THAP Proteins in the Transcriptional Control of Cell Proliferation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Copy 2018 09 25 Gaunt
This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Gaunt, Jess Title: A Viral Approach to Translatome Profiling of CA1 Neurons During Associative Recognition Memory Formation General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. A Viral Approach to Translatome Profiling of CA1 Neurons During Associative Recognition Memory Formation Jessica Ruth Gaunt A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Doctor of Philosophy in the Faculty of Health Sciences, Bristol Medical School. -
Replace This with the Actual Title Using All Caps
UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Asha Marie Miles December 2019 © 2019 Asha Marie Miles UNDERSTANDING THE GENETICS UNDERLYING MASTITIS USING A MULTI-PRONGED APPROACH Asha Marie Miles, Ph. D. Cornell University 2019 This dissertation addresses deficiencies in the existing genetic characterization of mastitis due to granddaughter study designs and selection strategies based primarily on lactation average somatic cell score (SCS). Composite milk samples were collected across 6 sampling periods representing key lactation stages: 0-1 day in milk (DIM), 3- 5 DIM, 10-14 DIM, 50-60 DIM, 90-110 DIM, and 210-230 DIM. Cows were scored for front and rear teat length, width, end shape, and placement, fore udder attachment, udder cleft, udder depth, rear udder height, and rear udder width. Independent multivariable logistic regression models were used to generate odds ratios for elevated SCC (≥ 200,000 cells/ml) and farm-diagnosed clinical mastitis. Within our study cohort, loose fore udder attachment, flat teat ends, low rear udder height, and wide rear teats were associated with increased odds of mastitis. Principal component analysis was performed on these traits to create a single new phenotype describing mastitis susceptibility based on these high-risk phenotypes. Cows (N = 471) were genotyped on the Illumina BovineHD 777K SNP chip and considering all 14 traits of interest, a total of 56 genome-wide associations (GWA) were performed and 28 significantly associated quantitative trait loci (QTL) were identified. -
Environmental Influences on Endothelial Gene Expression
ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer
Statistical and Bioinformatic Analysis of Hemimethylation Patterns in Non-Small Cell Lung Cancer Shuying Sun ( [email protected] ) Texas State University San Marcos https://orcid.org/0000-0003-3974-6996 Austin Zane Texas A&M University College Station Carolyn Fulton Schreiner University Jasmine Philipoom Case Western Reserve University Research article Keywords: Methylation, Hemimethylation, Lung Cancer, Bioinformatics, Epigenetics Posted Date: October 12th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-17794/v2 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 12th, 2021. See the published version at https://doi.org/10.1186/s12885-021-07990-7. Page 1/29 Abstract Background: DNA methylation is an epigenetic event involving the addition of a methyl-group to a cytosine-guanine base pair (i.e., CpG site). It is associated with different cancers. Our research focuses on studying non- small cell lung cancer hemimethylation, which refers to methylation occurring on only one of the two DNA strands. Many studies often assume that methylation occurs on both DNA strands at a CpG site. However, recent publications show the existence of hemimethylation and its signicant impact. Therefore, it is important to identify cancer hemimethylation patterns. Methods: In this paper, we use the Wilcoxon signed rank test to identify hemimethylated CpG sites based on publicly available non-small cell lung cancer methylation sequencing data. We then identify two types of hemimethylated CpG clusters, regular and polarity clusters, and genes with large numbers of hemimethylated sites. -
Genomic and Functional Analysis Identifies CRKL As an Oncogene
Oncogene (2010) 29, 1421–1430 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer YH Kim1,7, KA Kwei1,7, L Girard2, K Salari1,3, J Kao1, M Pacyna-Gengelbach4, P Wang5, T Hernandez-Boussard3, AF Gazdar2, I Petersen6, JD Minna2 and JR Pollack1 1Department of Pathology, Stanford University, Stanford, CA, USA; 2Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; 3Department of Genetics, Stanford University, Stanford, CA, USA; 4Institute of Pathology, University Hospital Charite´, Berlin, Germany; 5Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA and 6Institute of Pathology, Universita¨tsklinikum Jena, Jena, Germany DNA amplifications, leading to the overexpression of related mortality (Jemal et al., 2008). Nearly 80% oncogenes, are a cardinal feature of lung cancer and of lung cancers diagnosed are non-small-cell lung directly contribute to its pathogenesis. To uncover such cancers (NSCLCs), which are classified into three main novel alterations, we performed an array-based compara- histological subtypes: adenocarcinoma, squamous cell tive genomic hybridization survey of 128 non-small-cell carcinoma and large cell carcinoma. Despite the lung cancer cell lines and tumors. Prominent among our advancement of surgical, cytotoxic and radiological findings, we identified recurrent high-level amplification at treatment options over the years, lung cancer therapy cytoband 22q11.21 in 3% of lung cancer specimens, with remains largely ineffective from a clinical standpoint, another 11% of specimens exhibiting low-level gain spanning as evidenced by a low 5-year survival rate (o15%), that locus. -
Gene Ontology Functional Annotations and Pleiotropy
Network based analysis of genetic disease associations Sarah Gilman Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2013 Sarah Gilman All Rights Reserved ABSTRACT Network based analysis of genetic disease associations Sarah Gilman Despite extensive efforts and many promising early findings, genome-wide association studies have explained only a small fraction of the genetic factors contributing to common human diseases. There are many theories about where this “missing heritability” might lie, but increasingly the prevailing view is that common variants, the target of GWAS, are not solely responsible for susceptibility to common diseases and a substantial portion of human disease risk will be found among rare variants. Relatively new, such variants have not been subject to purifying selection, and therefore may be particularly pertinent for neuropsychiatric disorders and other diseases with greatly reduced fecundity. Recently, several researchers have made great progress towards uncovering the genetics behind autism and schizophrenia. By sequencing families, they have found hundreds of de novo variants occurring only in affected individuals, both large structural copy number variants and single nucleotide variants. Despite studying large cohorts there has been little recurrence among the genes implicated suggesting that many hundreds of genes may underlie these complex phenotypes. The question -
A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection
CLINICAL RESEARCH www.jasn.org A Peripheral Blood Gene Expression Signature to Diagnose Subclinical Acute Rejection Weijia Zhang,1 Zhengzi Yi,1 Karen L. Keung,2 Huimin Shang,3 Chengguo Wei,1 Paolo Cravedi,1 Zeguo Sun,1 Caixia Xi,1 Christopher Woytovich,1 Samira Farouk,1 Weiqing Huang,1 Khadija Banu,1 Lorenzo Gallon,4 Ciara N. Magee,5 Nader Najafian,5 Milagros Samaniego,6 Arjang Djamali ,7 Stephen I. Alexander,2 Ivy A. Rosales,8 Rex Neal Smith,8 Jenny Xiang,3 Evelyne Lerut,9 Dirk Kuypers,10,11 Maarten Naesens ,10,11 Philip J. O’Connell,2 Robert Colvin,8 Madhav C. Menon,1 and Barbara Murphy1 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background In kidney transplant recipients, surveillance biopsies can reveal, despite stable graft function, histologic features of acute rejection and borderline changes that are associated with undesirable graft outcomes. Noninvasive biomarkers of subclinical acute rejection are needed to avoid the risks and costs associated with repeated biopsies. Methods We examined subclinical histologic and functional changes in kidney transplant recipients from the prospective Genomics of Chronic Allograft Rejection (GoCAR) study who underwent surveillance biopsies over 2 years, identifying those with subclinical or borderline acute cellular rejection (ACR) at 3 months (ACR-3) post-transplant. We performed RNA sequencing on whole blood collected from 88 indi- viduals at the time of 3-month surveillance biopsy to identify transcripts associated with ACR-3, developed a novel sequencing-based targeted expression assay, and validated this gene signature in an independent cohort. -
Structure and Expression Analyses of SVA Elements in Relation to Functional Genes
pISSN 1598-866X eISSN 2234-0742 Genomics Inform 2013;11(3):142-148 G&I Genomics & Informatics http://dx.doi.org/10.5808/GI.2013.11.3.142 ORIGINAL ARTICLE Structure and Expression Analyses of SVA Elements in Relation to Functional Genes Yun-Jeong Kwon, Yuri Choi, Jungwoo Eo, Yu-Na Noh, Jeong-An Gim, Yi-Deun Jung, Ja-Rang Lee, Heui-Soo Kim* Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea SINE-VNTR-Alu (SVA) elements are present in hominoid primates and are divided into 6 subfamilies (SVA-A to SVA-F) and active in the human population. Using a bioinformatic tool, 22 SVA element-associated genes are identified in the human genome. In an analysis of genomic structure, SVA elements are detected in the 5′ untranslated region (UTR) of HGSNAT (SVA-B), MRGPRX3 (SVA-D), HYAL1 (SVA-F), TCHH (SVA-F), and ATXN2L (SVA-F) genes, while some elements are observed in the 3′UTR of SPICE1 (SVA-B), TDRKH (SVA-C), GOSR1 (SVA-D), BBS5 (SVA-D), NEK5 (SVA-D), ABHD2 (SVA-F), C1QTNF7 (SVA-F), ORC6L (SVA-F), TMEM69 (SVA-F), and CCDC137 (SVA-F) genes. They could contribute to exon extension or supplying poly A signals. LEPR (SVA-C), ALOX5 (SVA-D), PDS5B (SVA-D), and ABCA10 (SVA-F) genes also showed alternative transcripts by SVA exonization events. Dominant expression of HYAL1_SVA appeared in lung tissues, while HYAL1_noSVA showed ubiquitous expression in various human tissues. Expression of both transcripts (TDRKH_SVA and TDRKH_noSVA) of the TDRKH gene appeared to be ubiquitous. -
Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports
SAGE-Hindawi Access to Research Genetics Research International Volume 2011, Article ID 976398, 9 pages doi:10.4061/2011/976398 Case Report Application of Microarray-Based Comparative Genomic Hybridization in Prenatal and Postnatal Settings: Three Case Reports Jing Liu, Francois Bernier, Julie Lauzon, R. Brian Lowry, and Judy Chernos Department of Medical Genetics, University of Calgary, 2888 Shaganappi Trail NW, Calgary, AB, Canada T3B 6A8 Correspondence should be addressed to Judy Chernos, [email protected] Received 16 February 2011; Revised 20 April 2011; Accepted 20 May 2011 Academic Editor: Reha Toydemir Copyright © 2011 Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Microarray-based comparative genomic hybridization (array CGH) is a newly emerged molecular cytogenetic technique for rapid evaluation of the entire genome with sub-megabase resolution. It allows for the comprehensive investigation of thousands and millions of genomic loci at once and therefore enables the efficient detection of DNA copy number variations (a.k.a, cryptic genomic imbalances). The development and the clinical application of array CGH have revolutionized the diagnostic process in patients and has provided a clue to many unidentified or unexplained diseases which are suspected to have a genetic cause. In this paper, we present three clinical cases in both prenatal and postnatal settings. Among all, array CGH played a major discovery role to reveal the cryptic and/or complex nature of chromosome arrangements. By identifying the genetic causes responsible for the clinical observation in patients, array CGH has provided accurate diagnosis and appropriate clinical management in a timely and efficient manner. -
Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts
University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts Zabinyakov, Nikita Zabinyakov, N. (2017). Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27775 http://hdl.handle.net/11023/3639 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts by Nikita Zabinyakov A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOMEDICAL ENGINEERING CALGARY, ALBERTA JANUARY 2017 © Nikita Zabinyakov 2017 Abstract Applied mechanical forces, such as those resulting from fluid flow, trigger cells to change their functional behavior or phenotype. However, there is little known about how fluid flow affects fibroblasts. The hypothesis of this thesis is that dermal fibroblasts undergo significant changes of expression of differentiation genes after exposure to fluid flow (or shear stress). To test the hypothesis, human dermal fibroblasts were exposed to laminar steady fluid flow for 20 and 40 hours and RNA was collected for microarray analysis.