COUNTRY REPORTS Brazil

Country Report Supporting the Preparation of the First Report on The State of the World's Aquatic Genetic Resources for Food and Agriculture This Country Report has been submitted by the national authorities as a contribution to the Food and Agriculture Organization of the United Nations (FAO) publication, The State of the World’s Aquatic Genetic Resources for Food and Agriculture. The information in this Country Report has not been verified by FAO, and its content is entirely the responsibility of the entity preparing the Country Report, and does not necessarily represent the views of FAO, or its Members. The designations employed and the presentation of material do not imply the expression of any opinion whatsoever on the part of FAO concerning legal or development status of any country, territory, city or area or of its authorities or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. Questionnaire for the Preparation of Country Reports for the First State of the World's Aquatic Genetic Resources for Food and Agriculture

COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE 2

INSTRUCTIONS FOR COMPLETING THE DYNAMIC GUIDELINES

How do I complete the dynamic guidelines?

1. You will require Adobe Reader to open the dynamic guidelines. Adobe Reader can be downloaded free of charge from: http://get.adobe.com/uk/reader/otherversions/. Use Adobe Reader Version 10 or higher. 2. Open the dynamic guidelines and save it (save as a pdf) on your hard drive. 3. Please rename it .pdf. 4. You may forward the dynamic guidelines to stakeholders you would like to involve or inform by e-mail. You may also print and/or save the dynamic guidelines. 5. It is advisable to prepare textual responses (including any formatting such as bullet points) first in a separate document and then to copy and paste them into the form. Please use font Arial 10. Acronyms and abbreviations should be avoided if possible. If included, they must be introduced (i.e. written out in full) the first time they are used. Note that the text boxes are expandable. Once text has been entered, the box will automatically enlarge to make its content fully visible when you click outside its border. To delete a row you have added, click on the "X" on the far right of the table 6. When you have finished completing the dynamic guidelines, click the “Submit form” button at the end of the form and send the completed dynamic guidelines to [email protected]; [email protected]; and [email protected]. 7. This should automatically attach the document to an email that you can then send. Otherwise, please attach the completed dynamic guidelines manually to an e-mail and send it to [email protected]; [email protected]; and [email protected]. 8. A letter confirming official endorsement by relevant authorities should also be attached to the email. 9. You will receive a confirmation that the submission was successful.

Where can I get further assistance? If you have any questions regarding the dynamic guidelines, please contact [email protected]; [email protected]; [email protected]

Several websites provide useful information on aquatic that can be consulted for proper species names and for information on aquatic genetic resources: AlgaeBase, Aquamaps, Barcode of Life, Census of Marine Life, FishBase, Frozen Ark, GenBank, Global Biodiversity Information Facility, International Union for Conservation of Nature, National Institutes of Health Database on Genomes and Bioinformatics, Ornamental International, SealifeBase, Sea Around Us, and World Register of Marine Species.

How, by whom and by when must the completed dynamic guidelines be submitted? Once officially endorsed by the relevant authorities, the completed dynamic guidelines should be submitted (click the “Submit form” button on the header banner) by the National Focal Point. Completed dynamic guidelines should be sent by December 31st 2015.

www.algaebase.org www.aquamaps.org www.barcodeoflife.org www.coml.org www.fishbase.org www.frozenark.org www.genbank.org www.gbif.org www.iucn.org http://discover.nci.nih.gov/ www.ornamental-fish-int.org www.sealifebase.org www.seaaroundus.org www.marinespecies.org 3

I. INTRODUCTION

At its Thirteenth Regular Session, the Commission noted that the preparation of a country-driven State of the World's Aquatic Genetic Resources for Food and Agriculture would provide countries with opportunities for assessing the status of their aquatic genetic resources for food and agriculture and enhancing the contributions of aquatic genetic resources to food security and rural development. Additionally the process of producing Country Reports will assist countries in determining their needs and priorities for the conservation and sustainable use of aquatic genetic resources for food and agriculture, and will help raise awareness among policy-makers.

II. COUNTRY REPORTS As with the other sectors, The State of the World's Aquatic Genetic Resources for Food and Agriculture (SoWAqGR) will be compiled from Country Reports. It is recognized that guidance is necessary in order to assist countries in completing those reports under a common framework. The Country Reports will become official government documents submitted to FAO.

The following questionnaire is the suggested format for the preparation and submission of Country Reports. The questionnaire has been prepared by FAO to assist in the preparation of Country Reports contributing to the SoWAqGR Report. It has been designed to assist countries to undertake a strategic assessment of their aquatic genetic resources for food and agriculture.

The scope of the first State of the World's Aquatic Genetic Resources for Food and Agriculture, and therefore the emphasis in the Country Reports, is farmed aquatic species and their wild relatives within national jurisdiction.

Country Reports should: • become powerful tools for improving the conservation, sustainable use and development of aquatic genetic resources for food and agriculture, at national and regional levels; • identify threats to aquatic genetic resources, gaps in information about aquatic genetic resources and needs for the strengthening of national capacity to manage aquatic genetic resources effectively; • inform the development of national policies, legislation, research and development, education, training and extension concerning the conservation, sustainable use and development of aquatic genetic resources for food and agriculture; • contribute to raising public awareness about the importance of aquatic genetic resources for food and agriculture; • complement other national reporting activities on the conservation, sustainable use and development of aquatic genetic resources.

Timeline and process In line with the overall process, as established by the Commission, the Director-General of FAO sent a Circular State Letter on 19 April 2012 to countries requesting them to identify National Focal Points for the preparation of Country Reports by 31 December, 2015. The following steps are recommended in preparing the Country Report, using a participatory approach: • Each participating country should appoint a National Focal Point for the coordination of the preparation of the Country Report who will also act as focal point to FAO. National Focal Points should be communicated to the Secretary, Commission on Genetic Resources for Food and Agriculture ([email protected]) immediatly. • Countries are encouraged to establish a national committee to oversee the preparation of the Country Report. The national committee should consist of as many representative stakeholders as practical (representing government, industry, research and civil society). • The national committee should meet frequently to review progress and consult widely with key stakeholders. 4

• The National Focal Point should coordinate the preparation of the first draft of the Country Report, which should be reviewed by the national committee. The National Focal Point should facilitate a consultative process for broader stakeholder review. • Following the stakeholder review, the National Focal Point should coordinate the finalization of the Country Report, submit it to the government for official endorsement and transmit it to FAO in one of the Organization's official languages (Arabic, Chinese, English, French, Russian and Spanish) by 31 December 2015. • The Country Report will be an official government report. • If countries are unable to submit final Country Reports by the set deadline, preliminary reports of findings should be provided to FAO to contribute to the identification of global priorities for inclusion in the SoWAqGR Report. 5

QUESTIONNAIRE FOR PREPARATION OF COUNTRY REPORTS FOR THE STATE OF THE WORLD'S AQUATIC GENETIC RESOURCES FOR FOOD AND AGRICULTURE

Country report supporting the preparation of The State of the World's Aquatic Genetic Resources for Food and Agriculture

Country Brazil

Alexandre Wagner Silva Hilsdorf e Samuel Prepared By Rezende Paiva

Date Dec 17, 2015

TABLE OF CONTENTS Page

I.EXECUTIVE SUMMARY 6

II.INTRODUCTION 7

III.MAIN BODY OF THE COUNTRY REPORT 7

Chapter 1. The Use and Exchange of Aquatic Genetic Resources of Farmed Aquatic 7 Species and their Wild Relatives within National Jurisdiction

Chapter 2. Drivers and Trends in Aquaculture: Consequences for Aquatic Genetic 90 Resources within National Jurisdiction

Chapter 3. In Situ Conservation of Aquatic Genetic Resources of Farmed Aquatic Species 101 and their wild Relatives within National Jurisdiction

Chapter 4. Ex Situ Conservation of Aquatic Genetic Resources of Farmed Aquatic 106 Species and their Wild Relatives within National Jurisdiction

Chapter 5. Stakeholders with Interests in Aquatic Genetic Resources of Farmed Aquatic 109 Species and their Wild Relatives within National Jurisdiction

Chapter 6. National Policies and Legislation for Aquatic Genetic Resources of Farmed 116 Aquatic Species and their Wild Relatives within National Jurisdiction

Chapter 7. Research, Education, Training and Extension on Aquatic Genetic 122 Resources within National Jurisdiction: Coordination, Networking and Information Chapter 8. International Collaboration on Aquatic Genetic Resources of Farmed Aquatic 135 Species and Their Wild Relatives 6

I. EXECUTIVE SUMMARY

The Country Report should contain an executive summary of 2-3 pages highlighting the main findings of the analysis and providing an overview of key issues, constraints and existing capacity to address the issues and challenges. The executive summary should indicate trends and driving forces and present an overview of the proposed strategic directions for future actions aimed at the national, regional and global levels.

Please include the Executive Summary here.

This report compiles information on the current stage of aquatic genetic resources found in the Brazilian continental and coastal waters of importance for aquaculture in Brazil. This is the first attempt to review the state of art of aquatic genetic resources currently in use by either local smallholder fish farming or industrial aquaculture in the Brazilian territory. In 2010, Brazil hosted the Rio+20 United Nations Conference on Sustainable Development, when it was recognized “the emergence of promoting, enhancing and supporting more sustainable agriculture, including crops, livestock, forestry, fisheries and aquaculture, that improves food security, eradicates hunger and is economically viable, while conserving land, water, plant and genetic resources, biodiversity and ecosystems and enhancing resilience to climate change and natural disasters”. Aquatic ecosystems are particularly sensitive to these short or long-term disruptions. For example, there have been uncountable reports of waterbodies being affected by pollution, dam construction for hydroelectric power generation, loss of riverbank vegetation, introduction of alien species, fish hybrids escapees, overfishing and more recently dam burst of mining waste sites in Brazil. Therefore, there is an urgency to increase the knowledge of aquatic genetic resources within the country boundaries. Plant and animal genetic resources have been under scope of policies and initiatives of Brazilian government through, for example, the elaboration of FAO state of world for plants and animal genetic resources. However, despite the expressive growth of fish farming production in the last 10 years, aquatic genetic resources used so far (encompassing fish, crustacean and mollusc) have not been an important issue for Brazilian policy makers. Lack of information about species distribution and basic biology of most aquatic genetic resources is affecting its proper management and reducing the ability to develop genetic breeding and conservation programs. Brazil harbors an impressive ichthyofaunal diversity. Out of 2,587 species, 2,481 have been formally described; this represents around 21% of all species of inland waters of the world. It is estimated that 30 to 40% ichthyodiversity is not described yet so total of freshwater species of fish may reach a total of 5,000. Contrasting other countries, Brazilian aquaculture includes a myriad of species delimited by region and climate. Some of them have been raised for decades and is part of regional fish farming production. It is estimated that 60 species of fish, crustacean, amphibians, and reptiles have potential for culture in commercial operations in Brazilian continental waters. Finfish represents almost the totality of production having the exotic Oreochromis niloticus (Nile tilapia) as the main species in the Brazilian annual aquaculture production estimates. Second and third place are for two native fish species, Colossoma macropomum (tambaqui) and Pseudoplatystoma reticulatum (Brazilian catfish - cachara) together these two species encompass one third of national tilapia production. Regarding the marine aquaculture, Litopenaeus vannamei (white shrimp) is the main species raised along the coastal areas in the Northeast region of Brazil. Marine finfish aquaculture is still experimental with an incipient production. Concerning ornamental aquatic organism, Brazil is one of the five leading exporting countries of tropical aquarium in the world. Mostly of these genetic resources has been taking abroad without any proper jurisdiction. Some of these ornamental native species have been artificially spawned in other countries and fingerlings have been traded without any equitable sharing benefits for the local communities involved in this ornamental fish collecting. One of the crucial steps to optimize national breeding and conservation programs of native species rely on the genetic assessment of wild and farmed stocks. Currently, there are few attempts to establish continuous genetic breeding programs of native finfish species to make available genetic superior material for fish famers. The interspecific hybridization has almost been the unique methodology to increase fish farming productivity. Growth of hybridization as a genetic improvement methodology for native species in Brazil poses a real risk for genetic erosion of genetic resources of wild populations through escapees and as a result genetic introgression. Another important issue regarding wild fish genetic resources (FiGR) in Brazil is the optimization of a strong genetic resources conservation program with distribution of roles between the public and private sector. For example, it is important to implement in situ wild FiGR conservation areas that can direct support private sector to explore rationally the FiGR into fish farming operations. Ex-situ conservation is also of paramount importance for the native FiGR conservation in Brazil. Private and government hatcheries have been used in restocking programs and they are an important strategy to conserve FiGR, which have already been vanished in the wild. Nevertheless, it is imperative that all this material be cryopreserved in order to guarantee national food security and support industry. In conclusion, for countries like Brazil with vast aquatic biodiversity, it is not strategic to develop a national aquaculture production based on just one species (nile tilapia) when different species may be potentially used for domestication and farming. The current native species with great potential for the industrial aquaculture development, such as tambaqui (Colossoma macropomum), cachara (Pseudoplatystoma reticulatum) pacu (Piaractus mesopotamicum), pirarucu (Arapaima gigas), matrinchã ( spp.) among others the recognition of their wild genetic resources values is fundamental to breeding programs of this species to boost productivity and share the benefits of this for the whole Brazilian society. 7

II. INTRODUCTION

The main objective of the Introduction is to present an overview that will allow a person who is unfamiliar with the country to appreciate the context for the Country Report. The Introduction should present a broad overview and present background information from your country on farmed aquatic species, their wild relatives and culture based fisheries. Detailed information should be provided in the main body of the Country Report. Countries may wish to consider developing their Introductions after completing the main body of their Country Reports.

Please write the overview here Brazil is a continental country with its territory mostly within tropical zone. Because the Brazilian territory dimension, its geographical configuration, and its relief, Brazilian climate diverges to some degree from region to region. Therefore, four main climatic zones can be found in Brazil – Equatorial zone, Semi-Arid zone, Highland tropical zone, and Subtropical zone – where wide temperature variations occur with an average annual temperatures above 25oC in the North and Northeast part of the country, and annual temperatures below 20oC in the South and Southeast areas.

In addition to the vast territory, Brazil is endowed with the 13.8% of the total freshwater surface worldwide having an extensive and dense watershed net encompassing seven main River basins: Tocantins-Araguaia River Basin; South Atlantic Basin - region north and northeast; San Francisco River Basin; South Atlantic Basin - region east; Platina Basin, composed of the sub-basins of the rivers Paraná and Uruguay; and Atlantic South Basin - regions southeast and south. Brazilian coastline is too wide-ranging extending 9,200 from the Equator line (4oN) to the border of Argentina (34oC).

The natural condition of water resources and climate as described makes Brazil a potential country for aquaculture production. The country has more than 5 million of hectares of public and private reservoirs for water supply and hydropower production many of them suitable for cage culture. Also, Brazil is self-sustaining in grain production with large experience in livestock production such as poultry and beef cattle. However, all of these advantage attributes has not conveyed Brazil to a leadership in the world aquaculture scenario. According to FAO statistics, Brazil is the 12th position in aquaculture production worldwide with a total farmed food production of 707,461 t in 2012. The more updated statistic production of inland finfish, crustaceans, molluscs, and other farmed species of 2013 in Brazil shows a total production of 480,809 t.

The earliest signs of aquaculture practice in Brazil dates back to Dutch invasion of northeastern Brazil in the XVII century. As economic activity fish farming was established in 1940s with the introduction of common carp and rainbow trout in São Paulo and Rio de Janeiro states. Farming of native species milestone in Brazil started during the 1980s with the complete development of induced reproduction by hormonal treatment mainly using so called rounded fish such as pacu (Piraractus mesopotamicus) and tambaqui (Colossoma macropoum).

Brazil harbors an impressive ichthyofaunal diversity. Out of 2,587 species, 2,481 have been formally described, this represents around 21% of all species of inland waters of the world. It is estimated that 30 to 40% ichthyodiversity this cannot yet be described so that the total of fresh water species of fish may reach 5,000. Due to its vast diversity of native fish species, Brazil has developed diversified fish farming based on different species. Currently, there are 16 inland finfish species being raised in Brazilian territory. Among these, five are exotic species - catfish (Clarias gariepinus), catfish (Ictalurus punctatus), tilapia (Oreochromis niloticus), carps (Cyprinus carpio, Ctenopharyngodon idella, Hypophthalmichthys molitrix e Aristichthys nobilis) and rainbow trout (Oncorhynchus mykiss).

The potential for development of new aquaculture species in Brazil is still under estimated. Therefore, the genetic resources of native and introduced aquatic species needs a better understanding to contribute to the food security through increasing of high value protein from aquaculture production.

III. MAIN BODY OF THE COUNTRY REPORT

Aquaculture, culture-based fisheries and capture fisheries, have differing importance among countries. The structure of chapters in each Country Report will reflect those differences. Countries which do not have a well-developed aquaculture sector but where wild relatives of farmed aquatic species are located, should report on these resources. Countries should decide how to prioritize the coverage of their Country Reports depending on their aquatic genetic resources.

Chapter 1: The Use and Exchange of Aquatic Genetic Resources of Farmed Aquatic Species and their Wild Relatives within National Jurisdiction The main objective of Chapter 1 is to provide annotated inventories of aquatic genetic resources (AqGR) of farmed aquatic species and their wild relatives. 8 Farmed aquatic species 1. Over the last 10 years, has production been: Please mark appropriate box. Increasing Stable

Decreasing

Stopped

Still in Research and Development

Fluctuating Not known 9 2. What is the expected trend over the next 10 years? Please mark appropriate box.

Increasing Stable

Decreasing

Stopped

Still in Research and Development Fluctuating Not known

3. Is the identification and naming of farmed species, subspecies, hybrids, crossbreeds, strains, triploids, other distinct types accurate and up- to-date? Please mark appropriate box.

Yes No

Mostly Yes

Mostly No Please include any explanation or additional information here.

The majority of farmed species are taxonomically well described. Some problems arise in relation to some species which consist of specie complexity, for instance genus Astyanax, Hoplias, and Rhamdia. Hybrids have been used extensively, not only between differences species of the same genus, but also between genus. This hybrids are not taxonomic entities, and these hybrids production has been mixed up with the species used to produce such hybrids.

4. To what extent are genetic data for farmed aquatic organisms

a) Available? Please mark appropriate box. b) Used in management? Please mark appropriate box.

Not at all Not at all To a minor extent To a minor extent

To some extent To some extent

To a great extent To a great extent

Please add any explanation here.

There is no regular data collection on genetic resources of wild native species to aknowledge the status of genetic diversity of these species. Scarce information (taking in account the number of species) has been published by fish geneticists. Such information is pivotal for protection and management of farmed wild relatives which is strategic to set up breeding programs of new potential native species for aquaculture. 10 5. To what extent are the aquatic organisms farmed in your country sourced as wild seed or from wild brood stock? Please mark appropriate box.

Not at all To a minor extent

To some extent

To a great extent Please add any explanation here.

It depends on the species. Seeds for tilapia, carps, and tambaqui farming operation are entirely from hatcheries. Most of the fingerling production from native species comes from broodstock caught in the environment, at least until a large enough broadstock base is established. With some exception from Colossoma macropomum and some brycons, which has a somewhat established domesticated broodstock.

6. What proportions (%) of breeding programmes and efforts for the genetic improvement of farmed aquatic species in your country are being managed by the public sector (government research, universities etc.), the private sector, and public-private partnerships?

• Percent managed by public sector. Please Enter Percentage Here 10

• Percent managed by private sector. Please Enter Percentage Here 85

• Percent managed by private /public partnership. Please Enter Percentage Here 5

Please add any explanation here. Total 100

Tilapia aquaculture industry has been developed their own breeding programs based on GIFT strain. The main endeavor to produce a commercial breeding program using native species was attempted within AQUABRASIL Project. There are no technical published articles or other information about the outcomes of this project. Breeding programs of native species are scarce and localized in some Brazilian watershed´s, as in the São Francisco rivers (NE). Mostly are based on the need to re-establish native fish fauna impacted by dam construction.

7. To what extent do genetically improved aquatic organisms, including hybrids, crossbreeds, strains, triploids and other distinct types contribute to national aquaculture production in terms of volume ?

Please mark appropriate box.

Not at all To a minor extent

To some extent

To a great extent 11 8. Please list most significant examples where genetic improvement contributed to increased production and indicate whether they were developed by public, private or public/private partnerships. Add Row

Type of genetic improvement Developed By Species mark all that apply mark all that apply

Private Sector Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box Private Sector below Hybrids O. niloticus x Public Sector Oreochromis hornorum Private/Public partnership

Oreochromis niloticus Private Sector Triploids and other polyploids Public Sector X Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership

Private Sector Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box below Private Sector Piaractus Hybrids mesopotamicus Public Sector (Female) x Colossoma Private/Public partnership Piaractus mesopotamicus (Male) macropomum Private Sector X Triploids and other polyploids Public Sector Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership Private Sector 12 Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box below Piaractus Private Sector mesopotamicus Hybrids (Female) x Public Sector Piaractus mesopotamicus Piaractus brachypomus Private/Public partnership (Male) X

Private Sector Triploids and other polyploids Public Sector Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership Private Sector Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box below Private Sector Pseudoplatystoma Hybrids reticulatum (Female) x Public Sector Pseudoplatystoma Private/Public partnership Pseudoplatystoma spp corruscans (Male) Private Sector X Triploids and other polyploids Public Sector Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership Private Sector 13 Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box below Private Sector Pseudoplatystoma Hybrids corruscans (Female) x Public Sector Pseudoplatystoma Private/Public partnership Pseudoplatystoma spp reticulatum (Male) Private Sector X Triploids and other polyploids Public Sector Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership

Private Sector Traditional selective breeding Public Sector Private/Public partnership Specify parental species in the box below Private Sector Pseudoplatystoma Hybrids reticulatum (Female) x Public Sector Pseudoplatystoma Private/Public partnership Pseudoplatystoma spp corruscans (Male) Private Sector X Triploids and other polyploids Public Sector Private/Public partnership Private Sector Mono-sex production Public Sector Private/Public partnership Private Sector Other Public Sector Private/Public partnership 14

9. Please fill in table 1.1

Table 1.1 Aquatic genetic resources (AqGR) of farmed aquatic species in your country

Add Row

Future trends in Genetic Future genetic Farmed species Genetic type Comments Availability of Trends in production improvement improvement genetic data production

List species (scientific Which genetic names), strains and Are genetic data For example important traits technologies are varieties as scientific available for farmed Expected trend improved, how data are used Indicate all genetic types names (put in brackets populations? Over the last 10 over the next 10 currently being used in management or name of that apply to the species mark all that apply the most widely used If yes, give years, production years is that on the species breed, source of information, production will national common name summary details in has been (mark one) etc. (mark all that apply) or names) and indicate comments (mark one) whether native or introduced

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Prochilodus lineatus Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped No selective breeding manipulation) manipulation) Cross breeds program has been applied X Not known Not known for this species. Cultivation is Monosex Monosex Strains based on wild type Marker assisted Marker assisted broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 15 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Salminus brasiliensis Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped No selective breeding manipulation) manipulation) Cross breeds program has been applied X Not known Not known for this species. Cultivation is Monosex Monosex Strains based on wild type Marker assisted Marker assisted broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Astyanax fasciatus Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating No selective breeding Hybrids Decreasing Decreasing Polyploidy Polyploidy program has been applied (chromosome set (chromosome set for this species. Cultivation is Stopped Stopped Cross breeds manipulation) manipulation) based on wild type X Not known Not known broodstock. Strains Monosex Monosex >There are different species Marker assisted Marker assisted of the genus Astyanax. A. Varieties selection selection altiparanea is the most Other (specify in Other (specify in important for aquaculture. Polyploids comment) comment) Native 16 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No selective breeding No Stable Stable program has been applied Brycon spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating for this species. Cultivation is based on wild type Polyploidy Polyploidy Hybrids Decreasing Decreasing broodstock. (chromosome set (chromosome set Stopped Stopped In this category is included manipulation) manipulation) Cross breeds the following species: X Not known Not known Brycon amazonicus Monosex Monosex Strains Brycon hilarii Marker assisted Marker assisted Brycon orbignyanus Varieties selection selection Brycon cephalus Brycon orthotaenia Other (specify in Other (specify in Polyploids Brycon insignis comment) comment) Brycon opalinus Brycon nattereri

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No selective breeding No Stable Stable program has been applied Leporinus spp Selective bred Hybridization Hybridization for this species. Cultivation is type Not Known Fluctuating Fluctuating based on wild type Hybrids Decreasing Decreasing Polyploidy Polyploidy broodstock. (chromosome set (chromosome set Stopped Stopped Cross breeds manipulation) manipulation) >Hybrids are produced, but X Not known Not known no information are available Strains Monosex Monosex about the hybridization direction, as well as the Marker assisted Marker assisted production volume. Varieties selection selection Other (specify in Other (specify in species used in small scale Polyploids comment) comment) farming : Leporinus friderici, L. elongatus, L. macrocephalus Native 17 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No selective breeding Piaractus Selective bred No Stable Stable program has been applied brachypomus Hybridization Hybridization type Not Known Fluctuating Fluctuating for this species. Cultivation is based on wild type Polyploidy Polyploidy Hybrids Decreasing Decreasing broodstock and (chromosome set (chromosome set Stopped Stopped hybridization. Cross breeds manipulation) manipulation) X Not known Not known Strains Monosex Monosex Marker assisted Marker assisted Dam of Piaractus Varieties selection selection brachypomus with sire of Piaractus mesopotomicus. Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Colossoma Selective bred No Stable Stable macropomum Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy >Selective program has been (chromosome set (chromosome set carried out by government Stopped Stopped Cross breeds manipulation) manipulation) agencies and private X Not known Not known companies. Results have not Strains Monosex Monosex been published. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 18 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Hoplias spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped No selective breeding manipulation) manipulation) Cross breeds program has been applied X Not known Not known for this species. Cultivation is Monosex Monosex Strains based on wild type Marker assisted Marker assisted broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

No selective breeding Native program has been applied Introduced for this species. Cultivation is based on wild type Pseudoplatystoma spp broodstock and mainly hybrid production. Wild Type Yes Increasing Increasing Selective breeding Selective breeding Hybrids produced No Stable Stable Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating >Dam of Pseudoplatystoma X corruscans with sire of P. Polyploidy Polyploidy Hybrids Decreasing Decreasing reticulatum/fasciatum. (chromosome set (chromosome set Stopped Stopped manipulation) manipulation) Cross breeds >Dam of P. reticulatum/ Not known Not known fasciatum with sire of Monosex Monosex Strains Pseudoplatystoma Marker assisted Marker assisted corruscans. Varieties selection selection >Dam of Leiarius Other (specify in Other (specify in Polyploids marmoratus with sire of comment) comment) Pseudoplatystoma spp.

>Dam of Leiarius marmoratus with sire of Pseudoplatystoma spp.

>Dam of Pseudoplatystoma spp with sire of Leiarius spp. Native 19 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Rhamdia quelen Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex based on wild type broodstock. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Cichla spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Polyploidy Polyploidy Hybrids Decreasing Decreasing No selective breeding (chromosome set (chromosome set Stopped Stopped program has been applied manipulation) manipulation) Cross breeds for this species. Cultivation is X Not known Not known based on wild type Monosex Monosex Strains broodstock. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 20 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Arapaima gigas Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex based on wild type broodstock. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Oreochromis niloticus Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Farming is based on genetic Stopped Stopped Cross breeds manipulation) manipulation) improved strains imported, X Not known Not known such as chitralada and Strains Monosex Monosex different genetic variaties of GIFT strain. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 21 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Cyprinus carpio Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy Carp production is based (chromosome set (chromosome set mainly on small and Stopped Stopped Cross breeds manipulation) manipulation) integrated cultivation X Not known Not known systems in south of Brazil. Strains Monosex Monosex No breding program of Cyprinus carpio has been Marker assisted Marker assisted done. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Oncorhynchus mykiss Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Rainbow trout production is Hybrids Decreasing Decreasing Polyploidy Polyploidy based on a small scale (chromosome set (chromosome set production with farms Stopped Stopped Cross breeds manipulation) manipulation) located in high altitudes X Not known Not known sites. The genetic material Strains Monosex Monosex was brought to Brazil during the 1940´s. No records of Marker assisted Marker assisted genetic improvement Varieties selection selection programs has been found. Other (specify in Other (specify in Polyploids comment) comment) Native 22 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Seriola dumerili Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex experimental and based on wild type broodstock. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Lutjanus synagris Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex experimental and based on wild type broodstock. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 23 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Mugil liza Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped No selective breeding manipulation) manipulation) Cross breeds program has been applied X Not known Not known for this species. Cultivation is Monosex Monosex Strains experimental and based on Marker assisted Marker assisted wild type broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Epinephelus spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped No selective breeding manipulation) manipulation) Cross breeds program has been applied X Not known Not known for this species. Cultivation is Monosex Monosex Strains experimental and based on Marker assisted Marker assisted wild type broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 24 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Rachycentron Selective bred No Stable Stable canadum Hybridization Hybridization type Not Known Fluctuating Fluctuating Polyploidy Polyploidy Hybrids Decreasing Decreasing No selective breeding (chromosome set (chromosome set Stopped Stopped program has been applied manipulation) manipulation) Cross breeds for this species. Cultivation is X Not known Not known experimental with some Monosex Monosex Strains small scale commercial Marker assisted Marker assisted endevours and mostly based Varieties selection selection on wild type broodstock. Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Centropomus Selective bred No Stable Stable undecimalis Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy No selective breeding (chromosome set (chromosome set program has been applied Stopped Stopped Cross breeds manipulation) manipulation) for this species. Cultivation is X Not known Not known experimental and based on Strains Monosex Monosex wild type broodstock. Also include the following Marker assisted Marker assisted specie: Centropomus Varieties selection selection parallelus Other (specify in Other (specify in Polyploids comment) comment) Native 25 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Perna perna Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex some what based on spat collection for renew seed Marker assisted Marker assisted production and growing out. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Nodipecten nodosus Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex based on spat collection for growing out. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 26 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Crassostrea Selective bred No Stable Stable rhizophorae Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex based on spat collection for growing out. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Crassostrea gigas Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set No selective breeding Stopped Stopped Cross breeds manipulation) manipulation) program has been applied X Not known Not known for this species. Cultivation is Strains Monosex Monosex based on spat collection for growing out. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 27 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Penaeus vannamei Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped Cross breeds manipulation) manipulation) Selective breeding has been X Not known Not known carried out by government Strains Monosex Monosex and private initiatives. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Piaractus Selective bred No Stable Stable mesopotamicus Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped manipulation) manipulation) Cross breeds Species used mainly in X Not known Not known hybridization Strains Monosex Monosex Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 28 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Macrobrachium Selective bred No Stable Stable rosenbergii Hybridization Hybridization type Not Known Fluctuating Fluctuating Polyploidy Polyploidy Hybrids Decreasing Decreasing The farming production of (chromosome set (chromosome set Stopped Stopped this freshwater shrimp has manipulation) manipulation) Cross breeds declined steadily. No records X Not known Not known of production in the official Monosex Monosex Strains list of aquaculture Marker assisted Marker assisted production in Brazil Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Rana catesbeiana Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped Small scale production. No manipulation) manipulation) Cross breeds production data known and X Not known Not known genetic improvement Monosex Monosex Strains program Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 29 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Kappaphycus alvarezii Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped Small scale production. No manipulation) manipulation) Cross breeds production data known and X Not known Not known genetic improvement Monosex Monosex Strains program. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Gracilaria spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped Small scale production. No manipulation) manipulation) Cross breeds production data known and X Not known Not known genetic improvement Monosex Monosex Strains program. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 30 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Artemia franciscana Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Hybrids Decreasing Decreasing Polyploidy Polyploidy (chromosome set (chromosome set Stopped Stopped Artemia is collected form slt manipulation) manipulation) Cross breeds deposits in Northern of Brazil X Not known Not known to be commercialized for Monosex Monosex Strains marine shrimp farming. Marker assisted Marker assisted Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Steindachneridion spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating Polyploidy Polyploidy Hybrids Decreasing Decreasing No selective breeding (chromosome set (chromosome set Stopped Stopped program has been applied manipulation) manipulation) Cross breeds for this species. Cultivation is X Not known Not known experimental and mostly Monosex Monosex Strains based on wild type Marker assisted Marker assisted broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) Native 31 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Odontesthes spp Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating No selective breeding Hybrids Decreasing Decreasing Polyploidy Polyploidy program has been applied (chromosome set (chromosome set for this species. Cultivation is Stopped Stopped Cross breeds manipulation) manipulation) experimental and mostly X Not known Not known based on wild type Strains Monosex Monosex broodstock. Species used are O. Marker assisted Marker assisted argentinienses (marine) and Varieties selection selection bonarienses (freshwater) Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Hippocampus reidi Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating No selective breeding Polyploidy Polyploidy Hybrids Decreasing Decreasing program has been applied (chromosome set (chromosome set Stopped Stopped for this species. Cultivation is manipulation) manipulation) Cross breeds experimental and mostly X Not known Not known based on wild type Monosex Monosex Strains broodstock. Small scale Marker assisted Marker assisted production for ornamental Varieties selection selection commerce. Other (specify in Other (specify in Polyploids comment) comment) Native 32 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Astronotus ocellatus Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating No selective breeding Polyploidy Polyploidy Hybrids Decreasing Decreasing program has been applied (chromosome set (chromosome set Stopped Stopped for this species. Cultivation is manipulation) manipulation) Cross breeds experimental and mostly X Not known Not known based on wild type Monosex Monosex Strains broodstock. Small scale Marker assisted Marker assisted production for ornamental Varieties selection selection commerce. Other (specify in Other (specify in Polyploids comment) comment)

Native Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding No Stable Stable Pterophyllum scalare Selective bred Hybridization Hybridization type Not Known Fluctuating Fluctuating No selective breeding Polyploidy Polyploidy Hybrids Decreasing Decreasing program has been applied (chromosome set (chromosome set Stopped Stopped for this species. Cultivation is manipulation) manipulation) Cross breeds experimental and mostly X Not known Not known based on wild type Monosex Monosex Strains broodstock. Small scale Marker assisted Marker assisted production for ornamental Varieties selection selection commerce. Other (specify in Other (specify in Polyploids comment) comment) Native 33 Introduced Wild Type Yes Increasing Increasing Selective breeding Selective breeding Paralichthys Selective bred No Stable Stable orbignyanus Hybridization Hybridization type Not Known Fluctuating Fluctuating Polyploidy Polyploidy Hybrids Decreasing Decreasing No selective breeding (chromosome set (chromosome set Stopped Stopped program has been applied manipulation) manipulation) Cross breeds for this species. Cultivation is X Not known Not known experimental and mostly Monosex Monosex Strains based on wild type Marker assisted Marker assisted broodstock. Varieties selection selection Other (specify in Other (specify in Polyploids comment) comment) 34 10. Which aquatic species in your country are thought to have potential for domestication and future use in aquaculture?

Add Row

Species Is the species native to your Comments Type and select a species country? For example main sources of information

Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: No Arapaima gigas desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 35 No Astyanax altiparanae caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 36 No Rhamdia quelen caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 37 No Steindachneridion scriptum caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 38 No Pimelodus maculatus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 39 No Salminus brasiliensis caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 40 No Leporinus obtusidens caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 41 No Brycon amazonicus caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 42 No Brycon cephalus caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 43 No Brycon hilarii caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 44 No Brycon orbignyanus caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 45 No Pseudoplatystoma corruscans caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 46 No Pseudoplatystoma fasciatum caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 47 No Hoplias spp caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 48 No Loricariichthys platymetopon caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 49 No Hoplosternum littorale caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 50 No Geophagus brasiliensis caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 51 No Rhinelepis strigosa caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 52 No Hypostomus commersoni caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 53 No Pterodoras granulosus caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 54 No Sorubim lima caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 55 No Luciopimelodus pati caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 56 No Megalonema platanum caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a 57 No Odontesthes argentinensis caracterização dos recursos genéticos de peixes: Not Known desenvolvimento sustentável da aquicultura e da pesca de espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de X Alimentos, Universidade de São Paulo, Pirassununga,159 f.

Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 58 No Paralichthys orbignyanus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 59 No jenynsii desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 60 No Centropomus parallelus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 61 No Mugil liza desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 62 No Mugil liza desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 63 No Lutjanus analis desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 64 No Lutjanus analis desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 65 No Lutjanus synagris desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 66 No Trachinotus marginatus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 67 No Rachycentron canadum desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 68 No Seriola dumerili desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 69 No Pagrus pagrus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. Yes Hilsdorf, A.W.S., 2013. Marcadores moleculares e a caracterização dos recursos genéticos de peixes: 70 No Epinephelus marginatus desenvolvimento sustentável da aquicultura e da pesca de Not Known espécies nativas de água doce no Brasil. Tese (Livre Docência), Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga,159 f. X Hilsdorf, A.W.S., Resende, E.K., Orfão, L.H. 2011. Conservação e manejo dos recursos genéticos aquícolas. In: Conservação de Recursos Genéticos no Brasil, Costa, A.M., Spehar, C.R., Sereno, J.R.B. (Eds), 1º. ed., Planaltina, DF, EMBRAPA Cerrado, p. 551-581.

Baldisserotto, B., 2009. Piscicultura continental no Rio Grande do Sul: situação atual, problemas e perspectivas para o futuro. Ciência Rural, Santa Maria, 39: 291-299.

Cavalli, R.O., Hamilton, S. 2009. Piscicultura marinha no Brasil com ênfase na produção do beijupirá. Revista Brasileira de Reprodução Animal, 6: 64-69.

Ostrensky, A., Borghetti, J.R., Doris Soto, D., 2008. Aqüicultura no Brasil: o desafio é crescer. Brasília: Secretaria Especial de Aqüicultura e Pesca/ FAO. 276 pp.

Kubitza, F., Ono, E.A.; Campos, J.L. 2007. Os caminhos da produção de peixes nativos no Brasil: uma análise da produção e obstáculos da piscicultura. Panorama da Aquicultura, Rio de Janeiro, 17(102): 14-23.

Flores Nava, A. 2007. Aquaculture seed resources in Latin America: a regional synthesis, pp. 91–102. In: M.G. Bondad- Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 628p.

Suplicy, F.M. 2007. Freshwater fish seed resources in Brazil, pp. 129–143. In: M.G. Bondad-Reantaso (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO. 2007. 628p.

Baldisserott, O, B., Gomes, L.C., 2005. Espécies nativas para piscicultura no Brasil. Santa Maria: UFSM, 470 pp.

Fracalossi, D.M., Zaniboni Filho, E., Meurer, S. 2002. No rastro das espécies nativas. Panorama da Aqüicultura, 12: 43- 49.

Valenti, W.C. 2000. Aquicultura do Brasil: bases para um desenvolvimento sustentável. Brasília, CNPq/Ministério de Ciência e Tecnologia. 399 pp. 71

11. Please list the aquatic genetic resources of farmed aquatic species your country has transferred or exchanged with other countries over the past 10 years.

Add Row Country or countries Comments Type of genetic Genetic alteration of involved with Details of material exchanged material exchange Please add main Species transfer or exchanged purpose or objective of exchange the exchange and Mark all that apply Hold CTRL button to Mark all that apply select more than one main sources of country information

Oreochromis niloticus DNA Bhutan To develop new No deliberate Bolivia (Plurinational S strains of genetically genetic Genes Bosnia and Herzegovi improved nile alteration Gametes Brazil tilapia. Traditional Brunei Darussalam Suplicy, F.M. 2007. selective Import Tissues Bulgaria Freshwater fish seed breeding Export Embryos Burkina Faso resources in Brazil, Living Burundi pp. 129–143. In: M.G. X Hybrids specimens Cabo Verde Bondad-Reantaso Cambodia (ed.). Assessment of Triploids and Other freshwater fish seed other polyploids Cameroon Canada resources for Mono-sex Central African Repub sustainable production Chad aquaculture. FAO Chile Fisheries Technical Other China Paper. No. 501. Colombia Rome, FAO. 2007. Comoros 628p. Cook Islands Costa Rica Ministry of Fisheries Côte d'Ivoire and Aquaculture Croatia (Dr. Rodrigo Cuba Roubach, personal Cyprus communication) Piaractus mesopotamicus DNA Pakistan Honglang, Hu. 2007. No deliberate 72 Palau Freshwater fish seed genetic Genes Panama resources in China. alteration Gametes Papua New Guinea pp. 185–199. In: M.G. Traditional Paraguay Bondad-Reantaso selective Import Tissues Peru (ed.). Assessment of breeding Export Embryos Philippines freshwater fish seed Living Poland resources for X Hybrids specimens Portugal sustainable Qatar aquaculture. FAO Triploids and Other Fisheries Technical other polyploids Republic of Korea Republic of Moldova Paper. No. 501. Mono-sex Romania Rome, FAO. 2007. production Russian Federation 628p. Rwanda Other Saint Kitts and Nevis Lawonyawut, K. Saint Lucia 2007. Freshwater Saint Vincent and the fish seed resources Samoa in Thailand, pp. 441– San Marino 459. Sao Tome and Princip In: M.G. Bondad- Saudi Arabia Reantaso (ed.). Senegal Assessment of Serbia freshwater fish seed Seychelles resources for Sierra Leone sustainable Singapore aquaculture. FAO Slovakia Fisheries Technical Slovenia Paper. No. 501. Solomon Islands Rome, FAO. 2007. Somalia 628p. South Africa South Sudan There is no official Spain record of export of Sri Lanka this species ot other Sudan countries. Oreochromis niloticus DNA Bulgaria No deliberate Burkina Faso genetic Genes Burundi alteration Gametes Cabo Verde Traditional Cambodia selective Import Tissues Cameroon breeding Export Embryos Canada Ministry of Fisheries Living Central African Repub and Aquaculture X Hybrids specimens Chad (Dr. Rodrigo Triploids and Other Chile Roubach, personal other polyploids China communication) Colombia Mono-sex Comoros production Cook Islands Costa Rica Other Côte d'Ivoire Croatia Colossoma macropomum DNA Afghanistan Nouanthavong, T., No deliberate 73 Albania Preston, T.R., 2011. genetic Genes Algeria Comparison of alteration Gametes Andorra natural pond system Traditional Angola with an intensive selective Import Tissues Antigua and Barbuda (indoor) system for breeding Export Embryos Argentina raising Cachama Living Armenia (Colossoma X Hybrids specimens Australia macropomu) and Austria Tilapia (Oreochromis Triploids and Other niloticus). Livestock other polyploids Azerbaijan Bahamas Research for Rural Mono-sex Bahrain Development 23(4) production Bangladesh (http:// Barbados www.lrrd.org/ Other Belarus lrrd23/4/ Belgium tick23100.htm). Belize Benin Mendonça, P.P., Bhutan Vidal Junior, M.V., Bolivia (Plurinational S Polese, M.F., Santos, Bosnia and Herzegovi M.V.B., Rezende, F.P., Brazil Andrade, D.R., 2012. Brunei Darussalam Morphometrical Bulgaria development of Burkina Faso tambaqui Burundi (Colossoma Cabo Verde macropomum, Cambodia Cuvier, 1818) under Cameroon different Canada photoperiods. Central African Repub Revista Brasileira de Chad Zootecnia, 41: Chile 1337-1341. China Colombia LIAO, I.C.; SU, H.M.; Comoros CHANG, E.Y. Cook Islands Techniques in finfish Costa Rica larviculture in Côte d'Ivoire TAIWAN. Croatia Aquaculture, v.200, Cuba p.1-31, 2001. Cyprus Czech Republic FAO, 2015. Database Republic of Korea on Introductions of Democratic Republic o Aquatic Species Denmark (DIAS). FAO Fisheries Djibouti and Aquaculture Dominica Department Dominican Republic [online]. Rome. Ecuador [Cited 16 September Egypt 2015]. http:// El Salvador www.fao.org/ Equatorial Guinea fishery/dias/en. Prochilodus argenteus DNA Myanmar No deliberate 74 Namibia genetic Genes Nauru alteration Gametes Nepal FAO, 2015. Database Traditional Netherlands on Introductions of selective Import Tissues New Zealand Aquatic Species breeding Export Embryos Nicaragua (DIAS). FAO Fisheries Living Niger and Aquaculture X Hybrids specimens Nigeria Department Triploids and Other Niue [online]. Rome. other polyploids Norway [Cited 16 September Oman 2015]. http:// Mono-sex Pakistan www.fao.org/ production Palau fishery/dias/en. Panama Other Papua New Guinea Paraguay

Arapaima gigas DNA Bhutan No deliberate Bolivia (Plurinational S genetic Genes Bosnia and Herzegovi alteration Gametes Brazil FAO, 2015. Database Traditional Brunei Darussalam on Introductions of selective Import Tissues Bulgaria Aquatic Species breeding Export Embryos Burkina Faso (DIAS). FAO Fisheries Living Burundi and Aquaculture X Hybrids specimens Cabo Verde Department Triploids and Other Cambodia [online]. Rome. other polyploids Cameroon [Cited 16 September Canada 2015]. http:// Mono-sex Central African Repub www.fao.org/ production Chad fishery/dias/en. Chile Other China Colombia

Piaractus brachypomus DNA Nauru No deliberate Nepal Netherlands genetic Genes New Zealand alteration Gametes Nicaragua FAO, 2015. Database Traditional Niger on Introductions of selective Import Tissues Nigeria Aquatic Species breeding Export Embryos Niue (DIAS). FAO Fisheries Living Norway and Aquaculture Hybrids X specimens Oman Department Triploids and Other Pakistan [online]. Rome. other polyploids Palau [Cited 16 September Panama 2015]. http:// Mono-sex Papua New Guinea www.fao.org/ production Paraguay fishery/dias/en. Peru Other Philippines Piaractus brachypomus DNA Bolivia (Plurinational S No deliberate 75 Bosnia and Herzegovi genetic Genes Brazil alteration Gametes Brunei Darussalam FAO, 2015. Database Traditional Bulgaria on Introductions of selective Import Tissues Burkina Faso Aquatic Species breeding Export Embryos Burundi (DIAS). FAO Fisheries Living Cabo Verde and Aquaculture X Hybrids specimens Cambodia Department Triploids and Other Cameroon [online]. Rome. other polyploids Canada [Cited 16 September Central African Repub 2015]. http:// Mono-sex Chad www.fao.org/ production Chile fishery/dias/en. China Other Colombia Comoros 76 Wild relatives of farmed aquatic species 12. Please list any wild relatives of aquatic species present in your country that are farmed in another country (but not in your country) and indicate their uses.

This question refers to aquatic genetic resources that are present in the wild in your country and that are being farmed Add Row elsewhere (but not farmed in your country), indicating any uses these resources may have in your country.

Use Species Comments (mark all that apply)

Capture fisheries Recreational fishery Aquaria Biological control X Research and develpment No information

Other (specify in comments) 77 13. Please list the aquatic genetic resources of wild relatives of farmed aquatic species your country has transferred or exchanged with other countries over the past 10 years.

Add Row This question refers to wild aquatic genetic resources collected from the wild, not from farming facilities as in question 11.

Details of Country Comments transfer or Type of genetic Species exchange main sources of Hold CTRL button to select material exchanged information, if the transfer more than one country was legal or not mark all that apply

Tissues Afghanistan Gametes Albania Algeria DNA Andorra Import Genes Angola Export Antigua and Barbuda Embryos X Argentina Living specimens Armenia The same species of Other Australia item 11. Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus 78

14. Please fill in table 1.2 Table 1.2 Aquatic genetic resources of wild relatives of farmed aquatic species in your country.

Add Row Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics of Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

For each row, list the Indicate the Is the species (mark as Is this species Are there any Are genetic data Are genetic data Over the last 10 Expected trend The habitat or What are likely species as scientific appropriate): targeted by management available for the used in years, catches over the next 10 ecosystem where range is reasons for changes? names (put in brackets capture measures in fishery? management? have been: years. the fishery is (mark all that fisheries? place? the most widely used located (mark all apply) national common For that apply) each species, include the named stocks and name of other management units if known)

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Prochilodus spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Salminus spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Brycon amazonicus Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Piaractus No No No No Stable Stable Stable Transboundary Coastal in Climate mesopotamicus EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Leporinus spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Piaractus No No No No Stable Stable Stable Transboundary Coastal in Climate brachypomus EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Colossoma No No No No Stable Stable Stable Transboundary Coastal in Climate macropomum EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Hoplias spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Pseudoplatystoma No No No No Stable Stable Stable Transboundary Coastal in Climate spp EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Rhamdia quelen Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Cichla spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Arapaima gigas Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Oreochromis No No No No Stable Stable Stable Transboundary Coastal in Climate niloticus EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Cyprinus carpio Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Seriola spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Lutjanus spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Mugil liza Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Epinephelus spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Centropomus No No No No Stable Stable Stable Transboundary Coastal in Climate parallelus EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Rachycentron No No No No Stable Stable Stable Transboundary Coastal in Climate canadum EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Perna perna Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known Target species, Use of Ecosystem(s) Changes in Reasons for stocks or other Characteristics Capture Management Availability of genetic data Future trends where the Trends in ranges and change in management of species fisheries measures genetic data in in catches fishery is catches habitats abundance of units management located species

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat Nodipecten No No No No Stable Stable Stable Transboundary Coastal in Climate nodosus EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known

Straddling Yes Yes Yes Yes Increasing Increasing Intertital Increasing Habitat No No No No Stable Stable Stable Crassostrea spp Transboundary Coastal in Climate EEZ Introduced Not Known Not Known Not Known Not Known Fluctuating Fluctuating Decreasing Invasive High seas Native Decreasing Decreasing Not known species Depleted Depleted Lake Pollution Not known Not known Reservoir River Rehabilitation of habitat X Swamp Other Others (specify) Not known 90 Chapter 2: Drivers and Trends in Aquaculture: Consequences for Aquatic Genetic Resources within National Jurisdiction The main objective of Chapter 2 is to review the main drivers and trends that are shaping aquaculture and their consequences for aquatic genetic resources. 15. Please indicate the ways the aquatic genetic resources (AqGR) of farmed aquatic species have been impacted by the following drivers. Please give examples of positive and negative impacts for specific drivers.

This question refers to drivers impacting farmed aquatic genetic resources, not about impacts on the entire aquaculture sector. Drivers should be seen from a national perspective.

Comments Effect on AqGR Driver impacting aquaculture List examples or other relevant information Mark appropriate box

Strongly positive Positive Increase of population density in rural and urbans area throughout Brazilian territory has intensified the demand for water resources, dam Human population increase Negative construction for energy generation and water supply. Furthermore, Strongly negative other environmental disturbances as a result of human occupation, such as pollution, affect directly the water bodies, which lead to the loss No effect of potentially fish genetic resources. Unknown

Strongly positive Growth in consumer demand for healthy foods with protein quality and Increased wealth and Positive low levels of cholesterol can increase the demand for certified aquaculture products. The development of fish native species in fish demand for fish Negative farming operation in Brazil has changed the perception of consumers Strongly negative for farmed fish. A clear example is the growth of farmed Colossoma macropomum (tambaqui) in Northern of Brazil. Currently, all tambaqui No effect farming production is commercialized in the regional restaurant Unknown markets, which prefer farmed products than fished tambaquis.

Strongly positive Ability of government, industry and the public to work together is pivotal to conserve aquaculture genetic resources. The Government Governance (ability of Positive through financial support of research on prospecting, evaluation, and government, industry and Negative utilization of aquatic genetic resources, private sector through the use the public to work together of these resources in breeding programs, and the public through Strongly negative in managing resources) awareness of using food aquatic products that are sustainably No effect produced. The protected areas are key initiatives to integrate the three Unknown sectors. Mamirauá Sustainable Development Reserve located in the Amazon is an example of such governance, which aims to harmonize biodiversity conservation with sustainable development in a human occupied area of Amazon. Strongly positive The aquatic environment can be affected in different degrees by Climate change Positive climate change. For example, variation in water temperature and other Negative water physical proprieties may impact reproduction cycle of Strongly negative Neotropical migratory fish populations. As a result it leads to a decline or even extinction of wild populations, many of them important genetic No effect reservoir for the breeding programs. Unknown 91

Comments Effect on AqGR Driver impacting aquaculture List examples or other relevant information Mark appropriate box

Strongly positive Positive The multiple uses of water bodies, such as energy production and water supply, boost drastic aquatic environmental disturbances. Such Negative Competition for resources, modifications directly impact reproductive cycles and feeding of fish especially freshwater Strongly negative species. The genetic erosion of fish populations leads to irrecoverable loss, genetic variability important for potentially fish species for No effect aquaculture, and breeding programs of domesticated species. Unknown

Changes in values and Strongly positive ethics of consumers Positive Dissemination of the benefits of fish consumption farmed in sustainable Negative systems in contrast to consumption of wild overfished species could be important measure to the conservation of wild genetic resources. The Strongly negative preference of the consumer market of Manaus and region of farmed No effect tambaqui has decreased the fishing pressure on wild stocks. Unknown

Other Strongly positive Add other drivers as Positive necessary Negative Strongly negative No effect Unknown

Add Row Remove Row 92 16. Please indicate the ways the aquatic genetic resources of wild relatives of farmed aquatic species in nature have been impacted by the following drivers. Please give examples of positive and negative impacts for specific drivers.

This question refers to drivers impacting wild aquatic genetic resources of farmed species, not about impacts on the entire aquaculture sector. Drivers should be seen from a national perspective.

Comments Effect on AqGR Driver impacting aquaculture List examples or other relevant information Mark appropriate box

Strongly positive Positive

Human population increase Negative Growth of fish demand, resulting in overfishing. Strongly negative No effect Unknown Strongly positive

Increased wealth and Positive demand for fish Negative The information are the same of the farmed species. Strongly negative No effect Unknown Strongly positive Positive Governance (ability of Conservation of wild fish genetic resources depends on the government, industry and Negative close integration and of capability of governments, private the public to work together Strongly negative sector stakeholders and consumers to promote sustainable in managing resources) fisheries management. No effect Unknown Strongly positive Positive Negative Decrease of exploitable stocks, chiefly those genetically Climate change isolated due to climate changes affecting biological cycles Strongly negative of wild species of aquaculture importance. No effect Unknown Strongly positive Positive Negative Competition for resources, The same observation done for farmed species. especially freshwater Strongly negative No effect Unknown 93

Comments Effect on AqGR Driver impacting aquaculture List examples or other relevant information Mark appropriate box

Strongly positive Positive Public awareness about the situation of wild aquatic Negative species caught for human consumption and livestock Changes in values and Strongly negative feeding may decrease the intensity of threatened of fishing ethics of consumers target aquatic species. No effect Unknown Other Strongly positive Add other drivers as Positive necessary Negative Strongly negative No effect Unknown Add Row Remove Row 94

17. What countermeasures might be taken to reduce adverse impacts on the aquatic genetic resources that sustain current aquaculture and/or provide for its future development? Describe countermeasures

>Establishment and management of aquatic reserves based on genetic, ecological and demographic parameters to conserve wild populations, and all their genetic distinction.

>Development of specie-specific genetic markers (microsatellites or/and SNPs) to be used in genetic monitoring.

>Strict regulation of introduction of new non-native species into aquatic systems is required to hamper serious consequences on the native wild genetic resources.

>Interspecific hybrids production for aquaculture has to be regulated to avoid fertile hybrids escapes into the aquatic environments and their ensuing genetic introgression with wild populations.

> Monitoring genetic variability of wild and farmed aquatic of economic importance.

> Monitoring genetic variability of wild population of aquatic species affected by aquatic environmental disturbance mainly hydro-power plant construction.

> Identification of new potentially aquaculture species to be farmed for local communities.

> Establishment of ex situ aquaculture facilities to maintain fish germplasm of threatened species used in aquaculture operation to be used in breeding program and restocking programs.

>Development of cryopreservation techniques of fish sperm, eggs, and embryos to keep aquatic genetic resources in germplasm banks. 95 Biotechnologies 18. To what extent have the following biotechnologies been used in your country for the genetic improvement of farmed aquatic organisms.

Comments Biotechnology Extent of use main sources of information, important species for which the biotechnology is applied

Reis Neto, R. V., Oliveira, C.A.L., Ribeiro, R.P., Freitas, R.T.F., Allaman, I.B., Oliveira, S., 2014. Genetic parameters and trends of morphometric traits of GIFT tilapia under selection for weight gain. Scientia Agricola, 71: 259-265.

Conti, A.C.M., Oliveira, C. A. L. ; Martins, E.N., Ribeiro, R.P., Bignardi, A.B., Porto, E.P., Oliveira, S.N., 2014. Genetic parameters for weight gain and body measurements for Nile tilapias by random regression modeling. Semina: Ciências Agrárias, 35: 2843-2858.

Oliveira, C.A.L., Ribeiro, R.P., Barbosa, J.V., Souza, R.M.R., Resende, E.K., 2013. Not at all Melhoramento Genético: Uma ferramenta para aumentar a competividade da piscicultura To a minor extent Selective breeding brasileira. Informe Agropecuário, 34: 7-13. To some extent Santos A.I., Ribeiro, R.P., Vargas, L., Mora, F.. To a great extent Alexandre Filho, L., Fornari, D.C., Oliveira, S.N., 2011. Bayesian genetic parameters for body weight and survival of Nile tilapia farmed in Brazil. Pesquisa Agropecuária Brasileira, 46: 33-43.

Lupchinski Junior, E., Vargas, L., Barrero, N.M.L., Ribeiro, R.P., Povh, J.A., Gasparino, E., Gomes, P., Braccini, G.L., 2011. Caracterización genética de tres líneas de tilapia del Nilo (Oreochromis niloticus). Archivos de Zootecnia, 60: 20-31.

Oliveira, C.A.L., Ribeiro, R.P., Barbosa, J.V., Souza, R.M.R., Resende, E.K., 2013. Melhoramento Genético: Uma ferramenta para aumentar a competividade da piscicultura brasileira. Informe Agropecuário, 34: 7-13. Hashimoto, D.T., Senhorini, J.A., Foresti, F. , 96 Martínez, P., Porto-Foresti, F. 2014. Genetic Identification of F1 and Post-F1 Serrasalmid Juvenile Hybrids in Brazilian Aquaculture. Plos One, 9: e89902.

Vaini, J.O., Grisolia, A.B., Prado, F.D., Porto- Foresti, F. 2014. Genetic identification of interspecific hybrid of Neotropical catfish species (Pseudoplatystoma corruscans vs. Pseudoplatystoma reticulatum) in rivers of Mato Grosso do Sul State, Brazil. Neotropical Ichthyology, 12: 635-641.

Hashimoto, D.T., Prado, F.D., Senhorini, J.A., Foresti, F., Porto-Foresti, F., 2013. Detection of post-F1 catfish hybrids in broodstock using molecular markers: approaches for genetic management in aquaculture. Aquaculture, 44: 876-884.

Porto-Foresti, F., Hashimoto, D.T., Prado, F.D., Senhorini, J.A., Foresti, F., 2013. Genetic markers for the identification of hybrids among catfish species of the family Pimelodidae. Journal of Applied Ichthyology, 29:643-647.

Prado, F.D., Nunes, T.L., Senhorini, J.A., Bortolozzi, J., Foresti, F. ; PortO-Foresti, F., 2012. Cytogenetic characterization of F1, F2 and backcross hybrids of Neotropical catfish species Pseudoplatystoma corruscans and P. reticulatum (Pimelodidae, Siluriformes). Genetics and Molecular Biology, 35: 57-64.

Gomes, F., Schneider, H. ; Barros, C. ; SampaiO, D. ; Hashimoto, D.T. ; Porto-Foresti, F. ; Sampaio, I. 2012. Innovative molecular approach to the identification of the tambaqui Not at all (Colossoma macropomum) and its hybrids, the To a minor extent tambacu and the tambatinga. Anais da Hybridization Academia Brasileira de Ciências, 84: 89-97. To some extent To a great extent Prado, F.D., Hashimoto, D.T., Senhorini, J.A., Foresti, F., Porto-Foresti, F., 2012. . Detection of hybrids and genetic introgression in wild stocks of two catfish species (Siluriformes: Pimelodidae): the impact of hatcheries in Brazil. Fisheries Research, 125: 300-305.

Porto-Foresti, F., Hashimoto, D.T., Senhorini, J.A., Foresti, F., 2012.. Interspecific fish hybrids in Brazil: management of genetic resources for sustainable use. Review in Aquaculture, 4: 108-118.

Porto-Foresti, F., Hashimoto, D.T., Prado, F.D., Senhorini, J.A., Foresti, F., 2011. A Hibridação interespecífica em peixes. Panorama da Aqüicultura, 126: 28-33.

Prado, F.D., Hashimoto, D.T., Mendonça, F.F., Senhorini, J.A., Foresti, F., Porto-Foresti, F., 2011. Molecular identification of hybrids between Neotropical catfish species Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum. Aquaculture Research, 42: 1890-1894. Hashimoto, D.T., Mendonça, F.F., Senhorini, J.A., Oliveira, C., Foresti, F., Porto-Foresti, F., 2011. 97 Pirapitinga, and Tambaqui) and their hybrids in the Brazilian aquaculture industry. Aquaculture, 321: 49-53.

Hashimoto, D.T., Mendonça, F.F., Senhorini, J.A., Bortolozzi, J., Oliveira, C., Foresti, F., Porto- Foresti, F., 2010. Identification of hybrids between Neotropical fish Leporinus macrocephalus and Leporinus elongatus by PCR-RFLP and multiplex-PCR: Tools for genetic monitoring in aquaculture. Aquaculture, 298: 346-349. Not at all To a minor extent Polyploidy (chromosome set manipulation) Not using To some extent To a great extent Used solely in tilapia farming

Mainardes-Pinto, C.S.R., Fenerich-Verani, N., Campos, B.E.S., Silva, A.L., 2000. Masculinização da Tilápia do Nilo Oreochromis niloticus, utilizando diferentes rações e diferentes doses de 17-metiltestosterona. Revista Brasileira de Zootecnia, 29: 654-659.

Afonso, L.O., Wassermann, G.J., 2001. Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. Journal of Experimental Zoology, 290: 177-181. Not at all To a minor extent Wassermann, G.J., Afonso, L.O., 2003. Sex Monosex production reversal in Nile tilapia (Oreochromis niloticus To some extent Linnaeus) by androgen immersion. To a great extent Aquaculture Research, 34: 65-71.

Borges, A.M., Costa, J.O., McManus, C., Mariante, A.S., 2005. Produção de populações monossexo macho de tilápia-do-nilo da linhagem Chitralada. Pesquisa Agropecuária Brasileira, 40: 153-159.

Drummond, C.D., Murgas, L.D.S., Vicentini, B., 2009. Growth and survival of tilapia Oreochromis niloticus (Linnaeus, 1758) submitted to different temperatures during the process of sex reversal. Ciência Agrotécnica, 33: 895-902. Not at all To a minor extent Marker assisted selection Not using To some extent To a great extent

Not at all Gynogenesis/androgenesis To a minor extent Not using To some extent To a great extent Other 98 Continue adding row as necessary Not at all To a minor extent To some extent To a great extent

Add Row Remove Row 99 19. Please indicate the ways aquatic genetic resources of the wild relatives of farmed aquatic species have been impacted by drivers that are changing aquatic ecosystems. Please give countermeasures that might be taken to reduce adverse consequences for the aquatic genetic resources that sustain capture fisheries on wild relatives of farmed species.

Effect on AqGR Drivers that are changing Countermeasures and effects aquatic ecosystems mark appropriate box

Habitat loss and Strongly positive degradation Positive Establishment of biosphere reserves that include aquatic Negative ecosystems where fishes and other aquatic organism find Strongly negative breeding grounds to reproduce in order to preserve their population genetic integrity and variability. No effect Unknown

Pollution of waters Strongly positive Positive Governmental measures through strict legislation to protect Negative aquatic ecosystems mostly in large population concentration Strongly negative areas where demanding for water supply and energy impact rivers by dam construction and pollution. No effect Unknown

Increased frequency of Strongly positive extreme climatic events Positive and long-term climate The increased frequency of climatic events may cause changes in Negative change the biological cycles of wild species. As a result, unique genetic Strongly negative populations can vanished, without knowing which important, and sometimes exclusive genetic variation they carry. No effect Unknown

Establishment of invasive Strongly positive species Positive There are many examples in Brazil of the introduction of alien Negative species to be used in aquaculture operations that escaped or were intentionally introduced in aquatic water bodies and have Strongly negative become invasive species, with possible impact in native wild No effect genetic resources. Unknown

Introductions of parasites Strongly positive and pathogens Positive Farmed escapees and/or alien species introduction are vehicles Negative of parasites that can directly affect wild populations. An example Strongly negative of it was the anchor worms (Lernaea) brought into Brazil along the carp introduction for farming. Regulation is in place. No effect Unknown 100

Effect on AqGR Drivers that are changing Countermeasures and effects aquatic ecosystems mark appropriate box

Impacts of purposeful Strongly positive stocking and escapes from Positive aquaculture Fish farmed escapees are always source of threats to wild Negative populations. The escapes of genetic selected and their eventual crossbreeding with wild relatives may change the gene Strongly negative frequencies of wild populations. It jeopardizes the long-term No effect survival of local adapted populations. Unknown

Capture fisheries Strongly positive Positive Establishment of the specific legislation to protect migratory fish Negative species during the spawning season. Such measure is already Strongly negative done in the Brazilian territory (Piracema Law) which don´t permit fishery activity between November and February. No effect Unknown

Other Strongly positive Continue listing other Positive driverst Negative Strongly negative No effect Unknown

Add Row Remove Row 101

Chapter 3: In Situ Conservation of Aquatic Genetic Resources of Farmed Aquatic Species and their wild Relatives within National Jurisdiction

The main objective of Chapter 3 is to review the current status and future prospects for the in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives within national jurisdiction for food and agriculture. The specific objectives are as follows: • To review the current and likely future contributions to in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives by those who use them in responsible and well managed capture fisheries, aquaculture, and culture-based fisheries.

• To identify and describe any existing and planned aquatic protected areas that are contributing, or will contribute, to in situ conservation of aquatic genetic resources of wild relatives of farmed aquatic species.

• To identify and describe any major existing and planned efforts for the in situ conservation of threatened or endangered aquatic genetic resources (farmed and wild). • To review needs and priorities for the future development of in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives.

Overview of the current status and future prospects for the in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives 20. To what extent are responsible and well managed aquaculture and culture-based fisheries contributing to in situ conservation of the aquatic genetic resources of farmed aquatic species and their wild relatives.

Please mark appropriate box. To a great extent To a limited extent Not at all Not applicable Please include any additional information

The growth of native species farming in Brazil has diminished the capture over the wild stocks. For instance, that has been observed in tambaqui in the Amazon basin. And it is underway similar initiatives for Arapaima gigas. 102 21. To what extent are existing facilities contributing to in situ conservation of aquatic genetic resources of wild relatives of farmed aquatic species?

Please mark appropriate box. To a great extent To a limited extent Not at all Not applicable Please include any additional information

The electricity generation comes mainly from hydro-power plants in Brazil. The Brazilian legislation demands state and private companies to establish environmental measures to protect the native fish species along the impacted area by the dam. It includes construction of fish hatcheries to produce native fingerling for reintroduction into the environment. That makes this facilities a sort of in situ (ex situ) sites where native fish species populations has been maintained, conserving in some extent jeopardized species by the environment disturbances caused by the dam construction. 22. Please provide examples of current or planned activities for the in situ conservation of endangered or threatened farmed species and their wild relatives with demonstrated or potential importance for aquaculture, culture-based fisheries, and capture fisheries.

Please describe examples

Growth of native species farming decreasing fishing intensity over native fish populations. States and privates projects to conserve fish species and their populations through establishing restocking programs. 103

23. Please rank (from 1 to 10) the importance of the following objectives for in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives in your country. Rank Objectives of in situ conservation 1=Very Important 10=No importance

Preservation of aquatic genetic diversity 1

Maintain good strains for aquaculture production 1

Meet consumer and market demands 2

To help adapt to impacts of climate change 1

Future breed improvement in aquaculture 1

Please continue listing any other objectives as needed

Add Row Remove Row 104 Review of the in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives through their use in responsible and well managed aquaculture and culture-based fisheries 24. Is the in situ conservation of aquatic genetic resources included in the policy as an objective in the management of aquaculture and/or culture-based fisheries in your country? Please mark appropriate box Yes Not yet, but planned to be included No Unknown If yes, please give examples According to Azevedo (2005), “the demands after CBD (1991) have led to the edition of Provisional Measure 2.052, on June 29th, 2000 (in effect currently under N° 2.186-16/01) in Brazil. Like all Provisional Measures, this one was re-edited until the supervening of Constitutional Amendment N°32/2001, culminating with the version in effect. Provisional Measure 2.186-16/0 determines that access to associated traditional knowledge and to genetic heritage extant in the country, as well as its shipment abroad, should only be carried out with the consent of the Union, and instituted the Genetic Heritage Management Council (CGEN) as the competent authority for this purpose. Not withstanding, this Council only began its activities in April 2002, which produced a state of uncertainty as to the possibility to carry out research in the country and difficulties concerning the exchange of biological matter for scientific purposes (from June 2000 to April 2002). The terminology used by the Provisional Measure which does not define clearly what “access and shipment of genetic heritage is", was one aggravating factor in this scenario”. (Azevedo, C.M.A., (2005). Regulation to access to genetic resources and associated traditional knowledge in Brazil. Biota Neotropica 5(1) http:// www.biotaneotropica.org.br/v5n1/pt/abstract?point-of-view+BN00105012005). Regarding fish genetic resources no current specific measures has been taking to protect genetically distinguished fish populations so far. 25. To what extent are collectors of wild seed and brood stock for aquaculture and culture-based fisheries contributing to the conservation of aquatic genetic resources by maintaining habitats and/or limiting the quantities collected? Please mark appropriate box To a great extent To a limited extent Not at all Not applicable Please include any additional details

Native fish species farmed in a commercial scale are mostly based on adult fish to be used as broodstock in local fish farms. No official information has been available about activities undertaken by collectors of wild broodstock towards protection of aquatic genetic resources by conserving habits and/or limiting the quantities collected 105 Review of the in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives through their use in responsible and well managed capture fisheries 26. Is the conservation of aquatic genetic resources of wild relatives of farmed aquatic species included as an objective in the management of any capture fisheries in your country? Please mark appropriate box Yes Not yet, but under development No Unknown

If yes, please give examples

Throughout Brazilian watersheds a specific legislation to prohibit capture during spawning season and limit the mesh-size of nets use by fishers is enforced by each state environmental agency annually. This action in some extend protect the natural genetic resources to complete their natural reproductive cycle, somehow preserving genetic distinct populations.

Review of the in situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives through the establishment and management of aquatic protected areas 27. Please list any aquatic protected areas in your country that are contributing to the in situ conservation of aquatic genetic resources of wild relatives of farmed aquatic species and an assessment of effectiveness

Add Row

Effectiveness of Comments Aquatic protected area conserving Aquatic Genetic Resources provide any additional information

The federal agency “Instituto Chico Mendes de conservação da Biodiversidade” (Chico Mendes Institute for Biodiversity Conservation) runs 320 units of conservation spread out the entire Brazilian territory covering different biomes, such as Amazon, Cerrado (savannahs and scrub forests), Caatinga X Three hundred and twenty (type of desert vegetation with a xeric shrubland and thorn protected areas throughout Brazilian Very effective forest), Atlantic forest, Pampa (fertile South American territory. Many of them includes Somewhat effective lowlands covering southernmost Brazilian States), Pantanal many rivers. ( natural region encompassing the world's largest tropical see http://www.icmbio.gov.br/ Not effective wetland area, located mostly in the center of Brazil), and portal/biodiversidade/unidades-de- Unknown marine ecosystems which exclusive economic zone (EEZ). conservacao/biomas-brasileiros.html Characteristics and location of all conservation units can be found at http://www.icmbio.gov.br/portal/biodiversidade/ unidades-de-conservacao/biomas-brasileiros.html. Somehow the aquatic system within the conservation units are protected as well as the fish species inhabiting their water bodies. 106

Chapter 4: Ex Situ Conservation of Aquatic Genetic Resources of Farmed Aquatic Species and their Wild Relatives within National Jurisdiction The main objective of Chapter 4 is to review the current status and future prospects for the ex situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives. The specific objectives are: • To review existing ex situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives in aquaculture facilities, culture collections and gene banks, research facilities, zoos and aquaria; • To review the contributions that various stakeholders are making to the ex situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives; • To review needs and priorities for the future development of ex situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives, including any that are threatened or endangered.

Review of existing and planned collections of live breeding individuals of aquatic genetic resources of farmed aquatic species and their wild relatives 28. Please list your country's existing collections of live breeding aquatic organisms that can be considered as contributing to the ex situ conservation of aquatic genetic resources. This includes not only collections of species farmed directly for human use, but also collections of live feed organisms (e.g., bacterial flocs, yeasts, microalgae, rotifers and brine shrimp (Artemia)).

Add Row

Is the species (or subspecies) Species (include threatened or endangered for information on Type of use example in the IUCN Red List, subspecies or Comments Please mark all that apply CITES Appendices or national strain in lists? Please list any additional information comments if available) Please mark appropriate box

Direct human Yes consumption Live feed organism No X Other Unknown 107

Review of existing ex situ conservation activities of aquatic genetic resources of farmed aquatic species and their wild relatives in vitro. 29. Please list your country's in vitro collections and gene banks of the gametes, embryos, tissues, spores and other quiescent forms of farmed aquatic species and their wild relatives , using cryopreservation or other methods of long-term storage. Describe the major examples, identifying the facilities in which the collections are held. Include examples of any such genetic material from your country that is being kept in in vitro collections outside your country on behalf of beneficiaries in your country.

Add Row

Type of ex-situ Species (include Comments conservation collection in information on Users and managers Facilities where list all breeds, subspecies of vitro subspecies or strain collection is located the species and any List all that apply if available in mark all that apply additional information comments) mark all that apply

In vitro collection of gametes Aquaculture facilities In vitro collextion of Research facilities embryos Universities X In vitro collection of tissues Zoos and aquaria Spores Other Other 108 30. Please rank (from 1 – 10) the importance of the following objectives for ex situ conservation of aquatic genetic resources of farmed aquatic species and their wild relatives in your country

Rank Objectives of ex situ conservation 1=Very Important 10=No importance

Preservation of aquatic genetic diversity 1

Maintain good strains for aquaculture production 2

Meet consumer and market demands 3

To help adapt to impacts of climate change 2

Future breed improvement in aquaculture 1

Other Continue adding row as necessary

Establishing areas of river protection where distinct genetic 1 populations of fish are found.

Add Row Remove Row Other Continue adding row as necessary

To foment construction of local hatcheries to be used as ex-situ 1 banks for threatened fish species ensuring an environmental counterpart of the aquatic environment user companies.

Add Row Remove Row 109 Chapter 5: Stakeholders with Interests in Aquatic Genetic Resources of Farmed Aquatic Species and their Wild Relatives within National Jurisdiction The main objective of Chapter 5 is to provide an overview of the perspectives and needs of the principal stakeholders who have interests in aquatic genetic resources of farmed aquatic species and their wild relatives for food and agriculture. Stakeholder groups can be identified from existing institutional knowledge, from sectoral and sub-sectoral consultations conducted during the country reporting process and where necessary from expert opinions. Gender issues pertaining to the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives should be considered, as well as the perspectives and needs of indigenous peoples and local communities.

The specific objectives are: • To describe the different principal stakeholder groups with interests in aquatic genetic resources of farmed aquatic species and their wild relatives To identify the type(s) of aquatic genetic resources of farmed aquatic species and their wild relatives in which each stakeholder group has interests and why.

• To describe the roles of stakeholder groups and the actions they are taking for the conservation, sustainable use and development of the aquatic genetic resources in which they have interests.

• To describe the further actions that stakeholder groups would like to see taken for the conservation, sustainable use and development of aquatic genetic resources in which they have interests, and the constraints that are hindering those actions, including lack of capacity and perceived threats. 110

Overview of the principal stakeholder groups who have interests in aquatic genetic resources of farmed aquatic species and their wild relatives 31. Please indicate the principal stakeholder groups who have interests in aquatic genetic resources of farmed aquatic species and their wild relatives including, inter alia: fish farmers; fishers in capture fisheries; persons involved in stocking and harvesting in culture-based fisheries; persons employed in postharvest chains; government officials; staff and members of aquaculture associations; managers of aquatic protected areas and others working for the conservation of aquatic ecosystems; researchers; and civil society.

Genetic resource of main Role of stakeholder in regards og AqGR Comments interest Stakeholders Please provide any information or mark all that apply mark all that apply explanation of stakeholders' role

Conservation Marketing DNA Production Processing Stock, breed or variety Fish farmers in Brazil rely their fish farming production mainly on tilapia. Feed manufactoring Advocacy Species There are tilapia hatchery companies Outreach/Extension Other Fish Farmers Breeding commercializing different genetic improvement strain all of them based on Research Other (specify) GIFT strains. Regarding native species there many of them being farmed in a local scale.

Conservation Marketing DNA Production Processing Stock, breed or variety Feed manufactoring Advocacy Species Freshwater and marine fishing is still a Fishers Breeding Outreach/Extension Other important activity in Brazil. Artizanal and sport fishing is in some places are the Research Other (specify) main income for local communities. Protection of spawning grounds and fishing prohibition during spawning season is reinforced by the local fishers in some regions of Brazil. 111

Genetic resource of main Role of stakeholder in regards og AqGR Comments interest Stakeholders Please provide any information or mark all that apply mark all that apply explanation of stakeholders' role

Conservation Marketing DNA People involved in hatcheries come from Processing Stock, breed or variety Production different sectors. Hatcheries managers of Feed manufactoring Advocacy Species commercial food feed are concerned to use better strains to increase productivity. Breeding Outreach/Extension Other Fish hatchery people In the other hand, managers responsible Research Other (specify) for restocking programs targeting at fingerling production are concerned to keep genetic diversity regardless best growth performance.

Conservation Marketing DNA Production Processing Stock, breed or variety Feed manufactoring Advocacy Species Marketing means selling sometimes People involved in marketing Breeding Outreach/Extension Other whatever the environmental costs to get that. Research Other (specify)

Conservation Marketing DNA Production Processing Stock, breed or variety Government resource managers Feed manufactoring Advocacy Species Government is the main player and policy maker to set up regulations, foment Breeding Outreach/Extension Other research, and establishment of Research Other (specify) germplasm banks to conserve fish genetic resources. 112

Genetic resource of main Role of stakeholder in regards og AqGR Comments interest Stakeholders Please provide any information or mark all that apply mark all that apply explanation of stakeholders' role

Conservation Marketing DNA To promote and advocate the interests of Production Processing Stock, breed or variety their stakeholders regarding fish farming production or fishing. Despite Fishing or aquaculture Advocacy Species Feed manufactoring conservation of genetic resources is associations Breeding Outreach/Extension Other pivotal for the long term growth rate of fish farming. No practical action can be Research Other (specify) observed to attain this goal. For instance, hybrid production and the concerning about hybrids escapees into the environment.

Conservation Marketing DNA Production Processing Stock, breed or variety Aquatic protected area managers are Aquatic protected area managers Feed manufactoring Advocacy Species usually governmental employees. The Breeding Outreach/Extension Other policy followed is to assure the protected areas are free from any users. Despite, the Research Other (specify) genetic resources maintained in them are unknown.

Conservation Marketing DNA Production Processing Stock, breed or variety Policy makers are essential to protect and Feed manufactoring Advocacy Species regulate the use of genetic resources. Breeding Outreach/Extension Other Measures to generate new knowledge on Policy Makers aquatic organism genetic resources Research Other (specify) through conservation, research and legislation are essential for the long term use of these for food production. 113

Genetic resource of main Role of stakeholder in regards og AqGR Comments interest Stakeholders Please provide any information or mark all that apply mark all that apply explanation of stakeholders' role

Conservation Marketing DNA Production Processing Stock, breed or variety Non-Governmental Organizations Feed manufactoring Advocacy Species It is the society counterpart of genetic Breeding Outreach/Extension Other resources conservation. They can fulfill the government gaps regarding public Research Other (specify) attention of genetic resources importance .

Conservation Marketing DNA Production Processing Stock, breed or variety Intergovernmental Organizations Feed manufactoring Advocacy Species Breeding Outreach/Extension Other Fishes have no boundary . Genetic resources can be shared by more than Research Other (specify) one country (amazon fishes, for instance).

Conservation Marketing DNA Production Processing Stock, breed or variety Feed manufactoring Advocacy Species Donors Breeding Outreach/Extension Other Donors play an important role to recovery Research Other (specify) eroded genetic resources. 114

Genetic resource of main Role of stakeholder in regards og AqGR Comments interest Stakeholders Please provide any information or mark all that apply mark all that apply explanation of stakeholders' role

Conservation Marketing DNA Production Processing Stock, breed or variety Consumers are the final player in the production chain. Their decision power of Feed manufactoring Advocacy Species consuming or not a given product can Outreach/Extension Other Consumers Breeding change the production system. Conservation of genetic resources can Research Other (specify) also be included in the concerning of consumers when buying some fish product. 115

a) Please indicate the most important role of women in regards to AqGR

In Brazil 13% of the labor force in the agriculture are women. It's not too much when compare to Chile (30%) or Panama (29%). In aquaculture women play an important role chiefly during the post harvesting when them are involved in producing goods using byproducts of fish post processing remains, i.e., fish skin.

b) Please indicate the most important role of indigenous and local communities in regards to AqGR

Indigenous and local communities knowledge usually make sustainable use of natural resources. The relationship between such people and environment passing on through generations are a important source of information of the distinct uses of biodiversity. Fish and other aquatic organisms are not different. The fighting of the indigenous groups against power plant construction in Brazil is an example how the fish resources are important for them and indirectly for the whole population. Long term conservation of genetic resources rely mainly on aquatic environment preservation. 116 Chapter 6: National Policies and Legislation for Aquatic Genetic Resources of Farmed Aquatic Species and their Wild Relatives within National Jurisdiction The main objective of Chapter 6 is to review the status and adequacy of national policies and legislation concerning aquatic genetic resources of farmed aquatic species and their wild relatives including access and benefit sharing. The specific objectives are as follows: • To describe the existing national policy and legal framework for the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives. • To review current national policies and instruments for access to aquatic genetic resources of farmed aquatic species and their wild relatives and the fair and equitable sharing of benefits arising from their utilization. • To identify any significant gaps in policies and legislation concerning aquatic genetic resources of farmed aquatic species and their wild relatives.. Review of national policies and legislation for Aquatic Genetic Resources of farmed aquatic species and their wild relatives within national jurisdiction 32. Please list national legislation, policies and/or mechanisms that address aquatic genetic resources of farmed species and their wild relatives (see question 47 regarding international agreements).

Add Row

Comments Scope Please provide any additional National legislation, policy Date established information for example whether it has Select all that apply and/or mechanism been effective or not; and main sources of information

Genes or molecules only Article 225. A ll have the right to an ecologically balanced environment, Aquaculture which is an asset of common use 5 October 1988 Capture fisheries and essential to a healthy quality of life, and both the Government and Conservation the community shall have the duty Intellectual property protection to defend and preserve it for X present and future generations. Importation Paragraph 1. I n order to ensure the Trade and commerce effectiveness of this right, it is Brazilian Constitution Access and benefit sharing incumbent upon the Government CHAPTER VI: Environment to: Other I – preserve and restore the essential ecological processes and provide for the ecological treatment of species and ecosystems; II – preserve the diversity and integrity of the genetic patrimony of the country and to control entities engaged in research and manipulation of genetic material. 117

Comments Scope Please provide any additional National legislation, policy Date established information for example whether it has Select all that apply and/or mechanism been effective or not; and main sources of information

Genes or molecules only Aquaculture 12 february 1988 Capture fisheries § 4º Fishing is prohibited Conservation throughout the Brazilian territory during the spawning season from Law Nº 7.653 X Intellectual property protection October 1st to January 30th in any Importation continental waters and territorial Trade and commerce seas. Access and benefit sharing Other

Genes or molecules only Established the rules for the access Aquaculture and sending of 20 May 2015 genetic heritage components and Capture fisheries the access to associated traditional Conservation knowledge extant in the country, as well as its shipment abroad, Law Nº 13.123 X Intellectual property protection should only be carried out with the Importation consent of the Union8, and Trade and commerce instituted the Genetic Heritage Management Council (CGEN) as the Access and benefit sharing competent authority for this Other purpose. 118 Review of the current status and gaps in national policies and legislation for the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives

33. Please list any gaps in the coverage or constraints in implementing national legislation, policies and/or mechanisms in regard to aquatic genetic resources.

Due to the Brazil's territorial extension monitoring of environmental laws to protect genetic resources is a difficult task.

34. Please indicate any national aquatic genetic resources of farmed aquatic species and their wild relatives for which your country restricts access.

Comments Type of genetic resource (can be species name, DNA, gametes or other descriptor) Please, provide verifiable main sources of information, effectiveness of the restriction, description of type of restriction and for whom does the restriction apply

There is no a specific genetic resources protected by law. The access of any genetic DNA resources (DNA or speices) in the Brazilian territory is regulated under the law Nº 13.123, mentioned in the query 32.

According to Santos et al., (2012) "Law no. 9.456/97 instituted the Plant Variety Protection Act (Lei de Proteção de Cultivares - LPC) in Brazil, bearing a range of positive aspects for Brazilian agriculture, such as the increase in the number of new varieties in Brazil, both domestic and foreign; incentives for breeding activities in the country; and socioeconomic benefits to the agricultural sector. In 15 years of activity in the sphere of the Ministry of Agriculture, Livestock and Food Supply (Ministério da Agricultura, Pecuária e Abastecimento), the National Plant Variety Protection Service (Serviço Nacional de Proteção de Cultivares - SNPC) has consolidated its activity, not only through its credibility in analysis and granting of plant variety protection (PVP) Stock, breed or variety applications, but also through its proactive stance in technical and legal activities in Brazilian and international affairs, as well as involving the scientific community in a participatory manner in the actions it develops. Nevertheless, in spite of these advances, there is a great deal of discussion regarding the limitations to effective exercise of plant breeders’ rights caused by some legal provisions of the LPC that may lack refinement" (Santos et. al., 2012. Evolution, importance and evaluation of cultivar protection in Brazil: the work of the SNPC. Crop Breeding and Applied Biotechnology S2: 99-110. Unfortunately, this law cover just plant varieties. There is no legal framework for fish or other aquaculture breed, strain or variety.

There is no a specific genetic resources protected by law. The access of any genetic Species resources (DNA or speices) in the Brazilian territory is regulated under the law Nº 13.123, mentioned in the query 32.

Other Continue adding row as necessary

Add Row Remove Row 119

35. Over the past 10 years, indicate the actions your country has taken to maintain or enhance access to aquatic genetic resources of farmed aquatic species and their wild relatives located outside your country; for example, by establishing germplasm acquisition agreements or material transfer agreements.

Add Row

Action taken to enhance access to aquatic genetic resources outside your Type of genetic resource Comment country Mark all that apply for example other types of genetic resources

DNA Genes Carp, rainbow trout and tilapia are the most important exotic species under cultivation in Gametes Brazil. Nile tilapia strains, such as Chitralada Import of tilapia strains Tissues and Gift has been imported and introduced X Embryos into Brazilian aquaculture. There is no record of carp and trout new strains for aquaculture in Living specimens Brazil. 120

36. Please indicate any obstacles your country has encountered when trying to access aquatic genetic resources of farmed aquatic species and their wild relatives outside of your country (including access for research purposes).

Obstacles to accessing aquatic genetic Please describe type of genetic Comments resources resource please include additional information as mark all that apply needed

DNA Stock, breed or variety No specific legislation for aquatic Intellectual property protection Species organisms Other

DNA IBAMA - PORTARIA nº 145/98, de 29 de Stock, breed or variety National laws of your country outubro de 1998. Species Other

DNA Stock, breed or variety National laws of donor country No information Species Other

DNA Stock, breed or variety Internationl laws or protocols No information Species Other

DNA Stock, breed or variety Research on genetic resources Too expensive characterization Species Other

DNA Stock, breed or variety Material transfer agreements required Strict national legislation on this matter Species Other

DNA Stock, breed or variety Lack of research specifically on genetic Knowledge gaps resources characterization and mapping. Species Other

DNA No public perception about the Stock, breed or variety importance of conserving genetic Public perception resources which is the base for the long Species term food security. Other 121

Obstacles to accessing aquatic genetic Please describe type of genetic Comments resources resource please include additional information as mark all that apply needed

Other DNA Continue adding row as necessary Stock, breed or variety Species Add Row Remove Row Other 122 Chapter 7: Research, Education, Training and Extension on Aquatic Genetic Resources within National Jurisdiction: Coordination, Networking and Information The main objective of Chapter 7 is to review the status and adequacy of national research, education, training and extension, coordination and networking arrangements and information systems that support the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives for food and agriculture.

The specific objectives are: • To describe the current status, future plans, gaps, needs and priorities for research, training, extension and education on the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives • To describe existing or planned national networks for the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives. • To describe existing or planned information systems for the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives.

Research 37. Does your national research programme support the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives? If yes, give details of current and/or planned research; if no, explain the main reasons why not in box below.

Please mark appropriate box Yes No Unknown Please provide details

The Brazilian government has two national agencies to grant researches. Any Brazilian researchers can apply to get financial support for investigations on the conservation, sustainable use and development of aquatic genetic resources. Also, each Brazilian state government has research foundation to support local proposals in the genetic resources characterization and animal breeding program. For instance, in the São Paulo Research Foundation created in March, 1999, the BIOTA-FAPESP Program (FAPESP Research Program on Biodiversity Characterization, Conservation, Restoration and Sustainable Use), aimed not only at discovering, mapping and analyzing the origins, diversity and distribution of the flora and fauna of the State of São Paulo, but also at evaluating the possibilities of sustainable exploitation of plants or animals with economic potential and assisting in the formulation of conservation policies on forest remnants. 123

38. Please list main institutions, organizations, corporations and other entities in your country that are engaged in field and/or laboratory research related to the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives.

Add Row

Comments Area of research Main institutions, organizations, corporations and other entities Please provide any additional Mark all that apply information

Genetic resource management Basic knowledge on aquatic genetic resources Characterization and monitoring of aquatic genetic resources

Genetic improvement There are two EMBRAPA units EMBRAPA Economic valuation of aquatic involved in genetic resources. X Empresa Brasileira de Pesquisa Agropecuaria genetic resources Embrapa Genetic Resources and (Brazilian Agricultural Research Corporation) Biotechnology Conservation of aquatic genetic Embrapa Fisheries and Aquaculture resources Communication on aquatic genetic resources

Access and distribution of aquatic genetic resources Other

Genetic resource management Basic knowledge on aquatic genetic resources Characterization and monitoring of aquatic genetic resources

Genetic improvement Brazilian universities and research Economic valuation of aquatic centers spread out all over Brazil X Universities and other research centers genetic resources carry out different approaches regarding evaluation and use of Conservation of aquatic genetic aquatic genetic resources. resources Communication on aquatic genetic resources

Access and distribution of aquatic genetic resources Other 124

39. What capacity strengthening is needed to improve national research in support of the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives?

Please rank the following in regard to capacity strengthening.

Rank Capacities 1=Very Important 10=No importance

Improve basic knowledge on aquatic genetic resources 1

Improve capacities for characterization and monitoring of 2 aquatic genetic resources

Improve capacities for genetic improvement 1

Improve capacities for genetic resource management 4

Improve capacities for economic valuation of aquatic 2 genetic resources

Improve capacities for conservation of aquatic genetic 1 resources

Improve communication on aquatic genetic resources 2

Improve access to and distribution of aquatic genetic 3 resources

Add other rows as appropriate and rank

Add Row Remove Row

Please describe any other capacity building needs in regards to aquatic genetic resources 125

Education, training and extension 40. Please indicate the extent that education, training and extension in your country covers the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives? List the main institutions involved and the types of courses offered.

Add Row Type of courses Institution Thematic Area Comments mark all that apply Undergraduate Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate INPA X Instituto Nacional de Pesquisas Post-graduate Genetic improvement da Amazônia Training (National Institute of Amazon Researches) Extension Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension Undergraduate 49 Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic Training EMBRAPA resources Empresa Brasileira de Pesquisa Extension Agropecuaria Undergraduate (Brazilian Agricultural Research X Corporation) Post-graduate Genetic improvement Training Research units Embrapa Genetic Resources and Extension Biotechnology Undergraduate Embrapa Fisheries and Aquaculture Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X University of São Paulo Post-graduate Campus: Genetic improvement Piracicaba (Esalq) Training Pirassununga (FZEA) Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension Undergraduate 50 Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

State University of São Paulo Undergraduate X UNESP Post-graduate Campus Genetic improvement Botucatu (IB) Training Jaboticabal (CAUNESP) Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X University of Mogi das Cruzes Post-graduate Genetic improvement UMC Training Unit of Biotechnology Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension Undergraduate 51 Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X Federal University of Lavras Post-graduate Genetic improvement (UFLA) Training Animal Science Department Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X Post-graduate Federal University of Pelotas Genetic improvement Depto. of Zoology and Genetics Training Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension Undergraduate 52 Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X Centro de Pesquisas em Post-graduate Genetic improvement Piscicultura em Aquicultura Training Rodolpho Von Inhering, CE Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Post-graduate Genetic resource management Training Extension

Undergraduate Characterization and Post-graduate monitoring of aquatic genetic resources Training Extension

Undergraduate X Centro Integrado de Recursos Post-graduate Genetic improvement Pesqueiros e Aquicultura de Três Training Marias (MG)/Codevasf Extension

Undergraduate Economic valuation of aquatic Post-graduate genetic resources Training Extension

Undergraduate Conservation of aquatic Post-graduate genetic resources Training Extension 130 Coordination and networking 41. Please list any mechanisms within your country responsible for coordinating the aquaculture, culture-based fisheries and capture fisheries subsectors with the other sectors that use watersheds and coastal ecosystems and have impacts on aquatic genetic resources of wild relatives of farmed aquatic species (e.g., agriculture, forestry, mining, tourism, waste management and water resources).

If no mechanism exists check here:

Add Row

Name of mechanism Description of how mechanism operates

Embrapa R&D Portfolios are management instruments to support organization of related projects according to a thematic view, with the aim of directing, promoting, and monitoring the obtainment of end results to be achieved in that subject in the light of the Brazilian government strategic objectives. The aquaculture Portfolio has the main objective to produce knowledge and X technologies that may contribute to the development of the aquaculture sector as an emerging component of agribusiness. It coordinates research conducted Aquaculture Portfolio from Brazilian on the fish production chain as a whole (private and public sector), focusing on Agriculture Research Corporation the following species: tilapia (Oreochromis niloticus), tambaqui (Colossoma (EMBRAPA) macropomum), arapaima (Arapaima gigas), cachara (Pseudoplatystoma reticulatum), gray shrimp (Litopennaeus vannamei), cobia (Rachycentron canadus), catfish (Rhamdia quelen), ornamental fish, and other species, according to justified market demands. Furthermore, it prioritizes technology transfer in order to contribute to the solution of problems and the transformation of production systems through social, economic, and environmental gains.

MAPA is responsible to overseen and provides the instruments to support and Ministry of Agriculture, Livestock organize the Brazilian government strategic objectives towards aquaculture. X and Supply/MAPA Including the guidances on the appropriate legislations in order to promote its sustainable growth. 131 42. Please indicate how capacity strengthening can be improved in intersectoral coordination in support of the conservation, sustainable use and development of aquatic genetic resources.

Please rank the following in regards to capacity strengthening. Rank Capacities 1=Very Important 10=No importance

Increase awareness in institutions 4

Increase technical capacities of institutions 1

Increase information sharing between institutions 2

Add other rows as appropriate and rank

1 Increase legal tools for public-private parterships

Add Row Remove Row

Please specify in box below

1) Awareness in institutions: in general, this already exists and an example the importance that was given with Aquaculture in the last 12 years by federal government; 2) Technical capacities: there are some capacities that are still incipient and need more recruiting or/and relocation between Institutions. For example, it was identified a lack of animal breeders working with aquaculture species; 3) Information sharing: this is important in order to avoid duplication of public investment and save time; 4) Legal tools. The private sector has in his control most of the living animals (as livestock sector) but lacks of technical expertise for some areas. The development of legal tools to improve those colaboration between private and public sector is essential to boost the sector; 132 43. Please list any national networks in your country or any international networks your country belongs to that support the conservation, sustainable use and development of aquatic genetic resources.

Add Row

Objectives of the network Network Comments Please mark all that apply to your country

Improve basic knowledge on aquatic genetic resources

Improve capacities for characterization and monitoring of aquatic genetic resources

Improve capacities for genetic improvement Improve capacities for economic Animal Genetic Resources Portfolio from valuation of aquatic genetic X Brazilian Agriculture Research resources Corporation (EMBRAPA) Improve capacities for conservation of aquatic genetic resources

Improve communication on aquatic genetic resources

Improve access to and distribution of aquatic genetic resources Improve basic knowledge on aquatic genetic resources

Improve capacities for characterization and monitoring of aquatic genetic resources

Improve capacities for genetic improvement Improve capacities for economic Animal Genomic Network from Brazilian valuation of aquatic genetic X Agriculture Research Corporation resources (EMBRAPA) Improve capacities for conservation of aquatic genetic resources

Improve communication on aquatic genetic resources

Improve access to and distribution of aquatic genetic resources 133 Information systems 44. Please list any information systems existing in your country for receiving, managing and communicating information about the conservation, sustainable use and development of aquatic genetic resources of farmed aquatic species and their wild relatives.

Add Row

Type of information stored Main stakeholders Name of information system mark all that apply mark all that apply

DNA sequence Fish farmers

Genes and genotype Fishers in capture fisheries

Breeds, strains or stocks Fish hatchery people

Species names People involved in marketing

Production figures Government resource managers

Distribution Fishing or aquaculture associations Level of endangerment Aquatic protected area managers Other University and academic people

Non-Governmental Organizations

Intergovernmental Organizations X Animal GRIN - Genetic Resources Information Network (English)/ Alelo Animal (Portuguese) Policy makers

Donors

Consumers

Politicians

Please list other stakeholders as necessary 134 45. What capacity strengthening is needed to improve national information systems to support the conservation, sustainable use and development of aquatic genetic resources? Please describe what capacities need to be strengthened

There is an actual system that just has been implemented by Brazilian Agricultural Research Corporation (Embrapa) for all animal genetic resources. Please check those websites for more information: http://nrrc.ars.usda.gov/A-GRIN/ database_collaboration_page or http://aleloanimal.cenargen.embrapa.br/database_collaboration_page. In order to expand and strengthen the system it is necessary to work in all capacities stated in question 42.

Please describe any other capacity building needs in regards to information systems for aquatic genetic resources

Training and infra-structure (mainly due to genomic data). 135

Chapter 8: International Collaboration on Aquatic Genetic Resources of Farmed Aquatic Species and Their Wild Relatives The main objective of Chapter 8 is to review the mechanisms and instruments through which your country participates in international collaborations on aquatic genetic resources of farmed aquatic species and their wild relatives. The specific objectives are: • To identify your country's current participation in bilateral, sub-regional, regional, other international and global forms of collaboration on aquatic genetic resources. List national memberships, status as a Party and other forms of affiliation in agreements, conventions, treaties, international organizations, international networks and international programmes.

• To identify any other forms of international collaboration on aquatic genetic resources. • To review the benefits from existing forms of international collaboration on aquatic genetic resources.

• To identify needs and priorities for future international collaboration on aquatic genetic resources

International collaboration includes bilateral arrangements and the sharing of particular waters and stocks of wild relatives of farmed aquatic species. International, regional or sub-regional agreements, conventions and treaties concerning aquatic genetic resources of farmed aquatic species and their wild relatives 46. Please list the international, regional or sub-regional agreements your country subscribes to that cover aquatic genetic resources of farmed species and their wild relatives, such as the Nagoya Protocol2 the Convention on Biological Diversity and the Cartagena Protocol and how they have impacted aquatic genetic resources and stakeholders in your country. Examples could include: 2 http://www.cbd.int/abs/nagoya-protocol/signatories/ • Establishment and management of shared or networked aquatic protected areas as far as wild relatives of farmed aquatic species are concerned • Aquaculture and culture-based fisheries in transboundary or shared water bodies • Sharing aquatic genetic material and related information • Fishing rights, seasons and quotas as far as wild relatives of farmed aquatic species are concerned • Conservation and sustainable use of shared water bodies and watercourses as far as wild relatives of farmed aquatic species are concerned • Quarantine procedures for aquatic organisms and for control and notification of aquatic diseases

Add Row

International, Year your Regional, country ratified Impact on aquatic genetic bilateral or Sub- or subscribed Impact on stakeholders Comments resources Regional to the agreement agreement

Strongly positive Strongly positive

Positive Positive

Negative Negative Since the Nagoya Protocol is not in force in Nagoya Protocol 2011 (signed) Strongly negative Strongly negative Brazil, it is not possible to X assess its possible No effect No effect impacts. 136

International, Year your Regional, country ratified Impact on aquatic genetic bilateral or Sub- or subscribed Impact on stakeholders Comments resources Regional to the agreement agreement

Strongly positive Strongly positive

Positive Positive

Bilateral Technical/ Negative Negative Scientific 2014 Strongly negative Strongly negative 2014 X Cooperation - Norway No effect No effect

Strongly positive Strongly positive

Positive Positive

Negative Negative Bilateral Scientific Cooperation - 2013 Strongly negative Strongly negative Capacity Building X Israel No effect No effect

Strongly positive Strongly positive

Positive Positive

Bilateral Technical/ Negative Negative Capacity Building and Scientific 2013 Strongly negative Strongly negative improve quality of X Cooperation - products Portugal No effect No effect

Strongly positive Strongly positive

Positive Positive

Negative Negative Bilateral Technical Support development of Cooperation - 2014 Strongly negative Strongly negative X Ivory Coast aquaculture Ivory Coast No effect No effect

Strongly positive Strongly positive

Positive Positive

Negative Negative Memorandum of develop of conservation Understanding Strongly negative Strongly negative plans for marine aquatics X with South Africa species No effect No effect 137

International, Year your Regional, country ratified Impact on aquatic genetic bilateral or Sub- or subscribed Impact on stakeholders Comments resources Regional to the agreement agreement

Strongly positive Strongly positive

Positive Positive

Bilateral Technical/ Negative Negative Scientific 2012 Strongly negative Strongly negative Capacity Building X Cooperation - Mexico No effect No effect

Strongly positive Strongly positive

Positive Positive

Negative Negative Memorandum of Support development of Understanding 2012 Strongly negative Strongly negative X Suriname aquaculture with Suriname No effect No effect 138 47. Please list the priority needs regarding collaboration on conservation and sustainable use of aquatic genetic resources of farmed aquatic species and their wild relatives. Are they being addressed, i.e. are there any critical gaps?

Rank Comments Collaboration is needed in order to ... To what extent are the 1=Very Important needs being met For example any critical gaps 10=No importance

To a great extent Integrated system to create Improve information technology and To some extent 1 database about genetic database management None resources at national level. Unknown

To a great extent More investigations on Improve basic knowledge on aquatic To some extent nutrition, genetics and sanitary genetic resources 1 aspects of aquatic genetic None resources. Unknown

To a great extent Implementation of research Improve capacities for characterization To some extent programs on genetic resources and monitoring of aquatic genetic 5 and training courses to resources None improve capacities on local communities Unknown

To a great extent Develop new strains of native Improve capacities for genetic To some extent species for aquaculture and improvement 2 None improve capacity building Unknown

To a great extent

Improve capacities for economic valuation To some extent Important to add value to of aquatic genetic resources 3 aquaculture products None Unknown

To a great extent Improve infra-structure to Improve capacities for conservation of To some extent cryopreservation genetic aquatic genetic resources 1 None material Unknown

To a great extent Public awareness growth and Improve communication on aquatic To some extent improve communication genetic resources 4 between industry and public None sector Unknown 139

Rank Comments Collaboration is needed in order to ... To what extent are the 1=Very Important needs being met For example any critical gaps 10=No importance

To a great extent

To improve access to and distribution of To some extent Improve access to genetic aquatic genetic resources 2 resources None Unknown Other To a great extent Continue adding row as necessary To some extent None Add Row Remove Row Unknown 140 48. Please describe the types of collaboration that have been most beneficial for your country, and why?

1) Bilateral International agreements with countries that have a robust and prolific aquaculture industry that might help Brazil to optimize the conservation and use of local and exotic genetic resources;

2) Internal Private and Governmental collaborations where the role of the government is just to support the industry (eg. scientific/technical expertise) but not have a huge control in the market;

49. Is there a need for your country to expand its collaboration concerning the conservation, sustainable use and development of aquatic genetic resources? If yes, give details, including any requirements for capacity strengthening in box below

Yes

No If yes, please give details

There is a need to increase the Brazilian participation in international forums related to Aquatic Genetic resources. In addition there is a need to integrate the Aquaculture and Animal Genetic Resources Programs in order to avoid duplication of resources.

50. Describe important roles that your country performs within its region (and/or sub-region) and globally in terms of being a keeper, user and sharer of aquatic genetic resources.

Brazil has a 25 years old Animal Genetic Resources Program and has the South America and Caribbean regional focal point for FAO Animal Genetic Resources since 2007. In the last 5 years it was observed an increased concern to add aquatic species to the animal genetic resources program coordinated by Embrapa (Brazilian Agency for Agricultural Research) and another public Institutions. In parallel, Brazil is recognized by the huge aquatic species diversity and the basic research developed by Federal and State Universities. Besides that Brazil is one of the great potential producers of aquaculture, and it is in second place in Latin America. Also, still has a great potential to grow in the next years.

Submit Form