and Patrick M. Nolana,3 aMedical Research Council Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom; bDivision of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom; and cDepartment of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved January 26, 2016 (received for review September 2, 2015) The suprachiasmatic nucleus (SCN) defines 24 h of time via a kinase 1e (Csnk1e) (14) is a hypermorph that accelerates the clock transcriptional/posttranslational feedback loop in which trans- of rodents (15). Thus, phosphorylation, PER protein stability, and activation of Per (period) and Cry (cryptochrome) genes by BMAL1– circadian period are intimately linked (16). CLOCK complexes is suppressed by PER–CRY complexes. The Current knowledge of the structural basis of circadian tran- molecular/structural basis of how circadian protein complexes scription and its repression is limited, but it is becoming clear function is poorly understood. We describe a novel N-ethyl-N-nitro- that modular PAS domains form protein interactions that are sourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT- important for progression of the circadian TTFL. The crystal SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) structures of mouse CLOCK and BMAL1 have revealed how that accelerates the circadian clock of Per2Edo/Edo mice by 1.5 h. tandem PAS domains contribute to the formation of the dimeric Structural and biophysical analyses revealed that Edo alters the transcription factor (17). PAS domains are also found in circadian packing of the highly conserved interdomain linker of the PER2 negative regulators: tandem PAS domains mediate formation of PAS core such that, although PER2Edo complexes with clock proteins, PER dimers observed in vivo (18). Unlike the asymmetrical, ex- NEUROSCIENCE its vulnerability to degradation mediated by casein kinase 1e tended conformation seen in CLOCK-BMAL1, the PER PAS (CSNK1E) is increased. The functional relevance of this mutation is dimer core forms a more symmetrical and compact fold (19, 20). revealed by the ultrashort (<19 h) but robust circadian rhythms in In PER2, the PAS domain core is followed immediately by a Per2Edo/Edo;Csnk1eTau/Tau mice and the SCN. These periods are unprec- CK1e-dependent phosphodegron that recruits the E3 ubiquitin Edo edented in mice. Thus, Per2 reveals a direct causal link between the ligase β-TrCP to control PER2 stability (10, 16, 21). Thus, control molecular structure of the PER2 PAS core and the pace of SCN of PER2 repressive function and/or PER2 stability may be con- circadian timekeeping. trolled by interactions of its PAS domain core. mouse mutant | behavior | protein stability | circadian period | Significance genetic interaction In a study investigating mechanisms whereby period 2 (PER2) ircadian rhythms, as exemplified by the sleep/wake cycle, are stability can set the pace of biological rhythms, we have looked Cthe outward manifestation of a 24-h timing mechanism that at molecular, cellular, and structural features of the mouse mu- coordinates many physiological processes (1). The principal cir- tant, early doors (Edo). Early doors is a novel N-ethyl-N-nitro- cadian clock in mammals is the suprachiasmatic nucleus (SCN). sourea (ENU)-induced point mutation that shortens the circadian At a molecular level, the SCN clockwork consists of interacting period of mice by 1.5 h. The mutation results in an amino acid positive and negative transcriptional/translational feedback loops substitution in the interdomain linker between the tandem PAS (TTFLs) that drive rhythms in the RNA and protein levels of key domains of PER2. Biophysical analyses confirm that increased clock components. Heterodimers of the PER-ARNT-SIM (PAS) flexibility of this interdomain linker reduces stability of the PAS domain core. This flexibility can accelerate circadian rhythms by domain-containing transcriptional activators CLOCK and BMAL1 Edo drive rhythmic transcription of Per (period) and Cry (cryptochrome) destabilizing the PER2 protein through faster kinase-medi- Per2Edo genes by binding to E-box elements. PER proteins associate with ated degradation. Furthermore, we find that mice car- e Csnk1e Tau CRY, translocating to the nucleus to inhibit their own transcription rying the casein kinase 1 ( ) mutation have extremely by interacting with the CLOCK–BMAL1 complex (2, 3). An ad- fast but very stable circadian clocks. ditional feedback loop involves the nuclear orphan receptors REV- Author contributions: C.L.P., M.H.H., and P.M.N. designed research; S.M., E.S.M., C.R.S., ERBα (4) and RAR-related orphan receptor A (RORA) (5) that J.E.C., A.R.B., M.J.P., G.M.J., C.L.P., and M.H.H. performed research; J.L.V. contributed modify the transcription of Bmal1, thereby stabilizing and ampli- new reagents/analytic tools; E.S.M., M.J.P., J.L.V., C.L.P., M.H.H., and P.M.N. analyzed fying the CLOCK–BMAL complex-dependent oscillation. Once data; and E.S.M., C.L.P., M.H.H., and P.M.N. wrote the paper. suppressed, CLOCK–BMAL complex-mediated transactivation can The authors declare no conflict of interest. only reoccur after PER and CRY have been degraded. This article is a PNAS Direct Submission. The circadian TTFL is therefore sustained by timely synthesis Freely available online through the PNAS open access option. and degradation of PER and CRY proteins. Changes in PER sta- Data deposition: Scattering datasets, analysis, and models have been deposited with bility in flies (6, 7) and changes in PER or CRY stability in mam- BioISIS (www.bioisis.net) [deposition codes PLCSWP (PER2WT) and PLCSEP (PER2Edo)]. mals lead to a faster or slower clock (8). Phosphorylation-dependent 1S.M. and E.S.M. contributed equally to this work. licensing of PER proteins for ubiquitination and subsequent pro- 2Present address: Nuffield Department of Clinical Neurosciences, University of Oxford, teasomal degradation is a sensitive checkpoint in setting clock speed Oxford OX3 9DU, United Kingdom. (9–11). Moreover, two familial advanced sleep phase syndromes 3To whom correspondence should be addressed. Email: [email protected]. (FASPSs) are associated with site-specific phosphorylation of hu- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. man period 2 (PER2) (12, 13). Finally, the Tau mutation of casein 1073/pnas.1517549113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1517549113 PNAS Early Edition | 1of6 Downloaded by guest on September 23, 2021 To gain new insight into the mechanisms that determine the pace A +/+ Edo/+ Edo/Edo of the mammalian circadian clock, we used N-ethyl-N-nitrosourea 0 (ENU) mutagenesis (22). We identified a founder mouse with a L/D significantly shortened circadian period. The mutation, early doors (Edo), mapped to the Per2 gene within the linker between the Days PAS-A and PAS-B domains. PER2Edo reveals the determinative DD relationship between protein stability and circadian pacemaking, 18 and, more importantly, it reveals a structural framework within 0 48 0 48 0 48 which to understand this defining property of the circadian system. time (h) B C Results 40 m/m Per2Edo m/+ Shortens Circadian Wheel-Running Period. We screened for 23.8 genetic factors affecting overt behavioral circadian rhythms 30 +/+ by monitoring daily wheel-running activity in progeny of ENU 20 22.8 mutagenized mice. Within G1/dominant inheritance screens, we Frequency 10 identified a mouse with a significantly shortened circadian period DD (h) Tau (τDD) (Fig. 1A). Test mating confirmed semidominant herita- 0 21.8 bility of the phenotype, with the following mean circadian periods +/+ Edo/+ Edo/Edo 21 22 23 24 recorded in outcross/intercross offspring: WT τDD of ∼23.6 h, Tau DD (h) CGG CCTTTTAAAG CCC CC AG τ ∼ τ ∼ heterozygote DD of 23 h, and homozygote DD of 22 h (Fig. D E 1 B and C). Homozygotes also displayed a clear advanced phase of C57BL/6 entrainment, with activity onsets preceding the onset of the dark Chr 1 BALB/c phase by several hours. This mutant line was named early doors C57BL/6+BALB/c (Edo; Mouse Genome Informatics accession ID MGI:3606316). 5 2 3 3 1 1 2 2 rs3706173 41.9 Mb CGG CCTTAG AAACCC CCTAG The mutation was mapped by genetic linkage analysis to a 76.5- rs3677697 80.1 Mb Mb region of mouse chromosome 1 (Fig. 1D). Within this region rs3680832 118.6 Mb Per2 lies the period homolog 2 (Per2). With an established role in the rs3724524 156.6 Mb circadian oscillator, this gene was selected as a candidate, and the rs3699344 190.9 Mb coding regions of Per2 were resequenced in a mutant animal. Se- quencing revealed a T-to-A transversion in exon 9 of the gene (Fig. F E PAS NES CK1 NLS CRY binding 1 ). This nonsynonymous missense mutation results in an Ile-to- Per2 AB Asn substitution at residue 324 (I324N) of PER2, which lies in the interdomain linker between two tandem PAS domains (Fig. 1F). The residue is highly conserved within the protein sequence of all Edo mouse Per genes and in the orthologous genes of other vertebrates. Mus_musculus_Per2 Rattus_norvegicus Homo_sapiens Edo Bos_taurus Per2 mPer2 Gallus_gallus Is a Gain-of-Function Allele. Several null alleles of Xenopus_tropicalis Danio_rerio have been described, and have been shown to have either no effect Per1_Mus_musculus on circadian period (23) or to disrupt rhythms (24, 25).
Recommended publications
  • Distinct Patterns of Period Gene Expression in the Suprachiasmatic Nucleus Underlie Circadian Clock Photoentrainment by Advances Or Delays
    University of Massachusetts Medical School eScholarship@UMMS Neurobiology Publications and Presentations Neurobiology 2011-10-11 Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays William J. Schwartz University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/neurobiology_pp Part of the Neuroscience and Neurobiology Commons Repository Citation Schwartz WJ, Tavakoli-Nezhad M, Lambert CM, Weaver DR, de la Iglesia HO. (2011). Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Neurobiology Publications and Presentations. https://doi.org/10.1073/ pnas.1107848108. Retrieved from https://escholarship.umassmed.edu/neurobiology_pp/114 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Neurobiology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Distinct patterns of Period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays William J. Schwartza,1, Mahboubeh Tavakoli-Nezhada, Christopher M. Lambertb, David R. Weaverb, and Horacio O. de la Iglesiac,1 Departments of aNeurology and bNeurobiology, University of Massachusetts Medical School, Worcester, MA 01655; and cDepartment of Biology, University of Washington, Seattle, WA 98195 Edited by Michael Rosbash, Howard Hughes Medical Institute, Waltham, MA, and approved September 9, 2011 (received for review May 19, 2011) The circadian clock in the mammalian hypothalamic suprachias- and Per3) genes is activated. PER proteins accumulate in the matic nucleus (SCN) is entrained by the ambient light/dark cycle, cytoplasm, are regulated through their phosphorylation and their which differentially acts to cause the clock to advance or delay.
    [Show full text]
  • Regulation of Drosophila Circadian Rhythms by Mirna Let-7 Is Mediated by a Regulatory Cycle
    ARTICLE Received 10 Jul 2014 | Accepted 10 Oct 2014 | Published 24 Nov 2014 DOI: 10.1038/ncomms6549 Regulation of Drosophila circadian rhythms by miRNA let-7 is mediated by a regulatory cycle Wenfeng Chen1,*, Zhenxing Liu1,*, Tianjiao Li1, Ruifeng Zhang1, Yongbo Xue1, Yang Zhong1, Weiwei Bai1, Dasen Zhou1 & Zhangwu Zhao1 MicroRNA-mediated post-transcriptional regulations are increasingly recognized as important components of the circadian rhythm. Here we identify microRNA let-7, part of the Drosophila let-7-Complex, as a regulator of circadian rhythms mediated by a circadian regulatory cycle. Overexpression of let-7 in clock neurons lengthens circadian period and its deletion attenuates the morning activity peak as well as molecular oscillation. Let-7 regulates the circadian rhythm via repression of CLOCKWORK ORANGE (CWO). Conversely, upregulated cwo in cwo-expressing cells can rescue the phenotype of let-7-Complex overexpression. Moreover, circadian prothoracicotropic hormone (PTTH) and CLOCK- regulated 20-OH ecdysteroid signalling contribute to the circadian expression of let-7 through the 20-OH ecdysteroid receptor. Thus, we find a regulatory cycle involving PTTH, a direct target of CLOCK, and PTTH-driven miRNA let-7. 1 Department of Entomology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to Z.Z. (email: [email protected]). NATURE COMMUNICATIONS | 5:5549 | DOI: 10.1038/ncomms6549 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6549 lmost all animals display a wide range of circadian bantam-dependent regulation of Clk expression is required for rhythms in behaviour and physiology, such as locomotor circadian rhythm.
    [Show full text]
  • A Circadian Biomarker Associated with Breast Cancer in Young Women
    268 Cancer Epidemiology, Biomarkers & Prevention Period3 Structural Variation: A Circadian Biomarker Associated with Breast Cancer in Young Women Yong Zhu,1 Heather N. Brown,1 Yawei Zhang,1 Richard G. Stevens,2 and Tongzhang Zheng1 1Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut and 2University of Connecticut Health Center, Farmington, Connecticut Abstract Circadian disruption has been indicated as a risk factor for blood samples collected from a recently completed breast breast cancer in recent epidemiologic studies. A novel cancer case-control study in Connecticut. There were 389 finding in circadian biology is that genes responsible for Caucasian cases and 432 Caucasian controls included in our circadian rhythm also regulate many other biological path- analysis. We found that the variant Per3 genotype (heterozy- ways, including cell proliferation, cell cycle regulation, and gous + homozygous 5-repeat alleles) was associated with an apoptosis. Therefore, mutations in circadian genes could increased risk of breast cancer among premenopausal women conceivably result in deregulation of these processes and (odds ratio, 1.7; 95% confidence interval, 1.0-3.0). Our find- contribute to tumor development, and be markers for ing suggests that the circadian genes might be a novel panel susceptibility to human cancer. In this study, we investi- of potential biomarkers for breast cancer and worth further gated the association between an exonic length variation in a investigation. (Cancer Epidemiol Biomarkers Prev circadian gene, Period3 (Per3), and breast cancer risk using 2005;14(1):268–70) Introduction Genetic determinants have been found to be responsible for a Per2 gene can activate c-Myc signaling pathways leading to fundamental biological phenomenon: a universal 24-hour genomic instability and cell proliferation.
    [Show full text]
  • Spatial and Temporal Expression of the Period and Timeless Genes in the Developing Nervous System of Drosophila
    The Journal of Neuroscience, September 1, 1997, 17(17):6745–6760 Spatial and Temporal Expression of the period and timeless Genes in the Developing Nervous System of Drosophila: Newly Identified Pacemaker Candidates and Novel Features of Clock Gene Product Cycling Maki Kaneko,1 Charlotte Helfrich-Fo¨ rster,2 and Jeffrey C. Hall1 1Department of Biology, Brandeis University, Waltham, Massachusetts 02254, and 2Botanisches Institut, 72076 Tu¨ bingen, Germany The circadian timekeeping system of Drosophila functions from onward, throughout metamorphosis and into adulthood. There- the first larval instar (L1) onward but is not known to require the fore, they are the best candidates for being pacemaker neurons expression of clock genes in larvae. We show that period ( per) responsible for the larval “time memory” (inferred from previous and timeless (tim) are rhythmically expressed in several groups experiments). In addition to the LNs, a subset of the larval of neurons in the larval CNS both in light/dark cycles and in dorsal neurons (DNLs) expresses per and tim. Intriguingly, two constant dark conditions. Among the clock gene-expressing neurons of this DNL group cycle in PER and TIM immunoreac- cells there is a subset of the putative pacemaker neurons, the tivity almost in antiphase to the other DNLs and to the LNs. “lateral neurons” (LNs), that have been analyzed mainly in adult Thus, the temporal expression of per and tim are regulated flies. Like the adult LNs, the larval ones are also immunoreac- differentially in different cells. Furthermore, the light sensitivity tive to a peptide called pigment-dispersing hormone. Their associated with levels of the TIM protein is different from that in putative dendritic trees were found to be in close proximity to the heads of adult Drosophila.
    [Show full text]
  • Overexpression of C-Myc in ␤-Cells of Transgenic Mice Causes Proliferation and Apoptosis, Downregulation of Insulin Gene Expression, and Diabetes D
    Overexpression of c-Myc in ␤-Cells of Transgenic Mice Causes Proliferation and Apoptosis, Downregulation of Insulin Gene Expression, and Diabetes D. Ross Laybutt,1 Gordon C. Weir,1 Hideaki Kaneto,1 Judith Lebet,1 Richard D. Palmiter,2 Arun Sharma,1 and Susan Bonner-Weir1 To test the hypothesis that c-Myc plays an important role in ␤-cell growth and differentiation, we generated transgenic mice overexpressing c-Myc in ␤-cells under ancreatic ␤-cell failure is fundamental to the control of the rat insulin II promoter. F1 transgenic pathogenesis of all forms of diabetes (1,2). Stud- mice from two founders developed neonatal diabetes ies from animal models suggest that, for the most (associated with reduced plasma insulin levels) and part, ␤-cells have a remarkable capacity to in- died of hyperglycemia 3 days after birth. In pancreata of P crease their mass and secretion to maintain plasma glu- transgenic mice, marked hyperplasia of cells with an altered phenotype and amorphous islet organization cose levels within a narrow range, even in the presence of was displayed: islet volume was increased threefold obesity and insulin resistance (1–4). Diabetes develops versus wild-type littermates. Apoptotic nuclei were in- only when this compensation is inadequate. creased fourfold in transgenic versus wild-type mice, In animal models of diabetes, ␤-cells have been found to suggesting an increased turnover of ␤-cells. Very few lose the unique differentiation that optimizes glucose- cells immunostained for insulin; pancreatic insulin induced insulin secretion and synthesis (5,6). Thus, mRNA and content were markedly reduced. GLUT2 genes that are highly expressed (insulin, GLUT2, and ␤ mRNA was decreased, but other -cell–associated genes PDX-1 [pancreatic and duodenal homeobox-1]) are de- (IAPP [islet amyloid pancreatic polypeptide], PDX-1 [pancreatic and duodenal homeobox-1], and BETA2/ creased with diabetes, whereas several genes that are NeuroD) were expressed at near-normal levels.
    [Show full text]
  • Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability
    7824 • The Journal of Neuroscience, August 16, 2017 • 37(33):7824–7836 Systems/Circuits Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability Sven Wegner,1 Mino D.C. Belle,1 Alun T.L. Hughes,1 Casey O. Diekman,2 and Hugh D. Piggins1 1Faculty of Biology, Medicine, and Health University of Manchester, Manchester, United Kingdom M13 9PT, and 2Department Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102 Suprachiasmatic nuclei (SCN) neurons contain an intracellular molecular circadian clock and the Cryptochromes (CRY1/2), key tran- scriptional repressors of this molecular apparatus, are subject to post-translational modification through ubiquitination and targeting for proteosomal degradation by the ubiquitin E3 ligase complex. Loss-of-function point mutations in a component of this ligase complex, Fbxl3, delay CRY1/2 degradation, reduce circadian rhythm strength, and lengthen the circadian period by ϳ2.5 h. The molecular clock drives circadian changes in the membrane properties of SCN neurons, but it is unclear how alterations in CRY1/2 stability affect SCN neurophysiology. Here we use male and female Afterhours mice which carry the circadian period lengthening loss-of-function Fbxl3Afh mutation and perform patch-clamp recordings from SCN brain slices across the projected day/night cycle. We find that the daily rhythm in membrane excitability in the ventral SCN (vSCN) was enhanced in amplitude and delayed in timing in Fbxl3Afh/Afh mice. At night, vSCN cells from Fbxl3Afh/Afh mice were more hyperpolarized, receiving more GABAergic input than their Fbxl3ϩ/ϩ counterparts. Unexpectedly, the progression to daytime hyperexcited states was slowed by Afh mutation, whereas the decline to hypoexcited states was accelerated.
    [Show full text]
  • ©Copyright 2015 Samuel Tabor Marionni Native Ion Mobility Mass Spectrometry: Characterizing Biological Assemblies and Modeling Their Structures
    ©Copyright 2015 Samuel Tabor Marionni Native Ion Mobility Mass Spectrometry: Characterizing Biological Assemblies and Modeling their Structures Samuel Tabor Marionni A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Matthew F. Bush, Chair Robert E. Synovec Dustin J. Maly James E. Bruce Program Authorized to Offer Degree: Chemistry University of Washington Abstract Native Ion Mobility Mass Spectrometry: Characterizing Biological Assemblies and Modeling their Structures Samuel Tabor Marionni Chair of the Supervisory Committee: Assistant Professor Matthew F. Bush Department of Chemistry Native mass spectrometry (MS) is an increasingly important structural biology technique for characterizing protein complexes. Conventional structural techniques such as X-ray crys- tallography and nuclear magnetic resonance (NMR) spectroscopy can produce very high- resolution structures, however large quantities of protein are needed, heterogeneity com- plicates structural elucidation, and higher-order complexes of biomolecules are difficult to characterize with these techniques. Native MS is rapid and requires very small amounts of sample. Though the data is not as high-resolution, information about stoichiometry, subunit topology, and ligand-binding, is readily obtained, making native MS very complementary to these techniques. When coupled with ion mobility, geometric information in the form of a collision cross section (Ω) can be obtained as well. Integrative modeling approaches are emerging that integrate gas-phase techniques — such as native MS, ion mobility, chemical cross-linking, and other forms of protein MS — with conventional solution-phase techniques and computational modeling. While conducting the research discussed in this dissertation, I used native MS to investigate two biological systems: a mammalian circadian clock protein complex and a series of engineered fusion proteins.
    [Show full text]
  • Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
    Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm.
    [Show full text]
  • Role of the Nuclear Receptor Rev-Erb Alpha in Circadian Food Anticipation and Metabolism Julien Delezie
    Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism Julien Delezie To cite this version: Julien Delezie. Role of the nuclear receptor Rev-erb alpha in circadian food anticipation and metabolism. Neurobiology. Université de Strasbourg, 2012. English. NNT : 2012STRAJ018. tel- 00801656 HAL Id: tel-00801656 https://tel.archives-ouvertes.fr/tel-00801656 Submitted on 10 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE CNRS UPR 3212 · Institut des Neurosciences Cellulaires et Intégratives THÈSE présentée par : Julien DELEZIE soutenue le : 29 juin 2012 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Neurosciences Rôle du récepteur nucléaire Rev-erbα dans les mécanismes d’anticipation des repas et le métabolisme THÈSE dirigée par : M CHALLET Etienne Directeur de recherche, université de Strasbourg RAPPORTEURS : M PFRIEGER Frank Directeur de recherche, université de Strasbourg M KALSBEEK Andries
    [Show full text]
  • The Period of the Circadian Oscillator Is Primarily Determined by the Balance Between Casein Kinase 1 and Protein Phosphatase 1
    The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1 Hyeong-min Leea,1,2, Rongmin Chena,1, Hyukmin Kima, Jean-Pierre Etchegarayb,3, David R. Weaverb, and Choogon Leea,4 aDepartment of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306; and bDepartment of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved August 30, 2011 (received for review May 4, 2011) Mounting evidence suggests that PERIOD (PER) proteins play a PAGE—occurs progressively over several hours (12, 19), which is central role in setting the speed (period) and phase of the circadian critical for stretching the feedback loop to ∼24 h. However, PER2 clock. Pharmacological and genetic studies have shown that changes can be maximally phosphorylated by CK1ε in vitro kinase reac- in PER phosphorylation kinetics are associated with changes in tions within 30 min (20, 21), suggesting that PER phosphorylation circadian rhythm period and phase, which can lead to sleep disorders must be counterbalanced by phosphatases in vivo. such as Familial Advanced Sleep Phase Syndrome in humans. We Because the phase and period of the clock are primarily de- and others have shown that casein kinase 1δ and ε (CK1δ/ε) are termined by temporal regulation of PER phosphorylation (12, 15, essential PER kinases, but it is clear that additional, unknown mech- 21–26), the characterization of PER kinases and phosphatases is anisms are also crucial for regulating the kinetics of PER phosphor- vital to understanding the circadian clock mechanism.
    [Show full text]
  • Transcription Factors of the Core Feedback Loop in the Molecular Circadian Clock Machinery: Internal Timekeeping and Beyond Katalin Csép*
    Acta Marisiensis - Seria Medica 2021;67(1):3-11 DOI: 10.2478/amma-2021-0007 REVIEW Transcription factors of the core feedback loop in the molecular circadian clock machinery: internal timekeeping and beyond Katalin Csép* George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania To function more efficiently amid oscillating environmental conditions related to alternating day and night cycles, the circadian clock system developed as an adaptative strategy, serving temporal regulation of internal processes, by anticipating daily recurring changes. At the basis of the circadian clock is a 24-hour oscillation of the expression of clock genes, organized into interconnected self-regulatory transcriptional- translational feedback loops, present throughout the cells of the body, organized into a hierarchical system. Complex combinatorial mecha- nisms of gene expression regulation at pre-transcriptional, transcriptional, post-transcriptional and post-translational level offer stability and flexibility to the system, responsive to the actual conditions. The core clock genes CLOCK/NPAS2, ARNTL1/ARNTL2, PER1/PER2/PER3 and CRY1/CRY2 encode transcription factors responsible for generating the circadian rhythm in the molecular oscillator machinery, but beyond internal timekeeping, additional functions through gene expression regulation and protein interactions provide them key roles in basic mecha- nisms like cell cycle control or metabolism, and orchestration of complex physiological or behavioral processes. Elucidation of these intricate regulatory processes, the role of genetic variations as well as clock desynchronization associated with modern lifestyle, promise important medical implications, from a deeper understanding of etiopathology in rare inherited or common adult disorders, to a better management by the application of chronotherapy.
    [Show full text]
  • Epigenomic and Transcriptional Regulation of Hepatic Metabolism by REV-ERB and Hdac3
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Epigenomic and Transcriptional Regulation of Hepatic Metabolism by REV-ERB and Hdac3 Dan Feng University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Genetics Commons, and the Molecular Biology Commons Recommended Citation Feng, Dan, "Epigenomic and Transcriptional Regulation of Hepatic Metabolism by REV-ERB and Hdac3" (2013). Publicly Accessible Penn Dissertations. 633. https://repository.upenn.edu/edissertations/633 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/633 For more information, please contact [email protected]. Epigenomic and Transcriptional Regulation of Hepatic Metabolism by REV-ERB and Hdac3 Abstract Metabolic activities are regulated by the circadian clock, and disruption of the clock exacerbates metabolic diseases including obesity and diabetes. Transcriptomic studies in metabolic organs suggested that the circadian clock drives the circadian expression of important metabolic genes. Here we show that histone deacetylase 3 (HDAC3) is recruited to the mouse liver genome in a circadian manner. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Diurnal recruitment of HDAC3 corresponds to the expression pattern of REV-ERBα, an important component of the circadian clock. REV-ERBα colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbα in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by REV-ERBα directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis. In addition, we reported that the REV-ERBα paralog, REV- ERBβ also displays circadian binding similar to that of REV-ERBα.
    [Show full text]