Calorimetry ­ Accessscience from Mcgraw­Hill Education

Total Page:16

File Type:pdf, Size:1020Kb

Calorimetry ­ Accessscience from Mcgraw­Hill Education 3/20/2017 Calorimetry ­ AccessScience from McGraw­Hill Education (http://www.accessscience.com/) Calorimetry Article by: Marsh, Kenneth M. Thermodynamic Research Center, Texas A & M University, College Station, Texas. Last updated: 2014 DOI: https://doi.org/10.1036/1097­8542.104500 (https://doi.org/10.1036/1097­8542.104500) Content Hide Types of calorimeters Calorimeter components Thermometry Calorimetric measurements Heat­capacity calorimeter Enthalpy­of­vaporization calorimeter Links to Primary Literature Additional Readings The measurement of the quantity of heat energy involved in processes such as chemical reactions, changes of state, and mixing of substances, or in the determination of heat capacities of substances. The unit of energy in the International System of Units is the joule, symbolized J. Another unit still being used, but is strongly discouraged, is the calorie, symbolized cal and defined as 4.184 J. Most calorimetric measurements are made at constant pressure, and the measured change is called the enthalpy change. See also: Enthalpy (/content/enthalpy/234900); Heat capacity (/content/heat­capacity/310600) Types of calorimeters A calorimeter is an apparatus for measuring the quantity of heat energy released or absorbed during a process. Since there are many processes that can be studied over a wide range of temperature and pressure, a large variety of calorimeters have been developed. Nonisothermal calorimeters These instruments measure the temperature change that occurs during the process. An aneroid (containing no liquid) nonisothermal (temperature varying during the experiment) calorimeter is normally constructed of a material having a high thermal conductivity, such as copper, so that there is rapid temperature equilibration. It is isolated from its surroundings by a high vacuum to reduce heat leaks. This type of calorimeter can be used for determining the heat capacity of materials at low temperatures. Aneroid nonisothermal calorimeters have also been developed for measuring the energy of combustion for small samples of rare materials. Another type of nonisothermal calorimeter uses a large quantity of liquid as a heat sink, so that even if there is a large amount of energy released in the process the temperature rise is not excessive. The liquid is kept at a uniform temperature by stirring, and the change in temperature can be measured accurately. In general, the size of the liquid heat sink is designed so that the temperature change is of the order of 5 K (9°F). For measurements near room temperature, water is commonly used as the working fluid; measurements at higher temperatures use less volatile organic liquids. http://www.accessscience.com/content/calorimetry/104500 1/5 3/20/2017 Calorimetry ­ AccessScience from McGraw­Hill Education With most nonisothermal calorimeters, it is necessary to relate the temperature rise to the quantity of energy released in the process. This is done by determining the calorimeter constant, which is the amount of energy required to increase the temperature of the calorimeter itself by 1 K. This value can be determined by measurement on a well­defined test system or by electrical calibration. In bomb calorimetry, for example, the calorimeter constant is usually determined from the temperature rise that occurs when a known mass of a very pure standard sample of benzoic acid is burned. Electrical calibration, however, is complex and often does not mimic the way that energy is released during the reaction. Isothermal calorimeters These instruments make measurements at constant temperature. The simplest example is a calorimeter containing an outer annular space filled with a liquid in equilibrium with a crystalline solid at its melting point, arranged so that any volume change will displace mercury along a capillary tube. The Bunsen ice calorimeter operates at 0 °C (32 °F) with a mixture of ice and water. Changes resulting from the process being studied cause the ice to melt or the water to freeze, and the consequent volume change is determined by measurement of the movement of the mercury meniscus in the capillary tube. While these calorimeters can yield accurate results, their operation is limited to the equilibrium temperature of the two­ phase system. Other types of isothermal calorimeters use electrical energy to achieve exact balance of the heat absorption that occurs during an endothermic process. Generally, calorimeters based on this principle are more accurate than similar nonisothermal calorimeters. Many mixing and flow calorimeters operate in this mode. Calorimeter components All calorimeters consist of the calorimeter proper and a jacket or a bath, which is used to control the temperature of the calorimeter and the rate of heat leak to the environment. For temperatures not too far removed from room temperature, the jacket or bath contains liquid at a controlled temperature. For measurements at extreme temperatures, the jacket usually consists of a metal block containing a heater to control the temperature. With nonisothermal calorimeters, where the jacket is kept at a constant temperature, there will be some heat leak to the jacket when the temperature of the calorimeter changes. It is necessary to correct the temperature change observed to the value it would have been if there were no leak. This is achieved by measuring the temperature of the calorimeter before and after the process and applying Newton's law of cooling. This correction can be avoided by using the technique of adiabatic (no energy loss or gain with the surroundings) calorimetry, where the temperature of the jacket is kept equal to the temperature of the calorimeter as a change occurs. This technique requires more elaborate temperature control, and its primary use is for accurate heat capacity measurements at low temperatures. Thermometry In calorimetric experiments, it is necessary to measure temperature differences accurately; in some cases, the temperature itself must be accurately known. Modern calorimeters use resistance thermometers to measure both temperatures and temperature differences, while thermocouples or thermistors are used to measure smaller temperature differences. A calibrated standard platinum resistance thermometer can measure temperature differences to 0.00001°C and temperatures ranging from −260°C to 630°C (−436°F to 1166°F) with an uncertainty of ±0.001°C. Multiple­junction thermocouples and thermistors can measure smaller temperature differences, allowing precise measurements of very small heat effects. See also: Temperature measurement (/content/temperature­measurement/683700); Thermistor (/content/thermistor/690100); Thermocouple (/content/thermocouple/690500); Thermometer (/content/thermometer/691400) Calorimetric measurements http://www.accessscience.com/content/calorimetry/104500 2/5 3/20/2017 Calorimetry ­ AccessScience from McGraw­Hill Education Heat capacities of materials and energies of combustion are processes that are routinely measured with calorimeters. Calorimeters are also used to measure the heat involved in phase changes, for example, the change from a liquid to a solid (fusion) or from a liquid to a gas (vaporization). Calorimetry has also been applied to the measurement of the enthalpy of hydrogenation of unsaturated organic compounds, the enthalpy of dissolution of a solid in a liquid, or the enthalpy change on mixing two liquids. Heat­capacity calorimeter Heat capacities of gases or liquid can be determined in a flow calorimeter. Some essential features are shown in Fig. 1. A known mass of fluid flowing at a constant rate is pumped through the calorimeter. The inlet temperature is measured with thermometer 1. The fluid is heated with a known amount of electrical energy, and the change in temperature is observed at thermometer 2. The radiation shields reduce heat losses to the surroundings. Fig. 1 High­pressure flow calorimeter for measurement of heat capacity. (After G. Ernst, G. Maurer, and E. Wiederoh, Flow calorimeter for the accurate determination of the isobaric heat capacity at high pressures: Results for carbon dioxide, J. Chem. Thermodyn., 21:53–65, 1989) Enthalpy­of­vaporization calorimeter A modern enthalpy­of­vaporization calorimeter is shown in Fig. 2. The material in the vaporization vessel is heated with a known amount of electrical energy, and the mass of material vaporized is determined from the change in mass of the glass collection vessel. The thermostated shields, which are maintained at the same temperature as the vaporization vessel, ensure that all the electrical energy goes to vaporize the sample and none is lost to the surroundings. See also: Chemical thermodynamics (/content/chemical­thermodynamics/128200); Heat transfer (/content/heat­transfer/311100); Thermochemistry (/content/thermochemistry/690300); Thermodynamic principles (/content/thermodynamic­ principles/690700) http://www.accessscience.com/content/calorimetry/104500 3/5 3/20/2017 Calorimetry ­ AccessScience from McGraw­Hill Education Fig. 2 Heat­of­vaporization calorimeter. (After L. Sváb et al., A calorimeter for the determination of enthalpies of vaporization at high temperatures and pressures, J. Chem. Thermodyn., 20:545–550, 1988) Kenneth N. Marsh Links to Primary Literature S. Duane et al., An absorbed dose calorimeter for IMRT dosimetry, Metrologia, 49(5):S168, 2012 DOI: https://doi.org/10.1088/0026­1394/49/5/S168 (https://doi.org/10.1088/0026­1394/49/5/S168) C. Pascot et al., Calorimetric measurement of the heat generated by a Double­Layer Capacitor cell
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • Chapter 9 Titrimetric Methods 413
    Chapter 9 Titrimetric Methods Chapter Overview Section 9A Overview of Titrimetry Section 9B Acid–Base Titrations Section 9C Complexation Titrations Section 9D Redox Titrations Section 9E Precipitation Titrations Section 9F Key Terms Section 9G Chapter Summary Section 9H Problems Section 9I Solutions to Practice Exercises Titrimetry, in which volume serves as the analytical signal, made its first appearance as an analytical method in the early eighteenth century. Titrimetric methods were not well received by the analytical chemists of that era because they could not duplicate the accuracy and precision of a gravimetric analysis. Not surprisingly, few standard texts from the 1700s and 1800s include titrimetric methods of analysis. Precipitation gravimetry developed as an analytical method without a general theory of precipitation. An empirical relationship between a precipitate’s mass and the mass of analyte— what analytical chemists call a gravimetric factor—was determined experimentally by taking a known mass of analyte through the procedure. Today, we recognize this as an early example of an external standardization. Gravimetric factors were not calculated using the stoichiometry of a precipitation reaction because chemical formulas and atomic weights were not yet available! Unlike gravimetry, the development and acceptance of titrimetry required a deeper understanding of stoichiometry, of thermodynamics, and of chemical equilibria. By the 1900s, the accuracy and precision of titrimetric methods were comparable to that of gravimetric methods, establishing titrimetry as an accepted analytical technique. 411 412 Analytical Chemistry 2.0 9A Overview of Titrimetry We are deliberately avoiding the term In titrimetry we add a reagent, called the titrant, to a solution contain- analyte at this point in our introduction ing another reagent, called the titrand, and allow them to react.
    [Show full text]
  • Chemistry Courses 2005-2006
    Chemistry Courses 2005-2006 Autumn 2005 Chem 11101 General Chemistry I, Variant A Lee Chem 11102 General Chemistry I, Variant B Norris Chem 12200 Honors General Chemistry I Levy Chem 22000 Organic Chemistry I Yu Chem 22300 Intermediate Organic Chemistry Mrksich Chem 26100 Quantum Mechanics Mazziotti Chem 30100 Advanced Inorganic Chemistry Hopkins Chem 30900 Bioinorganic Chemistry He Chem 32100 Physical Organic Chemistry I Ismagilov Chem 32200 Organic Synthesis and Structure Rawal Chem 32600 Protein Fundamentals Piccirilli Chem 36100 Wave Mechanics & Spectroscopy Butler Chem 36400 Chemical Thermodynamics Dinner Winter 2006 Chem 11201 General Chemistry II, Variant A Scherer Chem 11202 General Chemistry II, Variant B Butler Chem 12300 Honors General Chemistry II Dinner Chem 20100 Inorganic Chemistry I Hillhouse Chem 22100 Organic Chemistry II Rawal Chem 23100 Honors Organic Chemistry II Kozmin Chem 26200 Thermodynamics Norris Chem 26700 Experimental Physical Chemistry Levy Chem 30200 Synthesis & Physical Methods in Inorganic Chemistry Jordan Chem 30400 Organometallic Chemistry Bosnich Chem 32300 Tactics of Organic Synthesis Yamamoto Chem 32400 Physical Organic Chemistry II Mrksich Chem 36200 Quantum Mechanics Freed Chem 36300 Statistical Mechanics Mazziotti Chem 38700 Biophysical Chemistry Lee Spring 2006 Chem 11301 General Chemistry III, Variant A Kozmin Chem 11302 General Chemistry III, Variant B Guyot-Sionnest Chem 20200 Inorganic Chemistry II Jordan Chem 22200 Organic Chemistry III Kent Chem 23200 Honors Organic Chemistry III Yamamoto Chem 22700 Advanced Organic / Inorganic Laboratory (8 students) He Chem 26300 Chemical Kinetics and Dynamics Sibner Chem 26800 Computational Chemistry & Biology Freed Chem 30600 Chemistry of the Elements Hillhouse Chem 31100 Supramolecular Chemistry Bosnich Chem 32500 Bioorganic Chemistry Piccirilli Chem 32900 Polymer Chemistry Yu Chem 33000 Complex Systems Ismagilov Chem 36500 Chemical Dynamics Scherer Chem 36800 Advanced Computational Chemistry & Biology Freed .
    [Show full text]
  • Calorimetry the Science of Measuring Heat Generated Or Consumed During a Chemical Reaction Or Phase Change
    February 05, 2014 Calorimetry the science of measuring heat generated or consumed during a chemical reaction or phase change What is going to happen when the burner is lit? February 05, 2014 Experimental Design Chemical changes involve potential energy, which cannot be measured directly Chemical reactions absorb or release energy with the surroundings, which cause a change in temperature of the surroundings (and this can be measured) In a calorimetry experiment, we set up the experiment so all of the energy from the reaction (the system) is exchanged with the surroundings ∆Esystem = ∆Esurroundings Chemical System Surroundings (water) Endothermic Change February 05, 2014 Chemical System Surroundings (water) Exothermic Change ∆Esystem = ∆Esurroundings February 05, 2014 There are three main calorimeter designs: 1) Flame calorimeter -a fuel is burned below a metal container filled with water 2) Bomb Calorimeter -a reaction takes place inside an enclosed vessel with a surrounding sleeve filled with water 3) Simple Calorimeter -a reaction takes place in a polystyrene cup filled with water Example #1 A student assembles a flame calorimeter by putting 350 grams of water into a 15.0 g aluminum can. A burner containing ethanol is lit, and as the ethanol is burning the temperature of the water increases by 6.30 ˚C and the mass of the ethanol burner decreases by 0.35 grams. Use this information to calculate the molar enthalpy of combustion of ethanol. February 05, 2014 The following apparatus can be used to determine the molar enthalpy of combustion of butan-2-ol. Initial mass of the burner: 223.50 g Final mass of the burner : 221.25 g water Mass of copper can + water: 230.45 g Mass of copper can : 45.60 g Final temperature of water: 67.0˚C Intial temperature of water : 41.3˚C Determine the molar enthalpy of combustion of butan-2-ol.
    [Show full text]
  • Entropy and Life
    Entropy and life Research concerning the relationship between the thermodynamics textbook, states, after speaking about thermodynamic quantity entropy and the evolution of the laws of the physical world, that “there are none that life began around the turn of the 20th century. In 1910, are established on a firmer basis than the two general American historian Henry Adams printed and distributed propositions of Joule and Carnot; which constitute the to university libraries and history professors the small vol- fundamental laws of our subject.” McCulloch then goes ume A Letter to American Teachers of History proposing on to show that these two laws may be combined in a sin- a theory of history based on the second law of thermo- gle expression as follows: dynamics and on the principle of entropy.[1][2] The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrödinger stimulated research in the field. In his book, Z dQ Schrödinger originally stated that life feeds on negative S = entropy, or negentropy as it is sometimes called, but in a τ later edition corrected himself in response to complaints and stated the true source is free energy. More recent where work has restricted the discussion to Gibbs free energy because biological processes on Earth normally occur at S = entropy a constant temperature and pressure, such as in the atmo- dQ = a differential amount of heat sphere or at the bottom of an ocean, but not across both passed into a thermodynamic sys- over short periods of time for individual organisms. tem τ = absolute temperature 1 Origin McCulloch then declares that the applications of these two laws, i.e.
    [Show full text]
  • Analytical Chemistry Laboratory Manual 2
    ANALYTICAL CHEMISTRY LABORATORY MANUAL 2 Ankara University Faculty of Pharmacy Department of Analytical Chemistry Analytical Chemistry Practices Contents INTRODUCTION TO QUANTITATIVE ANALYSIS ......................................................................... 2 VOLUMETRIC ANALYSIS .............................................................................................................. 2 Volumetric Analysis Calculations ................................................................................................... 3 Dilution Factor ................................................................................................................................ 4 Standard Solutions ........................................................................................................................... 5 Primary standard .............................................................................................................................. 5 Characteristics of Quantitative Reaction ......................................................................................... 5 Preparation of 1 L 0.1 M HCl Solution ........................................................................................... 6 Preparation of 1 L 0.1 M NaOH Solution ....................................................................................... 6 NEUTRALIZATION TITRATIONS ...................................................................................................... 7 STANDARDIZATION OF 0.1 N NaOH SOLUTION ......................................................................
    [Show full text]
  • Analytical Chemistry in the 21St Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field
    Review Analytical Chemistry in the 21st Century: Challenges, Solutions, and Future Perspectives of Complex Matrices Quantitative Analyses in Biological/Clinical Field 1, 2, 2, 3 Giuseppe Maria Merone y, Angela Tartaglia y, Marcello Locatelli * , Cristian D’Ovidio , Enrica Rosato 3, Ugo de Grazia 4 , Francesco Santavenere 5, Sandra Rossi 5 and Fabio Savini 5 1 Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti–Pescara “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy; [email protected] 2 Department of Pharmacy, University of Chieti-Pescara “G. d’Annunzio”, Via Dei Vestini 31, 66100 Chieti (CH), Italy; [email protected] 3 Section of Legal Medicine, Department of Medicine and Aging Sciences, University of Chieti–Pescara “G. d’Annunzio”, 66100 Chieti, Italy; [email protected] (C.D.); [email protected] (E.R.) 4 Laboratory of Neurological Biochemistry and Neuropharmacology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milano, Italy; [email protected] 5 Pharmatoxicology Laboratory—Hospital “Santo Spirito”, Via Fonte Romana 8, 65124 Pescara, Italy; [email protected] (F.S.); [email protected] (S.R.); [email protected] (F.S.) * Correspondence: [email protected]; Tel.: +39-0871-3554590; Fax: +39-0871-3554911 These authors contributed equally to the work. y Received: 16 September 2020; Accepted: 16 October 2020; Published: 30 October 2020 Abstract: Nowadays, the challenges in analytical chemistry, and mostly in quantitative analysis, include the development and validation of new materials, strategies and procedures to meet the growing need for rapid, sensitive, selective and green methods.
    [Show full text]
  • "Thermal Analysis and Calorimetry," In
    Article No : b06_001 Thermal Analysis and Calorimetry STEPHEN B. WARRINGTON, Formerly Anasys, IPTME, Loughborough University, Loughborough, United Kingdom Gu€NTHER W. H. Ho€HNE, Formerly Polymer Technology (SKT), Eindhoven University of Technology, Eindhoven, The Netherlands 1. Thermal Analysis.................. 415 2.2. Methods of Calorimetry............. 424 1.1. General Introduction ............... 415 2.2.1. Compensation of the Thermal Effects.... 425 1.1.1. Definitions . ...................... 415 2.2.2. Measurement of a Temperature Difference 425 1.1.2. Sources of Information . ............. 416 2.2.3. Temperature Modulation ............. 426 1.2. Thermogravimetry................. 416 2.3. Calorimeters ..................... 427 1.2.1. Introduction ...................... 416 2.3.1. Static Calorimeters ................. 427 1.2.2. Instrumentation . .................. 416 2.3.1.1. Isothermal Calorimeters . ............. 427 1.2.3. Factors Affecting a TG Curve ......... 417 2.3.1.2. Isoperibolic Calorimeters ............. 428 1.2.4. Applications ...................... 417 2.3.1.3. Adiabatic Calorimeters . ............. 430 1.3. Differential Thermal Analysis and 2.3.2. Scanning Calorimeters . ............. 430 Differential Scanning Calorimetry..... 418 2.3.2.1. Differential-Temperature Scanning 1.3.1. Introduction ...................... 418 Calorimeters ...................... 431 2.3.2.2. Power-Compensated Scanning Calorimeters 432 1.3.2. Instrumentation . .................. 419 2.3.2.3. Temperature-Modulated 1.3.3. Applications ...................... 419 Scanning Calorimeters . ............. 432 1.3.4. Modulated-Temperature DSC (MT-DSC) . 421 2.3.3. Chip-Calorimeters .................. 433 1.4. Simultaneous Techniques............ 421 2.4. Applications of Calorimetry.......... 433 1.4.1. Introduction ...................... 421 2.4.1. Determination of Thermodynamic Functions 433 1.4.2. Applications ...................... 421 2.4.2. Determination of Heats of Mixing . .... 434 1.5. Evolved Gas Analysis..............
    [Show full text]
  • Chemical Thermodynamics and Staged Unit Operations
    Beginning of Course Memorandum (BOCM) University of Virginia Fall, 2013 CHE 3316 Chemical Thermodynamics and Staged Unit Operations Revised October 22 Instructor: John O'Connell: Office Chemical Engineering 310; Voice (434) 924-3428; E-mail: [email protected] Office Hours: TR1400-1730, Others TBA GTA: Sabra Hanspal: Office CHE 217A; Voice 4-1476; E-mail: [email protected]; Office Hours: MF 12-2 PM Class Meetings: CHE 005, TR 0930-1045, T 1300-1350 Texts: "Lectures in Thermodynamics, Volume 2 (Beta Version)", by J.M. Haile & J.P. O'Connell, 2008 - 12, Electronic copy on CD available from instructor for $15. Total 641 pages. "Separation Process Engineering, 3rd Ed.", by P.C. Wankat, Prentice Hall, 2012. References: “Physical and Chemical Equilibrium for Chemical Engineers, 2nd Ed.” by N. de Nevers, Wiley-Interscience, New York, 2012. "Introduction to Chemical Engineering Thermodynamics, 7th Ed.," by J.M. Smith, H.C. Van Ness, and M.M. Abbott (SVNA). McGraw-Hill, New York, 2005. "Chemical, Biochemical, & Engineering Thermodynamics, 4th Ed.," by S.I. Sandler, John Wiley, 2006. "Schaum's Outline of Thermodynamics with Chemical Applications, 2nd Ed.," by H.C. Van Ness & M.M.Abbott, Schaum's Outlines, McGraw-Hill, 1989. "Lectures in Thermodynamics, Volume 1," by J.M. Haile, Macatea Productions, 2002. “Unit Operations of Chemical Engineering, 7th Ed.”, W. McCabe, J. Smith, & P. Harriott, New York, McGraw-Hill, 2004. “Principles of Chemical Separations with Environmental Applications,” R.D. Noble & P.A. Terry, Cambridge, UK, Cambridge University Press, 2004. “Perry’s Chemical Engineers’ Handbook, 8th Ed.,” D. Green & R. Perry, New York, McGraw-Hill, 2007.
    [Show full text]
  • THERMOCHEMISTRY – 2 CALORIMETRY and HEATS of REACTION Dr
    THERMOCHEMISTRY – 2 CALORIMETRY AND HEATS OF REACTION Dr. Sapna Gupta HEAT CAPACITY • Heat capacity is the amount of heat needed to raise the temperature of the sample of substance by one degree Celsius or Kelvin. q = CDt • Molar heat capacity: heat capacity of one mole of substance. • Specific Heat Capacity: Quantity of heat needed to raise the temperature of one gram of substance by one degree Celsius (or one Kelvin) at constant pressure. q = m s Dt (final-initial) • Measured using a calorimeter – it absorbed heat evolved or absorbed. Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 2 EXAMPLES OF SP. HEAT CAPACITY The higher the number the higher the energy required to raise the temp. Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 3 CALORIMETRY: EXAMPLE - 1 Example: A piece of zinc weighing 35.8 g was heated from 20.00°C to 28.00°C. How much heat was required? The specific heat of zinc is 0.388 J/(g°C). Solution m = 35.8 g s = 0.388 J/(g°C) Dt = 28.00°C – 20.00°C = 8.00°C q = m s Dt 0.388 J q 35.8 g 8.00C = 111J gC Dr. Sapna Gupta/Thermochemistry-2-Calorimetry 4 CALORIMETRY: EXAMPLE - 2 Example: Nitromethane, CH3NO2, an organic solvent burns in oxygen according to the following reaction: 3 3 1 CH3NO2(g) + /4O2(g) CO2(g) + /2H2O(l) + /2N2(g) You place 1.724 g of nitromethane in a calorimeter with oxygen and ignite it. The temperature of the calorimeter increases from 22.23°C to 28.81°C.
    [Show full text]
  • Chapter 19 Chemical Thermodynamics
    Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process. Define entropy and state the second law of thermodynamics. Calculate DS for a phase change. Explain how the entropy of a system is related to the number of possible microstates. Describe the kinds of molecular motion that a molecule can possess. Predict the sign of DS for physical and chemical processes. State the third law of thermodynamics. Compare the values of standard molar entropies. Calculate standard entropy changes for a system from standard molar entropies. Calculate the Gibbs free energy from the enthalpy change and entropy change at a given temperature. Use free energy changes to predict whether reactions are spontaneous. Calculate standard free energy changes using standard free energies of formation. Predict the effect of temperature on spontaneity given DH and DS. Calculate DG under nonstandard conditions. Relate DG°and equilibrium constant (K). Review Chapter 5: energy, enthalpy, 1st law of thermo Thermodynamics: the science of heat and work Thermochemistry: the relationship between chemical reactions and energy changes Energy (E) The capacity to do work or to transfer heat. Work (w) The energy expended to move an object against an opposing force. w = F d Heat (q) Derived from the movements of atoms and molecules (including vibrations and rotations). Enthalpy (H) Enthalpy is the heat absorbed (or released) by a system during a constant-pressure process. 1 0th Law of Thermodynamics If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then C is also in thermal equilibrium with A.
    [Show full text]
  • Isothermal Titration Calorimetry and Differential Scanning Calorimetry As Complementary Tools to Investigate the Energetics of Biomolecular Recognition
    JOURNAL OF MOLECULAR RECOGNITION J. Mol. Recognit. 1999;12:3–18 Review Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition Ilian Jelesarov* and Hans Rudolf Bosshard Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland The principles of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) are reviewed together with the basic thermodynamic formalism on which the two techniques are based. Although ITC is particularly suitable to follow the energetics of an association reaction between biomolecules, the combination of ITC and DSC provides a more comprehensive description of the thermodynamics of an associating system. The reason is that the parameters DG, DH, DS, and DCp obtained from ITC are global properties of the system under study. They may be composed to varying degrees of contributions from the binding reaction proper, from conformational changes of the component molecules during association, and from changes in molecule/solvent interactions and in the state of protonation. Copyright # 1999 John Wiley & Sons, Ltd. Keywords: isothermal titration calorimetry; differential scanning calorimetry Received 1 June 1998; accepted 15 June 1998 Introduction ways to rationalize structure in terms of energetics, a task that still is enormously difficult inspite of some very Specific binding is fundamental to the molecular organiza- promising theoretical developments and of the steady tion of living matter. Virtually all biological phenomena accumulation of experimental results. Theoretical concepts depend in one way or another on molecular recognition, have developed in the tradition of physical-organic which either is intermolecular as in ligand binding to a chemistry.
    [Show full text]