Entropy and Life
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dissipative Mechanics Using Complex-Valued Hamiltonians
Dissipative Mechanics Using Complex-Valued Hamiltonians S. G. Rajeev Department of Physics and Astronomy University of Rochester, Rochester, New York 14627 March 18, 2018 Abstract We show that a large class of dissipative systems can be brought to a canonical form by introducing complex co-ordinates in phase space and a complex-valued hamiltonian. A naive canonical quantization of these sys- tems lead to non-hermitean hamiltonian operators. The excited states are arXiv:quant-ph/0701141v1 19 Jan 2007 unstable and decay to the ground state . We also compute the tunneling amplitude across a potential barrier. 1 1 Introduction In many physical situations, loss of energy of the system under study to the out- side environment cannot be ignored. Often, the long time behavior of the system is determined by this loss of energy, leading to interesting phenomena such as attractors. There is an extensive literature on dissipative systems at both the classical and quantum levels (See for example the textbooks [1, 2, 3]). Often the theory is based on an evolution equation of the density matrix of a ‘small system’ coupled to a ‘reservoir’ with a large number of degrees of freedom, after the reservoir has been averaged out. In such approaches the system is described by a mixed state rather than a pure state: in quantum mechanics by a density instead of a wavefunction and in classical mechanics by a density function rather than a point in the phase space. There are other approaches that do deal with the evolution equations of a pure state. The canonical formulation of classical mechanics does not apply in a direct way to dissipative systems because the hamiltonian usually has the meaning of energy and would be conserved. -
ENERGY, ENTROPY, and INFORMATION Jean Thoma June
ENERGY, ENTROPY, AND INFORMATION Jean Thoma June 1977 Research Memoranda are interim reports on research being conducted by the International Institute for Applied Systems Analysis, and as such receive only limited scientific review. Views or opinions contained herein do not necessarily represent those of the Institute or of the National Member Organizations supporting the Institute. PREFACE This Research Memorandum contains the work done during the stay of Professor Dr.Sc. Jean Thoma, Zug, Switzerland, at IIASA in November 1976. It is based on extensive discussions with Professor HAfele and other members of the Energy Program. Al- though the content of this report is not yet very uniform because of the different starting points on the subject under consideration, its publication is considered a necessary step in fostering the related discussion at IIASA evolving around th.e problem of energy demand. ABSTRACT Thermodynamical considerations of energy and entropy are being pursued in order to arrive at a general starting point for relating entropy, negentropy, and information. Thus one hopes to ultimately arrive at a common denominator for quanti- ties of a more general nature, including economic parameters. The report closes with the description of various heating appli- cation.~and related efficiencies. Such considerations are important in order to understand in greater depth the nature and composition of energy demand. This may be highlighted by the observation that it is, of course, not the energy that is consumed or demanded for but the informa- tion that goes along with it. TABLE 'OF 'CONTENTS Introduction ..................................... 1 2 . Various Aspects of Entropy ........................2 2.1 i he no me no logical Entropy ........................ -
Chemistry Courses 2005-2006
Chemistry Courses 2005-2006 Autumn 2005 Chem 11101 General Chemistry I, Variant A Lee Chem 11102 General Chemistry I, Variant B Norris Chem 12200 Honors General Chemistry I Levy Chem 22000 Organic Chemistry I Yu Chem 22300 Intermediate Organic Chemistry Mrksich Chem 26100 Quantum Mechanics Mazziotti Chem 30100 Advanced Inorganic Chemistry Hopkins Chem 30900 Bioinorganic Chemistry He Chem 32100 Physical Organic Chemistry I Ismagilov Chem 32200 Organic Synthesis and Structure Rawal Chem 32600 Protein Fundamentals Piccirilli Chem 36100 Wave Mechanics & Spectroscopy Butler Chem 36400 Chemical Thermodynamics Dinner Winter 2006 Chem 11201 General Chemistry II, Variant A Scherer Chem 11202 General Chemistry II, Variant B Butler Chem 12300 Honors General Chemistry II Dinner Chem 20100 Inorganic Chemistry I Hillhouse Chem 22100 Organic Chemistry II Rawal Chem 23100 Honors Organic Chemistry II Kozmin Chem 26200 Thermodynamics Norris Chem 26700 Experimental Physical Chemistry Levy Chem 30200 Synthesis & Physical Methods in Inorganic Chemistry Jordan Chem 30400 Organometallic Chemistry Bosnich Chem 32300 Tactics of Organic Synthesis Yamamoto Chem 32400 Physical Organic Chemistry II Mrksich Chem 36200 Quantum Mechanics Freed Chem 36300 Statistical Mechanics Mazziotti Chem 38700 Biophysical Chemistry Lee Spring 2006 Chem 11301 General Chemistry III, Variant A Kozmin Chem 11302 General Chemistry III, Variant B Guyot-Sionnest Chem 20200 Inorganic Chemistry II Jordan Chem 22200 Organic Chemistry III Kent Chem 23200 Honors Organic Chemistry III Yamamoto Chem 22700 Advanced Organic / Inorganic Laboratory (8 students) He Chem 26300 Chemical Kinetics and Dynamics Sibner Chem 26800 Computational Chemistry & Biology Freed Chem 30600 Chemistry of the Elements Hillhouse Chem 31100 Supramolecular Chemistry Bosnich Chem 32500 Bioorganic Chemistry Piccirilli Chem 32900 Polymer Chemistry Yu Chem 33000 Complex Systems Ismagilov Chem 36500 Chemical Dynamics Scherer Chem 36800 Advanced Computational Chemistry & Biology Freed . -
An Ab Initio Definition of Life Pertaining to Astrobiology Ian Von Hegner
An ab initio definition of life pertaining to Astrobiology Ian von Hegner To cite this version: Ian von Hegner. An ab initio definition of life pertaining to Astrobiology. 2019. hal-02272413v2 HAL Id: hal-02272413 https://hal.archives-ouvertes.fr/hal-02272413v2 Preprint submitted on 15 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HAL archives-ouvertes.fr | CCSD, August, 2019. An ab initio definition of life pertaining to Astrobiology Ian von Hegner Aarhus University Abstract Many definitions of life have been put forward in the course of time, but none have emerged to entirely encapsulate life. Putting forward an adequate definition is not a simple matter to do, despite many people seeming to believe they have an intuitive understanding of what is meant when it is stated that something is life. However, it is important to define life, because we ourselves, individually and collectively, are life, which entails an importance in itself. Furthermore, humankind‘s capability to look for life on other planets is steadily becoming a real possibility. But in order to realize that search, a definition of life is required. -
Dissipative Structures in Educational Change: Prigogine and the Academy
Wichita State University Libraries SOAR: Shocker Open Access Repository Donald L. Gilstrap University Libraries Dissipative Structures in Educational Change: Prigogine and the Academy Donald L. Gilstrap Wichita State University Citation Gilstrap, Donald L. 2007. Dissipative structures in educational change: Prigogine and the academy. -- International Journal of Leadership in Education: Theory and Practice; v.10 no.1, pp. 49-69. A post-print of this paper is posted in the Shocker Open Access Repository: http://soar.wichita.edu/handle/10057/6944 Dissipative structures in educational change: Prigogine and the academy Donald L. Gilstrap This article is an interpretive study of the theory of irreversible and dissipative systems process transformation of Nobel Prize winning physicist Ilya Prigogine and how it relates to the phenomenological study of leadership and organizational change in educational settings. Background analysis on the works of Prigogine is included as a foundation for human inquiry and metaphor generation for open, dissipative systems in educational settings. International case study research by contemporary systems and leadership theorists on dissipative structures theory has also been included to form the interpretive framework for exploring alternative models of leadership theory in far from equilibrium educational settings. Interpretive analysis explores the metaphorical significance, connectedness, and inference of dissipative systems and helps further our knowledge of human-centered transformations in schools and colleges. Introduction Over the course of the past 30 years, educational institutions have undergone dramatic shifts, leading teachers and administrators in new and sometimes competing directions. We are all too familiar with rising enrolments and continual setbacks in financial resources. Perhaps this has never been more evident, particularly in the USA, than with the recent changes in educational and economic policies. -
Information Across the Ecological Hierarchy
entropy Opinion Information Across the Ecological Hierarchy Robert E. Ulanowicz 1,2 1 Department of Biology, University of Florida, Gainesville, FL 32611-8525, USA; [email protected]; Tel.: +1-352-378-7355 2 Center for Environmental Science, University of Maryland, Solomons, MD 20688-0038, USA Received: 17 July 2019; Accepted: 25 September 2019; Published: 27 September 2019 Abstract: The ecosystem is a theatre upon which is presented, in various degrees and at differing scales, a drama of constraint and information vs. disorganization and entropy. Concerning biology, most think immediately of genomic information. It strongly constrains the form and behavior of individual species, but its influence upon community structure is indeterminate. At the community level, information acts as a formal cause behind regular patterns of development. Community structure is an amalgam of information and entropy, and the Gibbs–Boltzmann formula departs from the thermodynamic sense of entropy. It measures only the extreme that entropy might reach if the elements of the system were completely independent. A closer analogy to physical entropy in systems with interactions is the conditional entropy—the amount by which the Shannon measure is reduced after the information in the constraints among elements has been subtracted. Finally, at the whole ecosystem level, in communities that inhabit mostly fixed physical environments (e.g., landscapes or seabeds), the distributions of plants and animals appear to be independent both of causal mechanisms and trophic controls, and assume instead forms that maximize the overall entropy of dispersal. Keywords: centripetality; conditional entropy; entropy; information; MAXENT; mutual information; network analysis 1. Genomic Information Acts Primarily on Organisms Information plays different roles in ecology at various scales, and the goal here is to characterize and compare those disparate actions. -
Role of Nonlinear Dynamics and Chaos in Applied Sciences
v.;.;.:.:.:.;.;.^ ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Oivisipn 2000 Please be aware that all of the Missing Pages in this document were originally blank pages BARC/2OOO/E/OO3 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION ROLE OF NONLINEAR DYNAMICS AND CHAOS IN APPLIED SCIENCES by Quissan V. Lawande and Nirupam Maiti Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2000 BARC/2000/E/003 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification: Unclassified • 02 Distribution: External 03 Report status: New 04 Series: BARC External • 05 Report type: Technical Report 06 Report No. : BARC/2000/E/003 07 Part No. or Volume No. : 08 Contract No.: 10 Title and subtitle: Role of nonlinear dynamics and chaos in applied sciences 11 Collation: 111 p., figs., ills. 13 Project No. : 20 Personal authors): Quissan V. Lawande; Nirupam Maiti 21 Affiliation ofauthor(s): Theoretical Physics Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate authoifs): Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Theoretical Physics Division, BARC, Mumbai 24 Sponsors) Name: Department of Atomic Energy Type: Government Contd...(ii) -l- 30 Date of submission: January 2000 31 Publication/Issue date: February 2000 40 Publisher/Distributor: Head, Library and Information Services Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution: Hard copy 50 Language of text: English 51 Language of summary: English 52 No. of references: 40 refs. 53 Gives data on: Abstract: Nonlinear dynamics manifests itself in a number of phenomena in both laboratory and day to day dealings. -
Entropy and Negentropy Principles in the I-Theory
Journal of High Energy Physics, Gravitation and Cosmology, 2020, 6, 259-273 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Entropy and Negentropy Principles in the I-Theory H. H. Swami Isa1, Christophe Dumas2 1Global Energy Parliament, Trivandrum, Kerala, India 2Atomic Energy Commission, Cadarache, France How to cite this paper: Isa, H.H.S. and Abstract Dumas, C. (2020) Entropy and Negentropy Principles in the I-Theory. Journal of High Applying the I-Theory, this paper gives a new outlook about the concept of Energy Physics, Gravitation and Cosmolo- Entropy and Negentropy. Using S∞ particle as 100% repelling energy and A1 gy, 6, 259-273. particle as the starting point of attraction, we are able to define Entropy and https://doi.org/10.4236/jhepgc.2020.62020 Negentropy on the quantum level. As the I-Theory explains that repulsion Received: January 31, 2020 force is driven by Weak Force and attraction is driven by Strong Force, we Accepted: March 31, 2020 also analyze Entropy and Negentropy in terms of the Fundamental Forces. Published: April 3, 2020 Keywords Copyright © 2020 by author(s) and Scientific Research Publishing Inc. I-Theory, I-Particle, Entropy, Negentropy, Syntropy, Intelligence, Black Matter, This work is licensed under the Creative White Matter, Red Matter, Gravitation, Strong Force, Weak Force, Free Energy Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ Open Access 1. Introduction In a previous article entitled “I-Theory—a Unifying Quantum Theory?” [1], the authors introduced the I-Theory as a unifying theory. -
Chemical Thermodynamics and Staged Unit Operations
Beginning of Course Memorandum (BOCM) University of Virginia Fall, 2013 CHE 3316 Chemical Thermodynamics and Staged Unit Operations Revised October 22 Instructor: John O'Connell: Office Chemical Engineering 310; Voice (434) 924-3428; E-mail: [email protected] Office Hours: TR1400-1730, Others TBA GTA: Sabra Hanspal: Office CHE 217A; Voice 4-1476; E-mail: [email protected]; Office Hours: MF 12-2 PM Class Meetings: CHE 005, TR 0930-1045, T 1300-1350 Texts: "Lectures in Thermodynamics, Volume 2 (Beta Version)", by J.M. Haile & J.P. O'Connell, 2008 - 12, Electronic copy on CD available from instructor for $15. Total 641 pages. "Separation Process Engineering, 3rd Ed.", by P.C. Wankat, Prentice Hall, 2012. References: “Physical and Chemical Equilibrium for Chemical Engineers, 2nd Ed.” by N. de Nevers, Wiley-Interscience, New York, 2012. "Introduction to Chemical Engineering Thermodynamics, 7th Ed.," by J.M. Smith, H.C. Van Ness, and M.M. Abbott (SVNA). McGraw-Hill, New York, 2005. "Chemical, Biochemical, & Engineering Thermodynamics, 4th Ed.," by S.I. Sandler, John Wiley, 2006. "Schaum's Outline of Thermodynamics with Chemical Applications, 2nd Ed.," by H.C. Van Ness & M.M.Abbott, Schaum's Outlines, McGraw-Hill, 1989. "Lectures in Thermodynamics, Volume 1," by J.M. Haile, Macatea Productions, 2002. “Unit Operations of Chemical Engineering, 7th Ed.”, W. McCabe, J. Smith, & P. Harriott, New York, McGraw-Hill, 2004. “Principles of Chemical Separations with Environmental Applications,” R.D. Noble & P.A. Terry, Cambridge, UK, Cambridge University Press, 2004. “Perry’s Chemical Engineers’ Handbook, 8th Ed.,” D. Green & R. Perry, New York, McGraw-Hill, 2007. -
Molecules, Information and the Origin of Life: What Is Next?
molecules Perspective Molecules, Information and the Origin of Life: What Is Next? Salvatore Chirumbolo 1,* and Antonio Vella 2 1 Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy 2 Verona-Unit of Immunology, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-0458027645 Abstract: How life did originate and what is life, in its deepest foundation? The texture of life is known to be held by molecules and their chemical-physical laws, yet a thorough elucidation of the aforementioned questions still stands as a puzzling challenge for science. Focusing solely on molecules and their laws has indirectly consolidated, in the scientific knowledge, a mechanistic (reductionist) perspective of biology and medicine. This occurred throughout the long historical path of experimental science, affecting subsequently the onset of the many theses and speculations about the origin of life and its maintenance. Actually, defining what is life, asks for a novel epistemology, a ground on which living systems’ organization, whose origin is still questioned via chemistry, physics and even philosophy, may provide a new key to focus onto the complex nature of the human being. In this scenario, many issues, such as the role of information and water structure, have been long time neglected from the theoretical basis on the origin of life and marginalized as a kind of scenic backstage. On the contrary, applied science and technology went ahead on considering molecules as the sole leading components in the scenery. Water physics and information dynamics may have a role in living systems much more fundamental than ever expected. -
Ordered Complexity from Dissipative and Chaotic Systems, Including the Human Brain and Society and the Universe; Relevance of the Second Law of Thermodynamics
Volume 6, Issue 8, August – 2021 International Journal of Innovative Science and Research Technology ISSN No:-2456-2165 Ordered Complexity from Dissipative and Chaotic Systems, Including the human brain and society and the Universe; Relevance of the Second Law of Thermodynamics Authors Sarbajit Roy, Shailendra Kumar Pandey, Vishal Kumar, Purushotam Kumar, Sudhir Kumar, Raman Kumar Mandal, Rajnish Kumar, Deepshikha Mishra. RamGovind Institute of Technology, Koderma, Jharkhand Abstract:- The paper connects the characteristics of a A living system is characterized by continual flow and dissipative system, which operates far from equilibrium, change in its equilibrium, a process which requires a chaotic system , depending upon initial conditions and thousands of chemical reactions. When these processes complexity, which forms from the holistic connection of come to a standstill, they induce chemical and thermal its parts .Consequent, the human brain, human society equilibrium, which also signifies a dead organism. Living and the universe itself are portrayed as dissipative, organisms continually maintain themselves in a state far chaotic and complex. Chaos is everywhere as is from equilibrium, which is a state of life. complexity. The paper analyzes the aspects of nonlinearity in system dynamics based on the ideas of Although far from equilibrium , the state is stable and Ilya Prigogine and attempts to forge a link between the over long periods of time. In spite of the ongoing flow of systems discussed . The Second Law of Thermodynamics components, the same structure is maintained . involving the total increase in entropy is elucidated as being universal and inherent in all events of the universe. To describe systems far from equilibrium, Prigogine The law may be considered as part of the evolutionary realized that classical thermodynamics was inappropriate, tool in the formation of complex organisms, galaxies and since its mathematical structure was linear. -
Thermodynamics and Life: an Evolutionary Point of View
N. Marchettini et al., Int. J. of Design & Nature and Ecodynamics. Vol. 3, No. 4 (2009) 249–258 THERMODYNAMICS AND LIFE: AN EVOLUTIONARY POINT OF VIEW N. MARCHETTINI1, E. SIMONCINI1 & E.B.P. TIEZZI2 1Department of Chemistry, University of Siena, Siena, Italy. 2Department of Mathematics and Informatics, University of Siena, Siena, Italy. ABSTRACT The complexity we observe in life forms, in their development and in biological evolution, is the result of the temporal and spatial constraints of a long evolutionary history made up of relations accumulating in time. This work assumes that space and time belong to different logical types: the fi rst being reversible and conservative and the second irreversible and evolutionary. Time and space are reciprocally irreducible quantities. We refer to the thermodynamics of the Nobel laureate in Chemistry, Ilya Prigogine, to perform a new point of view of life, in terms of evolutionary thermodynamics. Keywords: Dissipative Structures, Evolution, Information, life origins, Macrostates, Microstates,Tempos. 1 INTRODUCTION ON PRIGOGINE RESEARCH The historical–scientifi c moment that we are living in seems to be searching for, once again, a defi nition for a concept that has had complex consequences. The concept we will be talking about in this work is that of dissipative structures, as its ‘inventor’, Ilya Prigogine, has named it. The magnitude of Prigogine theory can be understood only if time is considered in its closed relation with life and evolution [1–4]. The comprehension of irreversible phenomena has undergone a revolution, thanks to the study of dissipative structures, of those systems, that is, far from equilibrium and open to the exterior, in which fl uctuations of energy can produce order out of chaos.