Ch.06A Tour of the Cell

Total Page:16

File Type:pdf, Size:1020Kb

Ch.06A Tour of the Cell 10 m Human height 1 m Length of some nerve and muscle cells 0.1 m Chicken egg 1 cm Unaided eye Frog egg 1 mm 100 µm Most plant and animal cells 10 µm Nucleus Most bacteria Light microscope microscope Light 1 µm Mitochondrion 100 nm Smallest bacteria Viruses Ribosomes 10 nm Proteins Electron microscope Lipids 1 nm Small molecules 0.1 nm Atoms 1 Fimbriae Nucleoid Ribosomes Plasma membrane Bacterial Cell wall chromosome Capsule 0.5 µm Flagella (a) A typical (b) A thin section rod-shaped through the bacterium bacterium Bacillus coagulans (TEM) 2 (a) TEM of a plasma Outside of cell membrane Inside of 0.1 µm cell Carbohydrate side chain Hydrophilic region Hydrophobic region Hydrophilic Phospholipid Proteins region (b) Structure of the plasma membrane 3 Surface area increases while total volume remains constant 5 1 1 Total surface area [Sum of the surface areas 6 150 750 (height × width) of all boxes sides × number of boxes] Total volume [height × width × length × 1 125 125 number of boxes] Surface-to-volume (S-to-V) ratio 6 1.2 6 [surface area ÷ volume] 4 Nuclear envelope ENDOPLASMIC RETICULUM (ER) Nucleolus NUCLEUS Rough ER Smooth ER Flagellum Chromatin Centrosome Plasma membrane CYTOSKELETON: Microfilaments Intermediate filaments Microtubules Ribosomes Microvilli Golgi Peroxisome apparatus Mitochondrion Lysosome 5 Nuclear envelope Rough endoplasmic reticulum NUCLEUS Nucleolus Chromatin Smooth endoplasmic reticulum Ribosomes Central vacuole Golgi apparatus Microfilaments Intermediate CYTO- filaments SKELETON Microtubules Mitochondrion Peroxisome Chloroplast Plasma membrane Cell wall Plasmodesmata Wall of adjacent cell 6 Nucleus 1 µm Nucleolus Chromatin Nuclear envelope: Inner membrane Outer membrane Nuclear pore Pore complex Rough ER Surface of nuclear envelope Ribosome 1 µm 0.25 µm Close-up of nuclear envelope Pore complexes (TEM) Nuclear lamina (TEM) 7 Cytosol Endoplasmic reticulum (ER) Free ribosomes Bound ribosomes Large subunit Small 0.5 µm subunit TEM showing ER and ribosomes Diagram of a ribosome 8 Smooth ER Rough ER Nuclear envelope ER lumen Cisternae Ribosomes Transitional ER Transport vesicle 200 nm Smooth ER Rough ER 9 cis face (“receiving” side of 0.1 µm Golgi apparatus) Cisternae trans face (“shipping” side of TEM of Golgi apparatus Golgi apparatus) 10 Nucleus 1 µm Vesicle containing 1 µm two damaged organelles Mitochondrion fragment Peroxisome fragment Lysosome Digestive enzymes Lysosome Lysosome Plasma Peroxisome membrane Digestion Food vacuole Mitochondrion Digestion Vesicle (a) Phagocytosis (b) Autophagy 11 Central vacuole Cytosol Nucleus Central vacuole Cell wall Chloroplast 5 µm 12 Nucleus Rough ER Smooth ER cis Golgi Plasma membrane trans Golgi 13 Intermembrane space Outer membrane Free ribosomes in the mitochondrial matrix Inner membrane Cristae Matrix 0.1 µm 14 Ribosomes Stroma Inner and outer membranes Granum 1 µm Thylakoid 15 Chloroplast Peroxisome Mitochondrion 1 µm 16 Microtubule Microfilaments 0.25 µm 17 Vesicle ATP Receptor for motor protein Motor protein Microtubule (ATP powered) of cytoskeleton (a) Microtubule Vesicles 0.25 µm (b) 18 10 µm 10 µm 10 µm Column of tubulin dimers Keratin proteins Actin subunit Fibrous subunit (keratins 25 nm coiled together) 7 nm 8–12 nm α β Tubulin dimer 19 Centrosome Microtubule Centrioles 0.25 µm Longitudinal section Microtubules Cross section of one centriole of the other centriole 20 Direction of swimming (a) Motion of flagella 5 µm Direction of organism’s movement Power stroke Recovery stroke (b) Motion of cilia 15 µm 21 Outer microtubule Plasma 0.1 µm doublet membrane Dynein proteins Central microtubule Radial spoke Protein cross- Microtubules linking outer doublets (b) Cross section of Plasma cilium membrane Basal body 0.5 µm (a) Longitudinal 0.1 µm section of cilium Triplet (c) Cross section of basal body 22 Microtubule doublets ATP Dynein protein (a) Effect of unrestrained dynein movement ATP Cross-linking proteins inside outer doublets Anchorage in cell (b) Effect of cross-linking proteins 1 3 2 (c) Wavelike motion 23 Microvillus Plasma membrane Microfilaments (actin filaments) Intermediate filaments 0.25 µm 24 Muscle cell Actin filament Myosin filament Myosin arm (a) Myosin motors in muscle cell contraction Cortex (outer cytoplasm): gel with actin network Inner cytoplasm: sol with actin subunits Extending pseudopodium (b) Amoeboid movement Nonmoving cortical cytoplasm (gel) Chloroplast Streaming cytoplasm (sol) Vacuole Parallel actin filaments Cell wall (c) Cytoplasmic streaming in plant cells 25 Secondary cell wall Primary cell wall Middle lamella 1 µm Central vacuole Cytosol Plasma membrane Plant cell walls Plasmodesmata 26 Collagen Proteoglycan Polysaccharide EXTRACELLULAR FLUID complex molecule Carbo- hydrates Fibronectin Core protein Integrins Proteoglycan molecule Plasma membrane Proteoglycan complex Micro- CYTOPLASM filaments 27 Cell walls Interior of cell Interior of cell 0.5 µm Plasmodesmata Plasma membranes 28 Tight junction Tight junctions prevent fluid from moving across a layer of cells 0.5 µm Tight junction Intermediate filaments Desmosome Desmosome Gap 1 µm junctions Extracellular Space matrix between Gap junction cells Plasma membranes of adjacent cells 0.1 µm 29 Cell Component Structure Function Concept 6.3 Nucleus Surrounded by nuclear Houses chromosomes, made of The eukaryotic cell’s genetic envelope (double membrane) chromatin (DNA, the genetic instructions are housed in perforated by nuclear pores. material, and proteins); contains the nucleus and carried out The nuclear envelope is nucleoli, where ribosomal by the ribosomes continuous with the subunits are made. Pores endoplasmic reticulum (ER). regulate entry and exit of materials. (ER) Ribosome Two subunits made of ribo- Protein synthesis somal RNA and proteins; can be free in cytosol or bound to ER Concept 6.4 Endoplasmic reticulum Extensive network of Smooth ER: synthesis of The endomembrane system membrane-bound tubules and lipids, metabolism of carbohy- (Nuclear regulates protein traffic and sacs; membrane separates drates, Ca2+ storage, detoxifica- performs metabolic functions envelope) lumen from cytosol; tion of drugs and poisons in the cell continuous with the nuclear envelope. Rough ER: Aids in synthesis of secretory and other proteins from bound ribosomes; adds carbohydrates to glycoproteins; produces new membrane Golgi apparatus Stacks of flattened Modification of proteins, carbo- membranous hydrates on proteins, and phos- sacs; has polarity pholipids; synthesis of many (cis and trans polysaccharides; sorting of Golgi faces) products, which are then released in vesicles. Lysosome Membranous sac of hydrolytic Breakdown of ingested substances, enzymes (in animal cells) cell macromolecules, and damaged organelles for recycling Vacuole Large membrane-bounded Digestion, storage, waste vesicle in plants disposal, water balance, cell growth, and protection Concept 6.5 Mitochondrion Bounded by double Cellular respiration Mitochondria and chloro- membrane; plasts change energy from inner membrane has one form to another infoldings (cristae) Chloroplast Typically two membranes Photosynthesis around fluid stroma, which contains membranous thylakoids stacked into grana (in plants) Peroxisome Specialized metabolic Contains enzymes that transfer compartment bounded by a hydrogen to water, producing single membrane hydrogen peroxide (H2O2) as a by-product, which is converted to water by other enzymes in the peroxisome 30 .
Recommended publications
  • Bacterial Cell Membrane
    BACTERIAL CELL MEMBRANE Dr. Rakesh Sharda Department of Veterinary Microbiology NDVSU College of Veterinary Sc. & A.H., MHOW CYTOPLASMIC MEMBRANE ➢The cytoplasmic membrane, also called a cell membrane or plasma membrane, is about 7 nanometers (nm; 1/1,000,000,000 m) thick. ➢It lies internal to the cell wall and encloses the cytoplasm of the bacterium. ➢It is the most dynamic structure of a prokaryotic cell. Structure of cell membrane ➢The structure of bacterial plasma membrane is that of unit membrane, i.e., a fluid phospholipid bilayer, composed of phospholipids (40%) and peripheral and integral proteins (60%) molecules. ➢The phospholipids of bacterial cell membranes do not contain sterols as in eukaryotes, but instead consist of saturated or monounsaturated fatty acids (rarely, polyunsaturated fatty acids). ➢Many bacteria contain sterol-like molecules called hopanoids. ➢The hopanoids most likely stabilize the bacterial cytoplasmic membrane. ➢The phospholipids are amphoteric molecules with a polar hydrophilic glycerol "head" attached via an ester bond to two non-polar hydrophobic fatty acid tails. ➢The phospholipid bilayer is arranged such that the polar ends of the molecules form the outermost and innermost surface of the membrane while the non-polar ends form the center of the membrane Fluid mosaic model ➢The plasma membrane contains proteins, sugars, and other lipids in addition to the phospholipids. ➢The model that describes the arrangement of these substances in lipid bilayer is called the fluid mosaic model ➢Dispersed within the bilayer are various structural and enzymatic proteins, which carry out most membrane functions. ➢Some membrane proteins are located and function on one side or another of the membrane (peripheral proteins).
    [Show full text]
  • Novel Nesprin-1 Mutations Associated with Dilated
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of East Anglia digital repository Human Molecular Genetics, 2017, Vol. 0, No. 0 1–19 doi: 10.1093/hmg/ddx116 Advance Access Publication Date: 7 April 2017 Original Article ORIGINAL ARTICLE Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis Can Zhou1,2,†, Chen Li1,2,†, Bin Zhou3,4, Huaqin Sun4,5, Victoria Koullourou1,6, Ian Holt7, Megan J. Puckelwartz8, Derek T. Warren1, Robert Hayward1, Ziyuan Lin4,5, Lin Zhang3,4, Glenn E. Morris7, Elizabeth M. McNally8, Sue Shackleton6, Li Rao2, Catherine M. Shanahan1,‡ and Qiuping Zhang1,*,‡ 1King’s College London British Heart Foundation Centre of Research Excellence, Cardiovascular Division, London SE5 9NU, UK, 2Department of Cardiology, West China Hospital of Sichuan University, Chengdu 610041, China, 3Laboratory of Molecular Translational Medicine, 4Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, 5SCU-CUHK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China, 6Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 9HN, UK, 7Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, ST5 5BG, UK and 8Center for Genetic Medicine, Northwestern University Feinberg
    [Show full text]
  • A Tour of the Cell Overview
    Unit 3: The Cell Name______________________ Chapter 6: A Tour of the Cell Overview 6.1 Biologists use microscopes and the tools of biochemistry to study cells The discovery and early study of cells progressed with the invention of microscopes in 1590 and their improvement in the 17th century. In a light microscope (LM), visible light passes through the specimen and then through glass lenses. ○ The lenses refract light so that the image is magnified into the eye or a camera. Microscopes vary in magnification, resolution, and contrast. ○ Magnification is the ratio of an object’s image to its real size. A light microscope can magnify effectively to about 1,000 times the real size of a specimen. ○ Resolution is a measure of image clarity. It is the minimum distance two points can be separated and still be distinguished as two separate points. The minimum resolution of an LM is about 200 nanometers (nm), the size of a small bacterium. ○ Contrast accentuates differences in parts of the sample. It can be improved by staining or labeling of cell components so they stand out. Although an LM can resolve individual cells, it cannot resolve much of the internal anatomy, especially the organelles, membrane-enclosed structures within eukaryotic cells. The size range of cells 1 To resolve smaller structures, scientists use an electron microscope (EM), which focuses a beam of electrons through the specimen or onto its surface. ○ Theoretically, the resolution of a modern EM could reach 0.002 nm, but the practical limit is closer to about 2 nm. Scanning electron microscopes (SEMs) are useful for studying the surface structure or topography of a specimen.
    [Show full text]
  • The Endomembrane System and Proteins
    Chapter 4 | Cell Structure 121 Endosymbiosis We have mentioned that both mitochondria and chloroplasts contain DNA and ribosomes. Have you wondered why? Strong evidence points to endosymbiosis as the explanation. Symbiosis is a relationship in which organisms from two separate species depend on each other for their survival. Endosymbiosis (endo- = “within”) is a mutually beneficial relationship in which one organism lives inside the other. Endosymbiotic relationships abound in nature. We have already mentioned that microbes that produce vitamin K live inside the human gut. This relationship is beneficial for us because we are unable to synthesize vitamin K. It is also beneficial for the microbes because they are protected from other organisms and from drying out, and they receive abundant food from the environment of the large intestine. Scientists have long noticed that bacteria, mitochondria, and chloroplasts are similar in size. We also know that bacteria have DNA and ribosomes, just like mitochondria and chloroplasts. Scientists believe that host cells and bacteria formed an endosymbiotic relationship when the host cells ingested both aerobic and autotrophic bacteria (cyanobacteria) but did not destroy them. Through many millions of years of evolution, these ingested bacteria became more specialized in their functions, with the aerobic bacteria becoming mitochondria and the autotrophic bacteria becoming chloroplasts. The Central Vacuole Previously, we mentioned vacuoles as essential components of plant cells. If you look at Figure 4.8b, you will see that plant cells each have a large central vacuole that occupies most of the cell's area. The central vacuole plays a key role in regulating the cell’s concentration of water in changing environmental conditions.
    [Show full text]
  • Microorganisms – Protists: Euglena
    Microorganisms – Protists: Euglena Euglena are unicellular organisms classified into the Kingdom Protista, and the Phylum Euglenophyta. All euglena have chloroplasts and can make their own food by photosynthesis. They are not completely autotrophic though, euglena can also absorb food from their environment. Euglena usually live in quiet ponds or puddles. Euglena move by a flagellum (plural flagella), which is a long whip-like structure that acts like a little motor. The flagellum is located on the anterior (front) end, and twirls in such a way as to pull the cell through the water. It is attached at an inward pocket called the reservoir. Color and label the reservoir grey. Color and label the flagellum black. The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food). Chloroplasts within the euglena trap sunlight that is used for photosynthesis and can be seen as several rod-like structures throughout the cell. Color and label the chloroplasts green. Euglena also have an eyespot at the anterior end that detects light, it can be seen near the reservoir. This helps the euglena find bright areas to gather sunlight to make their food. Color and label the eyespot red. Euglena can also gain nutrients by absorbing them across their cell membrane, hence they become heterotrophic when light is not available, and they cannot photosynthesize. The euglena has a stiff pellicle outside the cell membrane that helps it keep its shape, though the pellicle is somewhat flexible, and some euglena can be observed scrunching up and moving in an inchworm type fashion.
    [Show full text]
  • Building the Interphase Nucleus: a Study on the Kinetics of 3D Chromosome Formation, Temporal Relation to Active Transcription, and the Role of Nuclear Rnas
    University of Massachusetts Medical School eScholarship@UMMS GSBS Dissertations and Theses Graduate School of Biomedical Sciences 2020-07-28 Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs Kristin N. Abramo University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss Part of the Bioinformatics Commons, Cell Biology Commons, Computational Biology Commons, Genomics Commons, Laboratory and Basic Science Research Commons, Molecular Biology Commons, Molecular Genetics Commons, and the Systems Biology Commons Repository Citation Abramo KN. (2020). Building the Interphase Nucleus: A study on the kinetics of 3D chromosome formation, temporal relation to active transcription, and the role of nuclear RNAs. GSBS Dissertations and Theses. https://doi.org/10.13028/a9gd-gw44. Retrieved from https://escholarship.umassmed.edu/ gsbs_diss/1099 Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N. ABRAMO Submitted to the Faculty of the University of Massachusetts Graduate School of Biomedical Sciences, Worcester in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPOPHY July 28, 2020 Program in Systems Biology, Interdisciplinary Graduate Program BUILDING THE INTERPHASE NUCLEUS: A STUDY ON THE KINETICS OF 3D CHROMOSOME FORMATION, TEMPORAL RELATION TO ACTIVE TRANSCRIPTION, AND THE ROLE OF NUCLEAR RNAS A Dissertation Presented By KRISTIN N.
    [Show full text]
  • Living Cell Cytosol Stability to Segregation and Freezing-Out: Thermodynamic Aspect
    1 Living Cell Cytosol Stability to Segregation and Freezing-Out: Thermodynamic aspect Viktor I. Laptev Russian New University, Moscow, Russian Federation The cytosol state in living cell is treated as homogeneous phase equilibrium with a special feature: the pressure of one phase is positive and the pressure of the other is negative. From this point of view the cytosol is neither solution nor gel (or sol as a whole) regardless its components (water and dissolved substances). This is its unique capability for selecting, sorting and transporting reagents to the proper place of the living cell without a so-called “pipeline”. To base this statement the theoretical investigation of the conditions of equilibrium and stability of the medium with alternative-sign pressure is carried out under using the thermodynamic laws and the Gibbs” equilibrium criterium. Keywords: living cellular processes; cytosol; intracellular fluid; cytoplasmic matrix; hyaloplasm matrix; segregation; freezing-out; zero isobare; negative pressure; homogeneous phase equilibrium. I. INTRODUCTION A. Inertial Motion in U,S,V-Space A full description of the thermodynamic state of a medium Cytosol in a living cell (intracellular fluid or cytoplasmic without chemical interactions is given by a relationship matrix, hyaloplasm matrix, aqueous cytoplasm) is a between the internal energy U, entropy S and volume V [5]. combination of the water dissolved substances. It places in the The mathematical procedure for a negative pressure supposes cell between the plasma membrane, the nucleus and a vacuole; using absolute values of the internal energy U and entropy S. it is a medium keeping granular-like and whisker-like The surface φ(U,S,V) = 0 corresponds to the all structures.
    [Show full text]
  • Introduction to the Cell Cell History Cell Structures and Functions
    Introduction to the cell cell history cell structures and functions CK-12 Foundation December 16, 2009 CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright ©2009 CK-12 Foundation This work is licensed under the Creative Commons Attribution-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. Contents 1 Cell structure and function dec 16 5 1.1 Lesson 3.1: Introduction to Cells .................................. 5 3 www.ck12.org www.ck12.org 4 Chapter 1 Cell structure and function dec 16 1.1 Lesson 3.1: Introduction to Cells Lesson Objectives • Identify the scientists that first observed cells. • Outline the importance of microscopes in the discovery of cells. • Summarize what the cell theory proposes. • Identify the limitations on cell size. • Identify the four parts common to all cells. • Compare prokaryotic and eukaryotic cells. Introduction Knowing the make up of cells and how cells work is necessary to all of the biological sciences. Learning about the similarities and differences between cell types is particularly important to the fields of cell biology and molecular biology.
    [Show full text]
  • Written Response #5
    Written Response #5 • Draw and fill in the chart below about three different types of cells: Written Response #6-18 • In this true/false activity: • You and your partner will discuss the question, each of you will record your response and share your answer with the class. Be prepared to justify your answer. • You are allow to search answers. • You will be limited to 20 seconds per question. Written Response #6-18 6. The water-hating hydrophobic tails of the phospholipid bilayer face the outside of the cell membrane. 7. The cytoplasm essentially acts as a “skeleton” inside the cell. 8. Plant cells have special structures that are not found in animal cells, including a cell wall, a large central vacuole, and plastids. 9. Centrioles help organize chromosomes before cell division. 10. Ribosomes can be found attached to the endoplasmic reticulum. Written Response #6-18 11. ATP is made in the mitochondria. 12. Many of the biochemical reactions of the cell occur in the cytoplasm. 13. Animal cells have chloroplasts, organelles that capture light energy from the sun and use it to make food. 14. Small hydrophobic molecules can easily pass through the plasma membrane. 15. In cell-level organization, cells are not specialized for different functions. Written Response #6-18 16. Mitochondria contains its own DNA. 17. The plasma membrane is a single phospholipid layer that supports and protects a cell and controls what enters and leaves it. 18. The cytoskeleton is made from thread-like filaments and tubules. 3.2 HW 1. Describe the composition of the plasma membrane.
    [Show full text]
  • Questions in Cell Biology
    Name: Questions in Cell Biology Directions: The following questions are taken from previous IB Final Papers on the subject of cell biology. Answer all questions. This will serve as a study guide for the next quiz on Monday 11/21. 1. Outline the process of endocytosis. (Total 5 marks) 2. Draw a labelled diagram of the fluid mosaic model of the plasma membrane. (Total 5 marks) 3. The drawing below shows the structure of a virus. II I 10 nm (a) Identify structures labelled I and II. I: ...................................................................................................................................... II: ...................................................................................................................................... (2) (b) Use the scale bar to calculate the maximum diameter of the virus. Show your working. Answer: ..................................................... (2) (c) Explain briefly why antibiotics are effective against bacteria but not viruses. ............................................................................................................................................... ............................................................................................................................................... ............................................................................................................................................... ..............................................................................................................................................
    [Show full text]
  • The Splicing Factor XAB2 Interacts with ERCC1-XPF and XPG for RNA-Loop Processing During Mammalian Development
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for RNA-loop processing during mammalian development Evi Goulielmaki1*, Maria Tsekrekou1,2*, Nikos Batsiotos1,2, Mariana Ascensão-Ferreira3, Eleftheria Ledaki1, Kalliopi Stratigi1, Georgia Chatzinikolaou1, Pantelis Topalis1, Theodore Kosteas1, Janine Altmüller4, Jeroen A. Demmers5, Nuno L. Barbosa-Morais3, George A. Garinis1,2* 1. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology- Hellas, GR70013, Heraklion, Crete, Greece, 2. Department of Biology, University of Crete, Heraklion, Crete, Greece, 3. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal, 4. Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany, 5. Proteomics Center, Netherlands Proteomics Center, and Department of Biochemistry, Erasmus University Medical Center, the Netherlands. Corresponding author: George A. Garinis ([email protected]) *: equally contributing authors bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers.
    [Show full text]
  • Centrioles and the Formation of Rudimentary Cilia by Fibroblasts and Smooth Muscle Cells
    CENTRIOLES AND THE FORMATION OF RUDIMENTARY CILIA BY FIBROBLASTS AND SMOOTH MUSCLE CELLS SERGEI SOROKIN, M.D. From the Department of Anatomy, Harvard Medical School, Boston, Massachusetts ABSTRACT Cells from a variety of sources, principally differentiating fibroblasts and smooth muscle cells from neonatal chicken and mammalian tissues and from organ cultures of chicken duodenum, were used as materials for an electron microscopic study on the formation of rudimentary cilia. Among the differentiating tissues many cells possessed a short, solitary cilium, which projected from one of the cell's pair of centrioles. Many stages evidently intermediate in the fashioning of cilium from centriole were encountered and furnished the evidence from which a reconstruction of ciliogenesis was attempted. The whole process may be divided into three phases. At first a solitary vesicle appears at one end of a centriole. The ciliary bud grows out from the same end of the centriole and invaginates the sac, which then becomes the temporary ciliary sheath. During the second phase the bud lengthens into a shaft, while the sheath enlarges to contain it. Enlargement of the sheath is effected by the repeated appearance of secondary vesicles nearby and their fusion with the sheath. Shaft and sheath reach the surface of the cell, where the sheath fuses with the plasma membrane during the third phase. Up to this point, formation of cilia follows the classical descriptions in outline. Subsequently, internal development of the shaft makes the rudi- mentary cilia of the investigated material more like certain non-motile centriolar derivatives than motile cilia. The pertinent literature is examined, and the cilia are tentatively assigned a non-motile status and a sensory function.
    [Show full text]