Occurrence of a New Species of Colonial Ascidian – Eudistoma Kaverium Sp

Total Page:16

File Type:pdf, Size:1020Kb

Occurrence of a New Species of Colonial Ascidian – Eudistoma Kaverium Sp Indian Journal of Marine Sciences Vol. 31(3), September 2002, pp. 201-206 Occurrence of a new species of colonial ascidian – Eudistoma kaverium sp. nov. and four new records of Eudistoma to Indian coastal waters V. K. Meenakshi Department of Zoology, A.P.C. Mahalaxmi College for Women, Tuticorin 628 002, Tamil Nadu, India [ E-mail: [email protected] ] Received 14 August 2001, revised 10 June 2002 Five species of colonial ascidians of the genus Eudistoma are reported of which Eudistoma kaverium sp. nov. is new to science and the other four ⎯ Eudistoma constrictum Kott, 1990; Eudistoma laysani (Sluiter, 1900); Eudistoma ovatum (Herdman, 1886); Eudistoma toealensis Millar, 1975 are new records to Indian waters. [ Key words: colonial ascidians, Eudistoma kaverium, new records ] So far only two species of the genus Eudistoma – long arising from a common basal test. The basal test Eudistoma viride Tokioka1, 1955 by Renganathan2, mass and about half of the base of the cylindrical 1984 and Eudistoma lakshmiani Renganathan3, 1986 lobes are intensely coated with sand and have sand have been reported from Indian waters. The present internally. The surface test of the head of the colony is study reports the occurrence of a new species – always free of sand. The free upper ends of the lobes Eudistoma kaverium sp. nov. and four more species – are usually circular to oval with 2 mm to 1 cm diame- Eudistoma constrictum Kott4, 1990; Eudistoma ter. The number of lobes in a colony range from laysani (Sluiter5, 1900); Eudistoma ovatum (Herd- 16-51. Occasionally the lobes show short branches. man6, 1886); Eudistoma toealensis Millar7, 1975 for Living colonies are translucent whitish (colour of cau- the first time from Indian waters. liflower) with light flesh coloured zooids. In preserva- Eudistoma kaverium sp. nov. tive the test becomes transparent and flesh coloured. Class: Ascidiacea Faecal pellets are completely absent from the test. Order: Enterogona Suborder: Aplousobranchia Family: Polycitoridae Genus: Eudistoma Species: Eudistoma kaverium sp. nov. Habit and habitat ⎯ Many colonies, found at- tached to the upper surface of dead corals and mollus- can shells were collected from the littoral zone of Mandapam (lat. 9º16’N and long. 79º 8′E), south east coast of India (western Bay of Bengal). Holotype ⎯ (VOCM AS51) deposited in the as- cidian collections of the Museum of the Research De- partment of Zoology, V.O. Chidambaram College, Tuticorin, Tamil Nadu, India. Paratype ⎯ (AS.8) deposited in the national collec- tions of the Zoological Survey of India, Southern Re- gional Station, 100, Santhome High Road, Chennai 600 028, India. External appearance ⎯ (Figs 1 and 2A,B) The colony consists of upright, cylindrical lobes 1-1.5 cm Fig. 1 ⎯ Colony of Eudistoma kaverium sp. nov 202 Indian J. Mar. Sci., Vol. 31, No. 3, September 2002 The zooids open by separate branchial and atrial vascular appendage projects from the posterior end of apertures on the upper surface placed near to each zooid. A maximum of 6 to 7 embryos are present in other in an oval transparent area of test. Each zooid is the atrial cavity of which one or two of them are tailed contained in a compartment in the test which is of the larvae. The larval trunk measures 0.5 to 0.7 mm long. same diameter without any constriction. The con- The tail is wound halfway round. Lateral and median tracted zooids are always found occupying the middle ampullae are present (Fig. 2E). or basal part of the compartment and they are never Remarks ⎯ The characters used to distinguish the severed. Zooids are arranged at right angles to the different species of this genus are the shape, colour of surface test and can be seen extending vertically the colony, cloacal system, test inclusions, number of through the transparent compartments. stigmata in each row, nature of alimentary canal and Internal structure ⎯ (Fig. 2C,D) Zooids are robust, larva. well-expanded zooids measure 9-10 mm. But usually So far only two species of the genus Eudistoma – the contracted zooids are only 3-4 mm long. Zooids Eudistoma viride and Eudistoma lakshmiani have are pinkish brown in preservative. Siphons are rela- been reported from Indian waters. The present species tively short. Thirteen longitudinal muscles are present lacks the characteristic black spots on either side of in the thorax which extends as 4 bundles into the ab- the oral siphon observed in Eudistoma viride and the domen. Twenty six circular muscles are present which larval characters of Eudistoma lakshmiani like the are closely placed in the anterior and middle part of four pairs of lateral ampullae subdivided into two the thorax and loosely placed in the posterior thoracic prominences in the distal end and a single median region. The number of stigmata varies from 12-16 and ampulla along the ventromedian line of the trunk. it is very difficult to count in contracted zooids. The In the absence of colonial systems the present spe- oesophageal neck is long and thin. The stomach is at cies resembles Eudistoma constrictum, Eudistoma the posterior end of the gut loop and the posterior microlarvum Kott, 1990; Eudistoma globosum Kott8, stomach is indistinct. Gonads are in the gut loop and the testis follicles in grape-like clusters spill over the sides. The vas deferens is prominent. A delicate long Fig. 2 ⎯ Eudistoma kaverium sp. nov. (A) colony, {L-lobe], (B) Fig. 3 ⎯ Eudistoma constrictum (A) relaxed zooid showing gut upper surface of a lobe showing zooid openings, (C) contracted loop, [BA ⎯ branchial aperture; AA ⎯ atrial aperture; zooid drawn from the surface (D) contracted zooid with an em- S ⎯ stigmata; A ⎯ anus; E ⎯ endostyle; R ⎯ rectum; bryo, {AC ⎯ atrial cavity; E ⎯ embryo; BA ⎯ branchial aperture; O ⎯ oesophagus; F ⎯ faecal pellet; ST ⎯ stomach], (B) gut loop S ⎯ stigmata; O ⎯ Oesophagus; ST ⎯ stomach; T ⎯ testis folli- with gonads [I ⎯ intestine; T ⎯ testis follicles; PS ⎯ posterior cles], (E) larva. stomach; V ⎯ vascular process], (C) larva. Meenakshi : Occurrence of species of Eudistoma 203 1957; Eudistoma elongatum (Herdman, 1886); Eudis- oid-bearing heads of the colony of Eudistoma elonga- toma laysani. It differs from Eudistoma constrictum tum. in the form and colour of the colony, in the absence of Whitish blue iridescence with no embedded sand sand from the surface test of the head of lobes, the and small zooids characteristic of Eudistoma laysani zooids contained in compartments of the test which is have not been observed in the present species. not constricted. The multilobed colony with the translucent whitish The specimen can be easily distinguished from test, long zooids contained in compartments of the Eudistoma microlarvum where the colonies are flat test, absence of sand from the surface test of head are investing sheets or cushions and not lobed like the characteristics of the species. In view of these special present species. The present species differs from the features the present species is identified as a new spe- colonies of Eudistoma globosum in the colour, shape cies and named Eudistoma kaverium sp. nov. of the lobes of the colony, absence of faecal pellets in the test, more than 15 stigmata per row, though they New records for India show similarities in the shape of the colony and the Eudistoma constrictum Kott, 1990 arrangement of zooids. Eudistoma constrictum Kott, 1990, p. 203 This species of Eudistoma can never be confused Habit and habitat ⎯ Many colonies were collected with the club-shaped to long cylindrical rope-like zo- from the intertidal rocky shore of Mandapam, Tamil Nadu, south east coast of India. Distribution ⎯ Australia, India External appearance ⎯ Colonies irregular cush- ions extending to about 6-7 cm and up to 1 cm high. Zooids open separately in a sand free area. Sand and faecal pellets are present in the test which gradually becomes less towards the base. In some parts of the colony sand was completely absent. The zooid is con- tained in a compartment in the test which is not con- stricted in the upper part of the oesophageal neck. Fig. 5 ⎯ Eudistoma ovatum (A) upper surface of the colony show- ing openings of zooids, (B) embedded sand on the surface test and Fig. 4⎯ Eudistoma laysani (A) zooid showing gut loop, (B) gut the apertures of the zooids in a sand free area, (C) gut loop with loop with gonads, (C) larva gonads, (D) larva. 204 Indian J. Mar. Sci., Vol. 31, No. 3, September 2002 Internal structure (Fig. 3A,B) ⎯ Zooids pinkish sand throughout the test, absence of circular systems brown when alive but on preservation the colour was and the presence of a narrow constriction between the completely lost. Longitudinal and circular muscles are thorax and abdomen. well developed. Longitudinal muscles extend into the The specimen studied has been deposited in the abdomen as bands. Short siphons, very fine branchial National Collections, Zoological Survey of India, tentacles are present at the base of the branchial si- Chennai (Reg. No.AS.11). phon. About 12-15 stigmata could be counted in each row. The dorsal end of the anterior row curves for- Eudistoma laysani (Sluiter, 1900) Distoma laysani Sluiter 1900, p.9. ward. A short oval posterior stomach present, 2 9 embryos were present in the peribranchial cavity. Polycitor laysani: Sluiter 1909, p.4. Larval trunk measures 5-6 mm. Lateral and median Eudistoma laysani: Millar 1975, p.221. ampullae alternate with the adhesive organs. Tail is Distoma parva Sluiter 1900, p.6. wound three quarters (Fig. 3C). Eudistoma parvum: Kott 1957, p.77. Polycitor (Eudistoma) olivaceum: Tokioka10 1942 p.497. Remarks ⎯ This species is being reported for the first time in India. The present species resembles Eud- Eudistoma laysani: Kott 1990, p.214. istoma constrictum.
Recommended publications
  • Full Page Fax Print
    CXIX.-ASCIDIANS FROM MOZAMBIQUE, EAST AFRICA. By R. H. MILLAR, Marine Station, Millport. lNTRODUCTION. A small collection of littoral ascidians (class Ascidiacea; sub-phylum Tunicatal bas been made from various places on the coast of Mozambique, East Africa, by Mrs. M. Kalk of the Zoology Department, the University ofWitwatersrand, and the present paper gives an account ofthe collection. Most of the specimens come from the shores of Inhaca Island (lat. 26° S.) which lies at the mouthof Delagoa Bay and is almost due east of Lourenço Marques. There are also a few specimens from the shores of Mozambique Island (lat. 15° S.) and Santa Carolina (lat. 22° S.). The ascidians of East Africa have already been described by Michaeisen (1918, 1919, 1920, 1921) who summarized previous information and also added new accounts of his own. Systematic list of species. Family Polyclinidae Milne Edwards. Aplidium altarium (Sluiter). A. petrense Michaelsen. A. lubricum (Sluiter). Polyclinum macrophyUum Michaelsen. Family Polycitoridae Michaelsen. Eud·istoma 1·hodopyge (Sluiter). E. mobiusi (Hartmeyer). E. caeruleum (Sluiter). E. paesslerioides Micha.elsen. Clavelina enormis Herdman. Family Didemnidae Verrill. Diplosoma modestum Michaelsen. Didemnopsis sansibaricum Michaelsen. ?Didemmtm psammatodes (Sluiter). Family Ascidiidae Herdman. Ascidia incrassata Heller. A. arenosa Hartmeyer. Family Botryllidae Verrill. Botryllus plan'U8 (Va.n Name). Family Styelidae Sluiter. Symplegma viride Herdman. Styela marquesana Michaelsen. Polyandrocarpa tincta (Van Name). P. inhacae sp. n. A.M.N.H. ser. 12, vol. ix, 58 914 R. H. Millar on Ascidians from Mozambique Family Pyuridae Hartmeyer. Pyura sansibarica Michaelsen. Herdmania momus (Savigny). DESCRIPTION OF SPECIES. Family Polyclinidae Milne Edwards, 1842. Genus Aplidium Savigny, 1816.
    [Show full text]
  • Eudistoma (Ascidiacea: Polycitoridae) from Tropical Brazil
    ZOOLOGIA 31 (2): 195–208, April, 2014 http://dx.doi.org/10.1590/S1984-46702014000200011 Eudistoma (Ascidiacea: Polycitoridae) from tropical Brazil Livia de Moura Oliveira1, Gustavo Antunes Gamba1 & Rosana Moreira da Rocha1,2 1 Programa de Pós-graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná. Caixa Postal 19020, 81531-980 Curitiba, PR, Brazil. 2 Corresponding author: E-mail: [email protected] ABSTRACT. We studied material in collections from coastal intertidal and subtidal tropical waters of the Brazilian states of Paraíba, Pernambuco, Alagoas, Bahia, and Espírito Santo. We identified seven species of Eudistoma, of which two are new to science. Eudistoma alvearium sp. nov. colonies have fecal pellets around each zooid and zooids are 6-8 mm long with seven straight and parallel pyloric tubules; the larval trunk is 0.6 mm long with three adhesive papillae and ten ampullae. Eudistoma versicolor sp. nov. colonies are cushion-shaped, variable in color (blue, purple, brown, light green, gray or white) and zooids have six straight and parallel pyloric tubules; the larval trunk is 0.8 mm long with three adhesive papillae and six ampules. Three species – E. carolinense Van Name, 1945, E. recifense Millar, 1977, and E. vannamei Millar, 1977 – are known from northeastern Brazil. The identification of two additional species will require confirmation. We also propose a synonymy for E. carolinense with E. repens Millar, 1977, also previously described in Brazil. KEY WORDS. Atlantic; colonial ascidians; new species; taxonomy. Eudistoma Caullery, 1909 is the most species-rich genus and comment on the implications of species richness for the in Polycitoridae, with 124 valid species found in tropical and distribution of Eudistoma.
    [Show full text]
  • Ascidiacea (Chordata: Tunicata) of Greece: an Updated Checklist
    Biodiversity Data Journal 4: e9273 doi: 10.3897/BDJ.4.e9273 Taxonomic Paper Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist Chryssanthi Antoniadou‡, Vasilis Gerovasileiou§§, Nicolas Bailly ‡ Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece § Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece Corresponding author: Chryssanthi Antoniadou ([email protected]) Academic editor: Christos Arvanitidis Received: 18 May 2016 | Accepted: 17 Jul 2016 | Published: 01 Nov 2016 Citation: Antoniadou C, Gerovasileiou V, Bailly N (2016) Ascidiacea (Chordata: Tunicata) of Greece: an updated checklist. Biodiversity Data Journal 4: e9273. https://doi.org/10.3897/BDJ.4.e9273 Abstract Background The checklist of the ascidian fauna (Tunicata: Ascidiacea) of Greece was compiled within the framework of the Greek Taxon Information System (GTIS), an application of the LifeWatchGreece Research Infrastructure (ESFRI) aiming to produce a complete checklist of species recorded from Greece. This checklist was constructed by updating an existing one with the inclusion of recently published records. All the reported species from Greek waters were taxonomically revised and cross-checked with the Ascidiacea World Database. New information The updated checklist of the class Ascidiacea of Greece comprises 75 species, classified in 33 genera, 12 families, and 3 orders. In total, 8 species have been added to the previous species list (4 Aplousobranchia, 2 Phlebobranchia, and 2 Stolidobranchia). Aplousobranchia was the most speciose order, followed by Stolidobranchia. Most species belonged to the families Didemnidae, Polyclinidae, Pyuridae, Ascidiidae, and Styelidae; these 4 families comprise 76% of the Greek ascidian species richness. The present effort revealed the limited taxonomic research effort devoted to the ascidian fauna of Greece, © Antoniadou C et al.
    [Show full text]
  • Redalyc.Keys for the Identification of Families and Genera of Atlantic
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Moreira da Rocha, Rosana; Bastos Zanata, Thais; Moreno, Tatiane Regina Keys for the identification of families and genera of Atlantic shallow water ascidians Biota Neotropica, vol. 12, núm. 1, enero-marzo, 2012, pp. 1-35 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199123750022 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Keys for the identification of families and genera of Atlantic shallow water ascidians Rocha, R.M. et al. Biota Neotrop. 2012, 12(1): 000-000. On line version of this paper is available from: http://www.biotaneotropica.org.br/v12n1/en/abstract?identification-key+bn01712012012 A versão on-line completa deste artigo está disponível em: http://www.biotaneotropica.org.br/v12n1/pt/abstract?identification-key+bn01712012012 Received/ Recebido em 16/07/2011 - Revised/ Versão reformulada recebida em 13/03/2012 - Accepted/ Publicado em 14/03/2012 ISSN 1676-0603 (on-line) Biota Neotropica is an electronic, peer-reviewed journal edited by the Program BIOTA/FAPESP: The Virtual Institute of Biodiversity. This journal’s aim is to disseminate the results of original research work, associated or not to the program, concerned with characterization, conservation and sustainable use of biodiversity within the Neotropical region. Biota Neotropica é uma revista do Programa BIOTA/FAPESP - O Instituto Virtual da Biodiversidade, que publica resultados de pesquisa original, vinculada ou não ao programa, que abordem a temática caracterização, conservação e uso sustentável da biodiversidade na região Neotropical.
    [Show full text]
  • Title ASCIDIANS from MINDORO ISLAND, the PHILIPPINES Author(S)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository ASCIDIANS FROM MINDORO ISLAND, THE Title PHILIPPINES Author(s) Tokioka, Takasi PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1970), 18(2): 75-107 Issue Date 1970-10-20 URL http://hdl.handle.net/2433/175626 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University ASCIDIANS FROM MINDORO ISLAND, THE PHILIPPINES!) T AKASI TOKIOKA Seto Marine Biological Laboratory With 12 Text-figures A small but very important collection of ascidians made at Puerto Galera, Mindoro Island, the Philippines was submitted to me for identification by the Bio­ logical Laboratory in the Imperial Household. The collection which was made by Messrs. R. GuERRERO and R. DIAZ in April and May 1963 and then had belonged to the Department of Zoology, the University of the Philippines, was presented from the President of the Philippines to His Majesty the Emperor of Japan for professional investigations. The following fifteen forms were found in the collection; one of them seemingly represents a new species and six species and one form which are marked with an asterisk on the list given below are recorded newly from Philippine waters. Ascidians found in the collection Fam. Didemnidae 1. Didemnum (Didemnum) candidum SAVIGNY 2. Didemnum (Didemnum) moseleyi (HERDMAN) *3. Didemnum (Didemnum) moseleyi f. granulatum ToKIOKA 4. Diplosoma macdonaldi HERDMAN Fam. Polycitoridae 5. Nephtheis fascicularis (DRASCHE) Fam. Ascidiidae 6. Ascidia sydneiensis samea (OKA) 7. Phallusia depressiuscula (HELLER) Fam. Styelidae *8. Polyandrocarpa nigricans (HELLER) 9. Polycarpa aurata (Quov et GAIMARD) *10.
    [Show full text]
  • Tunicata 4 Alberto Stolfi and Federico D
    Tunicata 4 Alberto Stolfi and Federico D. Brown Chapter vignette artwork by Brigitte Baldrian. © Brigitte Baldrian and Andreas Wanninger. A. Stolfi Department of Biology , Center for Developmental Genetics, New York University , New York , NY , USA F. D. Brown (*) EvoDevo Laboratory, Departamento de Zoologia , Instituto de Biociências, Universidade de São Paulo , São Paulo , SP , Brazil Evolutionary Developmental Biology Laboratory, Department of Biological Sciences , Universidad de los Andes , Bogotá , Colombia Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM) , Escuela Superior Politécnica del Litoral (ESPOL) , San Pedro , Santa Elena , Ecuador e-mail: [email protected] A. Wanninger (ed.), Evolutionary Developmental Biology of Invertebrates 6: Deuterostomia 135 DOI 10.1007/978-3-7091-1856-6_4, © Springer-Verlag Wien 2015 [email protected] 136 A. Stolfi and F.D. Brown Above all , perhaps , I am indebted to a decidedly the phylogenetic relationships between the three vegetative , often beautiful , and generally obscure classes and many orders and families have yet to group of marine animals , both for their intrinsic interest and for the enjoyment I have had in search- be satisfactorily settled. Appendicularia, ing for them . N. J. Berrill (1955) Thaliacea, and Ascidiacea remain broadly used in textbooks and scientifi c literature as the three classes of tunicates; however, recent molecular INTRODUCTION phylogenies have provided support for the mono- phyly of only Appendicularia and Thaliacea, but Tunicates are a group of marine fi lter-feeding not of Ascidiacea (Swalla et al. 2000 ; animals1 that have been traditionally divided into Tsagkogeorga et al. 2009 ; Wada 1998 ). A para- three classes: (1) Appendicularia, also known as phyletic Ascidiacea calls for a reevaluation of larvaceans because their free-swimming and tunicate relationships.
    [Show full text]
  • Awesome Ascidians a Guide to the Sea Squirts of New Zealand Version 2, 2016
    about this guide | about sea squirts | colour index | species index | species pages | icons | glossary inspirational invertebratesawesome ascidians a guide to the sea squirts of New Zealand Version 2, 2016 Mike Page Michelle Kelly with Blayne Herr 1 about this guide | about sea squirts | colour index | species index | species pages | icons | glossary about this guide Sea squirts are amongst the more common marine invertebrates that inhabit our coasts, our harbours, and the depths of our oceans. AWESOME ASCIDIANS is a fully illustrated e-guide to the sea squirts of New Zealand. It is designed for New Zealanders like you who live near the sea, dive and snorkel, explore our coasts, make a living from it, and for those who educate and are charged with kaitiakitanga, conservation and management of our marine realm. It is one in a series of electronic guides on New Zealand marine invertebrates that NIWA’s Coasts and Oceans centre is presently developing. The e-guide starts with a simple introduction to living sea squirts, followed by a colour index, species index, detailed individual species pages, and finally, icon explanations and a glossary of terms. As new species are discovered and described, new species pages will be added and an updated version of this e-guide will be made available online. Each sea squirt species page illustrates and describes features that enable you to differentiate the species from each other. Species are illustrated with high quality images of the animals in life. As far as possible, we have used characters that can be seen by eye or magnifying glass, and language that is non technical.
    [Show full text]
  • An Elongated COI Fragment to Discriminate Botryllid Species And
    www.nature.com/scientificreports OPEN An elongated COI fragment to discriminate botryllid species and as an improved ascidian DNA barcode Marika Salonna1, Fabio Gasparini2, Dorothée Huchon3,4, Federica Montesanto5, Michal Haddas‑Sasson3,4, Merrick Ekins6,7,8, Marissa McNamara6,7,8, Francesco Mastrototaro5,9 & Carmela Gissi1,9,10* Botryllids are colonial ascidians widely studied for their potential invasiveness and as model organisms, however the morphological description and discrimination of these species is very problematic, leading to frequent specimen misidentifcations. To facilitate species discrimination and detection of cryptic/new species, we developed new barcoding primers for the amplifcation of a COI fragment of about 860 bp (860‑COI), which is an extension of the common Folmer’s barcode region. Our 860‑COI was successfully amplifed in 177 worldwide‑sampled botryllid colonies. Combined with morphological analyses, 860‑COI allowed not only discriminating known species, but also identifying undescribed and cryptic species, resurrecting old species currently in synonymy, and proposing the assignment of clade D of the model organism Botryllus schlosseri to Botryllus renierii. Importantly, within clade A of B. schlosseri, 860‑COI recognized at least two candidate species against only one recognized by the Folmer’s fragment, underlining the need of further genetic investigations on this clade. This result also suggests that the 860‑COI could have a greater ability to diagnose cryptic/ new species than the Folmer’s fragment at very short evolutionary distances, such as those observed within clade A. Finally, our new primers simplify the amplifcation of 860‑COI even in non‑botryllid ascidians, suggesting their wider usefulness in ascidians.
    [Show full text]
  • © the Authors 2019. All Rights Reserved
    © The Authors 2019. All rights reserved. www.publish.csiro.au Index Note: Bold page numbers refer to illustrations. abalones 348 tenella 77 Acanthaster 134, 365, 367, 393 tenuis 272 mauritiensis 134, 135 white syndrome 152 planci 134 Acroporidae 136, 274–5, 276 solaris 367 Acrozoanthus australiae 264, 265 cf. solaris 134, 135, 144, 165, 270, 275, 339, 345, 366 acrozooid polyps 287 sp. A nomen nudum 134 Actaeomorpha 337 Acanthaster outbreaks 134–5 scruposa 335 causes 134–5, 144–6, 163–4, 165, 367 Acteonidae 349 management 135 Actinaria 257, 259–63 see also crown-of-thorns starfish (COTS) outbreaks anatomical features 258 Acanthasteridae 367 cnidae types in 260 Acanthastrea echinata 279 Actiniidae 263 Acanthella cavernosa 236, 238 Actinocyclidae 349 Acanthochitonidae 349 Actinodendron glomeratum 261 Acanthogorgia 302, 306 Actinopyga 369, 370 sp. 302 echinites 372 Acanthogorgiidae 302 miliaris 372 Acanthopargus spp. 126 sp. 372 Acanthopleura gemmata 107, 110 Aegiceras corniculatum 221, 222, 223 Acanthuridae 390, 396 Aegiridae 349 Acanthurus aeolid nudibranchs 346, 347, 349 blochii 396 Aeolidiidae 349 lineatus 395, 396 Aequorea 202 mata 393 Afrocucumis africana 368, 370 olivaceus 395 Agariciidae 275, 276 Acartia sp. 192 Agelas axifera 236, 238 accessory pigments 89 aggressive mimicry 401 Acetes 333 Agjajidae 349 sp. 192 agricultural activities, sediments and nutrients from 161–5 Achelata 333, 334–6 Ailsastra sp. 368 acorn barnacles 328 Aiptasia pulchella 260 acorn dog whelk 346, 347 Aipysurus 415, 416 Acropora 31, 33, 59, 135, 136, 150, 184, 211, 272, 273, 274–5, 339 duboisii 412, 413, 415 brown band disease 152 laevis 412, 413, 415, 416 clathrata 79 mosaicus 415 echinata 276 Alcyonacea 67, 283, 290–309 global diversity 186 Alcyonidium sp.
    [Show full text]
  • Ascidiacea Ascidiacea
    ASCIDIACEA ASCIDIACEA The Ascidiacea, the largest class of the Tunicata, are fixed, filter feeding organisms found in most marine habitats from intertidal to hadal depths. The class contains two orders, the Enterogona in which the atrial cavity (atrium) develops from paired dorsal invaginations, and the Pleurogona in which it develops from a single median invagination. These ordinal characters are not present in adult organisms. Accordingly, the subordinal groupings, Aplousobranchia and Phlebobranchia (Enterogona) and Stolidobranchia (Pleurogona), are of more practical use at the higher taxon level. In the earliest classification (Savigny 1816; Milne-Edwards 1841) ascidians-including the known salps, doliolids and later (Huxley 1851), appendicularians-were subdivided according to their social organisation, namely, solitary and colonial forms, the latter with zooids either embedded (compound) or joined by basal stolons (social). Recognising the anomalies this classification created, Lahille (1886) used the branchial sacs to divide the group (now known as Tunicata) into three orders: Aplousobranchia (pharynx lacking both internal longitudinal vessels and folds), Phlebobranchia (pharynx with internal longitudinal vessels but lacking folds), and Stolidobranchia (pharynx with both internal longitudinal vessels and folds). Subsequently, with thaliaceans and appendicularians in their own separate classes, Lahille's suborders came to refer only to the Class Ascidiacea, and his definitions were amplified by consideration of the position of the gut and gonads relative to the branchial sac (Harant 1929). Kott (1969) recognised that the position of the gut and gonads are linked with the condition and function of the epicardium. These are significant characters and are informative of phylogenetic relationships. However, although generally conforming with Lahille's orders, the new phylogeny cannot be reconciled with a too rigid adherence to his definitions based solely on the branchial sac.
    [Show full text]
  • Phylogenetic Analysis of Phenotypic Characters of Tunicata Supports Basal Appendicularia and Monophyletic Ascidiacea
    Cladistics Cladistics 36 (2020) 259–300 10.1111/cla.12405 Phylogenetic analysis of phenotypic characters of Tunicata supports basal Appendicularia and monophyletic Ascidiacea Katrin Brauna, Fanny Leubnerb and Thomas Stachc,* aVergleichende Zoologie, Institut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Philippstrasse 13, Haus 2, 10115 Berlin, Germany; bAnimal Evolution and Biodiversity, J-F-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Gottingen,€ Untere Karspule€ 2, 37073 Gottingen,€ Germany; cMolekulare Parasitologie, Institut fur€ Biologie, Humboldt-Universitat€ zu Berlin, Philippstrasse 13, Haus 14, 10115 Berlin, Germany Abstract With approximately 3000 marine species, Tunicata represents the most disparate subtaxon of Chordata. Molecular phyloge- netic studies support Tunicata as sister taxon to Craniota, rendering it pivotal to understanding craniate evolution. Although successively more molecular data have become available to resolve internal tunicate phylogenetic relationships, phenotypic data have not been utilized consistently. Herein these shortcomings are addressed by cladistically analyzing 117 phenotypic characters for 49 tunicate species comprising all higher tunicate taxa, and five craniate and cephalochordate outgroup species. In addition, a combined analysis of the phenotypic characters with 18S rDNA-sequence data is performed in 32 OTUs. The analysis of the combined data is congruent with published molecular analyses. Successively up-weighting phenotypic characters indicates that phenotypic data contribute disproportionally more to the resulting phylogenetic hypothesis. The strict consensus tree from the analysis of the phenotypic characters as well as the single most parsimonious tree found in the analysis of the combined dataset recover monophyletic Appendicularia as sister taxon to the remaining tunicate taxa. Thus, both datasets support the hypothesis that the last common ancestor of Tunicata was free-living and that ascidian sessility is a derived trait within Tunicata.
    [Show full text]
  • Sublittoral Hard Substrate Communities of the Northern Adriatic Sea
    Cah. Biol. Mar. (1999) 40 : 65-76 Sublittoral hard substrate communities of the northern Adriatic Sea Marco GABRIELE, Alberto BELLOT, Dario GALLOTTI & Riccardo BRUNETTI Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy Fax: (39) 49 8276230 - e-mail: [email protected] Abstract: In the northern Adriatic Sea there is a high number of rocky outcrops (of which a census has not yet been taken) with dense and diversified benthic communities that have not been studied until now. We studied two of these communities, as well as two other ones, which live on artificial substrata (a naval wreck and a barrier of concrete blocks), by collection of several samplings taken by SCUBA diving. A total of 116 species were identified, 67.6% of which were suspension feeders: ascidians, bivalves and poriferans, in decreasing order of frequency. Classification and ordination analysis, based on biomass values (ash free dry weight, AFDW), distinguished the communities on artificial structures from those on outcrops. Such a distinction is not due to the nature of the substratum but to an interaction between 1. the slope, almost horizontal in outcrops, and subvertical in artificial structures, 2. the water turbidity and 3. the consequent rate of sedimentation. An outcrop near the coast, with hydrological conditions similar to those present at stations with artificial substrata, has a lower biomass. These three environmental factors act on the relative percentage of species, of which some may become strongly dominant. They have no effect on the number of species in the community except for Porifera of which the number of species decreases as the turbidity increases.
    [Show full text]