THERMOCHEMISTRY – 2 CALORIMETRY and HEATS of REACTION Dr
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry Grade Level 10 Units 1-15
COPPELL ISD SUBJECT YEAR AT A GLANCE GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ● Ask questions, recognize and define problems, and propose solutions. ● Safely and ethically collect, analyze, and evaluate appropriate data. ● Utilize, create, and analyze models to understand the world. ● Make valid claims and informed decisions based on scientific evidence. ● Effectively communicate scientific reasoning to a target audience. PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team commits to and ensures the following understandings: Shared Accountability: Responding -
Lab: Specific Heat
Lab: Specific Heat Summary Students relate thermal energy to heat capacity by comparing the heat capacities of different materials and graphing the change in temperature over time for a specific material. Students explore the idea of insulators and conductors in an attempt to apply their knowledge in real world applications, such as those that engineers would. Engineering Connection Engineers must understand the heat capacity of insulators and conductors if they wish to stay competitive in “green” enterprises. Engineers who design passive solar heating systems take advantage of the natural heat capacity characteristics of materials. In areas of cooler climates engineers chose building materials with a low heat capacity such as slate roofs in an attempt to heat the home during the day. In areas of warmer climates tile roofs are popular for their ability to store the sun's heat energy for an extended time and release it slowly after the sun sets, to prevent rapid temperature fluctuations. Engineers also consider heat capacity and thermal energy when they design food containers and household appliances. Just think about your aluminum soda can versus glass bottles! Grade Level: 9-12 Group Size: 4 Time Required: 90 minutes Activity Dependency :None Expendable Cost Per Group : US$ 5 The cost is less if thermometers are available for each group. NYS Science Standards: STANDARD 1 Analysis, Inquiry, and Design STANDARD 4 Performance indicator 2.2 Keywords: conductor, energy, energy storage, heat, specific heat capacity, insulator, thermal energy, thermometer, thermocouple Learning Objectives After this activity, students should be able to: Define heat capacity. Explain how heat capacity determines a material's ability to store thermal energy. -
Calorimetry the Science of Measuring Heat Generated Or Consumed During a Chemical Reaction Or Phase Change
February 05, 2014 Calorimetry the science of measuring heat generated or consumed during a chemical reaction or phase change What is going to happen when the burner is lit? February 05, 2014 Experimental Design Chemical changes involve potential energy, which cannot be measured directly Chemical reactions absorb or release energy with the surroundings, which cause a change in temperature of the surroundings (and this can be measured) In a calorimetry experiment, we set up the experiment so all of the energy from the reaction (the system) is exchanged with the surroundings ∆Esystem = ∆Esurroundings Chemical System Surroundings (water) Endothermic Change February 05, 2014 Chemical System Surroundings (water) Exothermic Change ∆Esystem = ∆Esurroundings February 05, 2014 There are three main calorimeter designs: 1) Flame calorimeter -a fuel is burned below a metal container filled with water 2) Bomb Calorimeter -a reaction takes place inside an enclosed vessel with a surrounding sleeve filled with water 3) Simple Calorimeter -a reaction takes place in a polystyrene cup filled with water Example #1 A student assembles a flame calorimeter by putting 350 grams of water into a 15.0 g aluminum can. A burner containing ethanol is lit, and as the ethanol is burning the temperature of the water increases by 6.30 ˚C and the mass of the ethanol burner decreases by 0.35 grams. Use this information to calculate the molar enthalpy of combustion of ethanol. February 05, 2014 The following apparatus can be used to determine the molar enthalpy of combustion of butan-2-ol. Initial mass of the burner: 223.50 g Final mass of the burner : 221.25 g water Mass of copper can + water: 230.45 g Mass of copper can : 45.60 g Final temperature of water: 67.0˚C Intial temperature of water : 41.3˚C Determine the molar enthalpy of combustion of butan-2-ol. -
Compression of an Ideal Gas with Temperature Dependent Specific
Session 3666 Compression of an Ideal Gas with Temperature-Dependent Specific Heat Capacities Donald W. Mueller, Jr., Hosni I. Abu-Mulaweh Engineering Department Indiana University–Purdue University Fort Wayne Fort Wayne, IN 46805-1499, USA Overview The compression of gas in a steady-state, steady-flow (SSSF) compressor is an important topic that is addressed in virtually all engineering thermodynamics courses. A typical situation encountered is when the gas inlet conditions, temperature and pressure, are known and the compressor dis- charge pressure is specified. The traditional instructional approach is to make certain assumptions about the compression process and about the gas itself. For example, a special case often consid- ered is that the compression process is reversible and adiabatic, i.e. isentropic. The gas is usually ÊÌ considered to be ideal, i.e. ÈÚ applies, with either constant or temperature-dependent spe- cific heat capacities. The constant specific heat capacity assumption allows for direct computation of the discharge temperature, while the temperature-dependent specific heat assumption does not. In this paper, a MATLAB computer model of the compression process is presented. The substance being compressed is air which is considered to be an ideal gas with temperature-dependent specific heat capacities. Two approaches are presented to describe the temperature-dependent properties of air. The first approach is to use the ideal gas table data from Ref. [1] with a look-up interpolation scheme. The second approach is to use a curve fit with the NASA Lewis coefficients [2,3]. The computer model developed makes use of a bracketing–bisection algorithm [4] to determine the temperature of the air after compression. -
Thermochemistry • Spontaneous Process • System • Entropy • Second Law of Thermodynamics • Free Energy • Kinetic Molecular Theory
Honors Chemistry 3st Grading Period Power Objectives: Academic Vocabulary: • Articulate elemental and molecular properties utilizing physical • Energy • Surroundings structures of the atom and the periodic table. (P.O. #1) • Law of conservation of • Universe energy • Enthalpy • Characterize interactions between matter and energy. • Chemical potential energy • Enthalpy (heat) of reaction (P.O. #2) • Heat • Thermochemical equation • Calorie • Vaporization • Demonstrate how mathematics describes concepts in • Joule • Fusion chemistry. (P.O. #3) • Specific heat • Hess’s law • Design and conduct chemistry investigations. (P.O. #4) • Calorimeter • Standard enthalpy of formation • Thermochemistry • Spontaneous process • System • Entropy • Second law of thermodynamics • Free energy • Kinetic Molecular Theory Thermochemistry Enduring Understandings: Essential Questions: • Temperature is not a form of energy. • What is energy? • Energy is a conserved quantity, which means it cannot be • How do potential and kinetic energy differ? • How can chemical potential energy be related to the heat lost or gained in chemical created or destroyed. reactions? • All of the energy present in the universe was derived from the • How is the amount of heat absorbed or released by a substance calculated as its Big Bang. temperature changes? • Different forms of energy have to do with the motion of atoms • How is a calorimeter used to measure energy that is absorbed or released? • What do enthalpy and enthalpy change mean in terms of chemical reactions and and molecules within a substance. processes? • All chemical reactions require the use of energy in some way, • How are thermochemical equations for chemical reactions and other processes which is why one’s body has a steady temperature and mixing written? • How is energy lost or gained during changes of state? chemicals can cause heat to be released or require heat to react • How is the heat that is absorbed or released in a chemical reaction calculated? (cold). -
"Thermal Analysis and Calorimetry," In
Article No : b06_001 Thermal Analysis and Calorimetry STEPHEN B. WARRINGTON, Formerly Anasys, IPTME, Loughborough University, Loughborough, United Kingdom Gu€NTHER W. H. Ho€HNE, Formerly Polymer Technology (SKT), Eindhoven University of Technology, Eindhoven, The Netherlands 1. Thermal Analysis.................. 415 2.2. Methods of Calorimetry............. 424 1.1. General Introduction ............... 415 2.2.1. Compensation of the Thermal Effects.... 425 1.1.1. Definitions . ...................... 415 2.2.2. Measurement of a Temperature Difference 425 1.1.2. Sources of Information . ............. 416 2.2.3. Temperature Modulation ............. 426 1.2. Thermogravimetry................. 416 2.3. Calorimeters ..................... 427 1.2.1. Introduction ...................... 416 2.3.1. Static Calorimeters ................. 427 1.2.2. Instrumentation . .................. 416 2.3.1.1. Isothermal Calorimeters . ............. 427 1.2.3. Factors Affecting a TG Curve ......... 417 2.3.1.2. Isoperibolic Calorimeters ............. 428 1.2.4. Applications ...................... 417 2.3.1.3. Adiabatic Calorimeters . ............. 430 1.3. Differential Thermal Analysis and 2.3.2. Scanning Calorimeters . ............. 430 Differential Scanning Calorimetry..... 418 2.3.2.1. Differential-Temperature Scanning 1.3.1. Introduction ...................... 418 Calorimeters ...................... 431 2.3.2.2. Power-Compensated Scanning Calorimeters 432 1.3.2. Instrumentation . .................. 419 2.3.2.3. Temperature-Modulated 1.3.3. Applications ...................... 419 Scanning Calorimeters . ............. 432 1.3.4. Modulated-Temperature DSC (MT-DSC) . 421 2.3.3. Chip-Calorimeters .................. 433 1.4. Simultaneous Techniques............ 421 2.4. Applications of Calorimetry.......... 433 1.4.1. Introduction ...................... 421 2.4.1. Determination of Thermodynamic Functions 433 1.4.2. Applications ...................... 421 2.4.2. Determination of Heats of Mixing . .... 434 1.5. Evolved Gas Analysis.............. -
Thermochemistry Worksheet #1
Name: Thermochemistry Worksheet #1 1. The reaction of magnesium with sulfuric acid was carried out in a calorimeter. This reaction caused the temperature of 27.0 grams of liquid water, within the calorimeter, to raise from 25.0C to 76.0C. Calculate the energy associated with this reaction. 2. The reaction of zinc with nitric acid was carried out in a calorimeter. This reaction caused the temperature of 72.0 grams of liquid water, within the calorimeter, to raise from 25.0C to 100.C. Calculate the energy associated with this reaction. 3. A 4.00 gram sample of solid gold was heated from 274K to 314K. How much energy was involved? 4. The reaction of magnesium with hydrochloric acid carried out in a calorimeter caused the temperature of water to change from 25.0C to 36.0C. In this reaction 3760J of energy was released. What mass of water was present? 5. The reaction of magnesium oxide with hydrochloric acid carried out in a calorimeter caused the temperature of water to change from 25.0C to 46.0C. In this reaction 4860J of energy was released. What mass of water was present? 6. A piece of solid gold was heated from 274K to 314K. 35.7J of energy was needed to raise the temperature. What mass of gold was present? Use Hf values (table found in notes) to solve the following problems. 7. Determine the H for each of the following reactions. Classify each reaction as either exothermic or endothermic. a. C3H8(g) + 5O2(g) 3CO2(g) + 4H2O(g) H = ? kJ/mol b. -
Experiment 8 Thermochemistry This Week In
Experiment 8 Thermochemistry CH 204 Fall 2006 Dr. Brian Anderson What is Thermochemistry? The study of heat in chemical reactions. Forming chemical bonds releases energy. Breaking chemical bonds requires energy. How much energy? Depends on the bond. Add up all the energies to get the heat of reaction, ∆Hrxn . This week in lab We will measure the amount of heat given off by 50 ml of hot water, by some chunks of hot metal, and by two chemical reactions + 2+ Mg + 2H → Mg + H2 + heat + 2+ MgO + 2H → Mg + H2 O + heat We’ll do all these reactions in a coffee cup calorimeter. 1 The basic operation of calorimetry - Start with a known volume of a solution in the calorimeter. - Drop in something hot, or start a reaction that generates heat. - Close the calorimeter and measure the increase in temperature as heat is generated. - Keep measuring the temperature until it finally levels out. Part One: Add hot water to cold 50 mL of cold water (5ºC). Add 50 mL of hot water (75ºC). Final temp should be (75 + 5) ÷ 2 = 40ºC But the final temp will actually be lower than that because the cup itself will absorb a little bit of the heat. Heat Capacity We will use the data in part 1 to calculate the heat capacity of the cup, in units of J/K. This will tell us how many Joules of heat the cup absorbs for every K (or degree C) the water heats up. We know how many Joules of heat we added with the hot water, and we can calculate how many Joules were absorbed by the cold water as it warmed up. -
Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures Over a Wide Temperature Range
entropy Article Entropy Determination of Single-Phase High Entropy Alloys with Different Crystal Structures over a Wide Temperature Range Sebastian Haas 1, Mike Mosbacher 1, Oleg N. Senkov 2 ID , Michael Feuerbacher 3, Jens Freudenberger 4,5 ID , Senol Gezgin 6, Rainer Völkl 1 and Uwe Glatzel 1,* ID 1 Metals and Alloys, University Bayreuth, 95447 Bayreuth, Germany; [email protected] (S.H.); [email protected] (M.M.); [email protected] (R.V.) 2 UES, Inc., 4401 Dayton-Xenia Rd., Dayton, OH 45432, USA; [email protected] 3 Institut für Mikrostrukturforschung, Forschungszentrum Jülich, 52425 Jülich, Germany; [email protected] 4 Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden), 01069 Dresden, Germany; [email protected] 5 TU Bergakademie Freiberg, Institut für Werkstoffwissenschaft, 09599 Freiberg, Germany 6 NETZSCH Group, Analyzing & Testing, 95100 Selb, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-921-55-5555 Received: 31 July 2018; Accepted: 20 August 2018; Published: 30 August 2018 Abstract: We determined the entropy of high entropy alloys by investigating single-crystalline nickel and five high entropy alloys: two fcc-alloys, two bcc-alloys and one hcp-alloy. Since the configurational entropy of these single-phase alloys differs from alloys using a base element, it is important to quantify ◦ the entropy. Using differential scanning calorimetry, cp-measurements are carried out from −170 C to the materials’ solidus temperatures TS. From these experiments, we determined the thermal entropy and compared it to the configurational entropy for each of the studied alloys. -
Oxide Fuel Cells with Hydrocarbon and Syngas Fuels—A Review
Fundamentals of electro- and thermochemistry in the anode of solid- oxide fuel cells with hydrocarbon and syngas fuels—a review Jeffrey Hanna,∗a Won Yong Lee,a Yixiang Shi,b and Ahmed F. Ghoniema Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX First published on the web Xth XXXXXXXXXX 200X DOI: 10.1039/b000000x High fuel flexibility of solid-oxide fuel cells (SOFCs) affords the possibility to use relatively cheap, safe, and readily available hydrocarbon (e.g., CH4) or coal syngas (i.e., CO-H2 mixtures) fuels. Utilization of such fuels would greatly lower fuel cost and in- crease the feasibility of SOFC commercialization, especially for near-term adoption in anticipation of the long-awaited so-called “hydrogen economy.” Current SOFC technology has shown good performance with a wide range of hydrocarbon and syngas fu- els, but there are still significant challenges for practical application. In this paper, the basic operating principles, state-of-the-art performance benchmarks, and SOFC-relevant materials are summarized. More in-depth reviews on those topics can be found in Kee and co-workers [Combust. Sci. and Tech., 2008, 180, 1207–1244 and Proc. Combust. Inst., 2005, 30, 2379–2404] and McIntosh and Gorte [Chem. Rev., 2004, 104, 4845–4865]. The focus of this review is on the fundamentals and development of detailed electro- and thermal (or simply, electrothermal) chemistry within the SOFC anode, including electrochemical oxidation mechanisms for H2, CO, CH4, and carbon, as well as the effects of carbon deposition and sulfur poisoning. The interdependence of heterogeneous chemistry, charge-transfer processes, and transport are discussed in the context of SOFC-membrane-electrode assembly (MEA) modeling. -
Thermochemistry of the Formation of Fossil Fuels
Fluid-Mineral Interactions: A Tribute to H. P. Eugster © The Geochemical Society, Special Publication No.2, 1990 Editors: R. J. Spencer and I-Ming Chou Thermochemistry of the formation of fossil fuels MOTOAKI SATO U.S. Geological Survey, MS 959, Reston, Virginia 22092, U.S.A. Abstract-Photosynthesis liberatesO2 from a mixture of CO2 and H20 in forming biologicalsubstances. Formation of fossil fuels is also associated with progressive depletion of oxygen from biological substances. The two processes are thus sequential in terms of deoxygenation. To evaluate thermo- chemical relations of the deoxygenation processes in a simple manner, the concept of deoxygenation free energy Gdeox and deoxygenation enthalpy Hdeox (defined as Gibbs energy and enthalpy, respectively, of reaction to release unit mole of O2 in forming a compound CxHyNzOw from CO2, H20, and N2) are computed for over 150 compounds. If compound A changes to compound B by dehydration and/or decarboxylation, and A has a higher Gdeox value than B, energy is released and the transformation can occur spontaneously; likewise heat is released if A has a higher Hdeox' The computed results indicate that energy input is required only for the initial stage of photosynthesis, and progressive deoxygenation and aromatic condensation during diagenesis should decrease free energy and release heat. Catagenesis and metagenesis are also most probably spontaneous and exothermic because both low C-number paraffinic hydrocarbons and polycondensed aromatic kerogens have the lowest Gdeox and Hdeox values among various homologous groups even at room temperature. The ultimate products of the spontaneous evolution of fossilfuelsare methane and graphite. The role of increased temperature associated with deeper burial is not to change the position of equilibrium, but simply to increase the reaction rate exponentially so that the extremely slow reactions would proceed in geologic time. -
Isothermal Titration Calorimetry and Differential Scanning Calorimetry As Complementary Tools to Investigate the Energetics of Biomolecular Recognition
JOURNAL OF MOLECULAR RECOGNITION J. Mol. Recognit. 1999;12:3–18 Review Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition Ilian Jelesarov* and Hans Rudolf Bosshard Department of Biochemistry, University of Zurich, CH-8057 Zurich, Switzerland The principles of isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) are reviewed together with the basic thermodynamic formalism on which the two techniques are based. Although ITC is particularly suitable to follow the energetics of an association reaction between biomolecules, the combination of ITC and DSC provides a more comprehensive description of the thermodynamics of an associating system. The reason is that the parameters DG, DH, DS, and DCp obtained from ITC are global properties of the system under study. They may be composed to varying degrees of contributions from the binding reaction proper, from conformational changes of the component molecules during association, and from changes in molecule/solvent interactions and in the state of protonation. Copyright # 1999 John Wiley & Sons, Ltd. Keywords: isothermal titration calorimetry; differential scanning calorimetry Received 1 June 1998; accepted 15 June 1998 Introduction ways to rationalize structure in terms of energetics, a task that still is enormously difficult inspite of some very Specific binding is fundamental to the molecular organiza- promising theoretical developments and of the steady tion of living matter. Virtually all biological phenomena accumulation of experimental results. Theoretical concepts depend in one way or another on molecular recognition, have developed in the tradition of physical-organic which either is intermolecular as in ligand binding to a chemistry.