Bibliography on Bees and Colony Collapse Disease (CCD) Klaus Ammann, July 26, 2013, from Web of Science, Google Scholar and Other Sources

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography on Bees and Colony Collapse Disease (CCD) Klaus Ammann, July 26, 2013, from Web of Science, Google Scholar and Other Sources Bibliography on Bees and Colony Collapse Disease (CCD) Klaus Ammann, July 26, 2013, from Web of Science, Google Scholar and other sources Anonymous (2008), USDA awards $4.1 million to study colony collapse disorder, American Bee Journal, 148, 10, pp. 859-859, <Go to ISI>://WOS:000259476700014 Anonymous (2008), EPA buzz kill: Is the agency hiding colony collapse disorder information?, American Bee Journal, 148, 10, pp. 861-862, <Go to ISI>://WOS:000259476700020 Anonymous (2008), Bee researchers unveil tool to chase Colony Collapse Disorder, American Bee Journal, 148, 10, pp. 867-867, <Go to ISI>://WOS:000259476700026 Abbott, V. A., J. L. Nadeau, H. A. Higo and M. L. Winston (2008), Lethal and sublethal effects of imidacloprid on osmia lignaria and clothianidin on megachile rotundata (Hymenoptera : megachilidae), Journal of Economic Entomology, 101, 3, pp. 784-796, <Go to ISI>://WOS:000258337200019 AND http://www.botanischergarten.ch/Bees/Abbott-Letha-Sublethal-Imidacloprid-2008.pdf Abd-Alla, A. M. M., A. G. Parker, M. J. B. Vreysen and M. Bergoin (2011), Tsetse Salivary Gland Hypertrophy Virus: Hope or Hindrance for Tsetse Control?, Plos Neglected Tropical Diseases, 5, 8, pp. <Go to ISI>://WOS:000294479800003 Abdelgadir, H. A., S. D. Johnson and J. Van Staden (2009), Pollinator effectiveness, breeding system, and tests for inbreeding depression in the biofuel seed crop, Jatropha curcas, Journal of Horticultural Science & Biotechnology, 84, 3, pp. 319-324, <Go to ISI>://WOS:000272389300013 Abdelzaher, H. M. A., M. M. Imam, M. A. Shoulkamy and Y. M. A. Gherbawy (2004), Biological control of Pythium damping-off of bush okra using rhizosphere strains of Pseudomonas fluorescens, Mycobiology, 32, 3, pp. 139-147, <Go to ISI>://BIOSIS:PREV200500055147 Abovethetopsecret (2008), GM Crops to Blame for Disappearing Bees? German Study Says ‘Yes’. publ: www.abovethetopsecret.com, 23. September 2008: 23. September 2008, http://www.abovetopsecret.com/forum/thread274161/pg1 Abrahamovich, A. H., O. Atela, P. De la Rua and J. Galian (2007), Assessment of the mitochondrial origin of honey bees from Argentina, Journal of Apicultural Research, 46, 3, pp. 191-194, <Go to ISI>://WOS:000250023400010 Abramson, C. I., I. S. Aquino, F. S. Ramalho and J. M. Price (1999), The effect of insecticides on learning in the Africanized honey bee (Apis mellifera L.), Archives of Environmental Contamination and Toxicology, 37, 4, pp. 529-535, <Go to ISI>://WOS:000083152900013 Abrol, D. P. (2010), Foraging behaviour of Apis florea F., an important pollinator of Allium cepa L, Journal of Apicultural Research, 49, 4, pp. 318-325, <Go to ISI>://WOS:000283013700004 Acharya, R., R. Cuthbert, H. S. Baral and K. B. Shah (2009), Rapid population declines of Himalayan Griffon Gyps himalayensis in Upper Mustang, Nepal, Bird Conservation International, 19, 1, pp. 99- 107, <Go to ISI>://WOS:000264692000009 Adehan, R. K., A. T. P. Ajuwape, A. I. Adetosoye and O. O. Alaka (2007), Biochemical and serological identification of mycoplasmas isolated from pneumonic lungs of slaughtered cattle in cotonou, Benin republic, Philippine Journal of Veterinary Medicine, 44, pp. 8-13, <Go to ISI>://WOS:000250561600002 Aebi, A. and P. Neumann (2011), Endosymbionts and honey bee colony losses?, Trends in Ecology & Evolution, 26, 10, pp. 494-494, <Go to ISI>://WOS:000295745400002 Aebil, A., B. E. Vaissiere, D. vanEngelsdorp, K. S. Delaplane, D. W. Roubik and P. Neumann (2012), Back to the future: Apis versus non-Apis pollination-a response to Ollerton et al, Trends in Ecology & Evolution, 27, 3, pp. 142-143, <Go to ISI>://WOS:000301635600004 AFFSA-EFSA (2008), Bee Mortality and Bee Surveillance in Europe (EFSA-Q-2008-428), A Report from the Assessment Methodology Unit in Response to Agence Francaise de Securite Sanitaire des Aliments (AFSSA), The EFSA journal, 154, pp. 1-28, http://www.efsa.europa.eu/cs/BlobServer/Report/AMU_Technical_Report_Bees_EFSA-Q-2008- 428_20083007_final,0.pdf?ssbinary=true AND http://www.botanischergarten.ch/Bees/AFSSA-EFSA-Bee- Mortality-Project-2008.pdf Aizen, M. A., L. A. Garibaldi, S. A. Cunningham and A. M. Klein (2008), Long-Term Global Trends in Crop Yield and Production Reveal No Current Pollination Shortage but Increasing Pollinator Dependency, Current Biology, 18, 20, pp. 1572-1575, http://www.sciencedirect.com/science/article/B6VRT- 4TSMC9G-T/2/36b1fa2ed5bd5030846e0c092b3d6744 AND http://www.botanischergarten.ch/Bees/Aizen-Long-Term-Pollinator-Dependency-2008.pdf Aizen, M. A. and L. D. Harder (2009), The Global Stock of Domesticated Honey Bees Is Growing Slower Than Agricultural Demand for Pollination, Current Biology, 19, 11, pp. 915-918, http://www.sciencedirect.com/science/article/B6VRT-4W7JNHK- 3/2/4d4a22402ec95321ff2d39de1dde9902 AND http://www.botanischergarten.ch/Bees/Aizen-Global- Stock-Domesticated-2009.pdf Akiyama, H., T. Oono, M. Saito and K. Iwatsuki (2004), Assessment of cadexomer iodine against Staphylococcus aureus biofilm in vivo and in vitro using confocal laser scanning microscopy, Journal of Dermatology, 31, 7, pp. 529-534, <Go to ISI>://WOS:000222977800003 Al Ghamdi, A. and R. Hoopingarner (2004), Modeling of honey bee and varroa mite population dynamics, Saudi Journal of Biological Sciences, 11, 1, pp. 21-36, <Go to ISI>://BIOSIS:PREV200400456071 Al-Abbadi, A. A., D. S. Hassawi, S. A. Abu-Mallouh and M. S. Al-Mazra’awi (2010), Novel detection of Israel acute paralysis virus and Kashmir bee virus from honeybees Apis mellifera L. (Hymenoptera: Apidae) of Jordan using reverse transcriptase PCR technique, Applied Entomology and Zoology, 45, 1, pp. 183-190, <Go to ISI>://WOS:000276579400023 Al-Abbadi, A. A., D. S. Hassawi, S. Abu-Romman and S. A. Abu-Mallouh (2010), Detection of chronic and acute bee paralysis viruses from Jordanian honeybee apiaries by reverse transcriptase PCR, Journal of Food Agriculture & Environment, 8, 3-4, pp. 1016-1019, <Go to ISI>://WOS:000286040100058 Alaux, C., J. L. Brunet, C. Dussaubat, F. Mondet, S. Tchamitchan, M. Cousin, J. Brillard, A. Baldy, L. P. Belzunces and Y. Le Conte (2010), Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera), Environmental Microbiology, 12, 3, pp. 774-782, <Go to ISI>://WOS:000274942300019 Albert, S., H. Gaetschenberger, K. Azzami, O. Gimple, G. Grimmer, S. Sumner, T. Fujiyuki, J. Tautz and M. J. Mueller (2011), Evidence of a novel immune responsive protein in the Hymenoptera, Insect Biochemistry and Molecular Biology, 41, 12, pp. 968-981, <Go to ISI>://WOS:000297889800006 Alcock, J. (2000), The natural history of a miltogrammine fly, Miltogramma rectangularis (Diptera : Sarcophagidae), Journal of the Kansas Entomological Society, 73, 4, pp. 208-219, <Go to ISI>://WOS:000169799100003 Alfaro-Fernandez, A. and A. Garcia-Luis (2009), Colonisation and histological changes in muskmelon and autumn squash tissues infected by Acremonium cucurbitacearum or Monosporascus cannonballus, European Journal of Plant Pathology, 125, 1, pp. 73-85, <Go to ISI>://WOS:000268324200006 Allen, M. F. and B. V. Ball (1996), The incidence and world distribution of honey bee viruses, Bee World, 77, pp. 147-162, Alptekin, S., C. Bass, M. Paine, E. Pilling and G. Moores (2011), Microarray analysis of P450 upregulation in honey bee following neonicotinoid treatment, Current Opinion in Biotechnology, 22, pp. S71-S71, <Go to ISI>://WOS:000295310800199 Ammann, K. (2009), Imidaclopin and Bees: Bibliography Web of Science and other sources, in: 6, Ammann, K., Neuchatel, http://www.botanischergarten.ch/Bees/Bibliography-Imidacloprid-Bees- 20090709.pdf Ammann, K. (20120119), Bibliography Bees and Colony Collapse Disease, in: 69, Neuchatel, http://www.ask-force.org/web/Bees/Bibliography-CCD-WOS-KA-20120119.pdf Ammons, A. D. and G. J. Hunt (2008), Identification of quantitative trait loci and candidate genes influencing ethanol sensitivity in honey bees, Behavior Genetics, 38, 5, pp. 531-553, <Go to ISI>://WOS:000259367500009 Anderson, D. and I. J. East (2008), The latest buzz about colony collapse disorder, Science, 319, pp. 724-725, <Go to ISI>://WOS:000252963000015 AND http://www.botanischergarten.ch/Bees/Anderson- Cox-Foster-Controversy-2008.pdf Andreeff, M., M. Milella and M. Konopleva (2002), Induction of Apoptosis in AML by HA14-1, a Small Molecule Bcl-2 Antagonist Is Independent of Caspases-8 and -9, Blood, 100, 11, pp. 2131, <Go to ISI>://BIOSIS:PREV200300336828 Angeli, G., M. Berti and D. Forti (2003), Microencapsulated fenitrothion and chlorpyrifos ethyl on Apis mellifera L.; a synopsis of research carried out on apples, Bulletin of Insectology, 56, 1, pp. 198-199, <Go to ISI>://BIOSIS:PREV200300562446 Anonymous (1869), Report of the Commissioner of Agriculture for the year 1868, Statistics of beekeeping, U.S. Government Printing Office, No. pp. 272-281., Washington, Anonymous (1874), Report of the Commissioner of Agriculture for the year 1872, Report from Iowa, U.S. Government Printing Office, No. pp. 479-480., Washington, Anonymous (2003), 8th International Symposium of the ICP- BR Bee Protection Group on Hazards of Pesticides to Bees, Bologna, Italy, September 4-6, 2002, Bulletin of Insectology, 56, 1, pp. 27-200, <Go to ISI>://BIOSIS:PREV200300562411 Anonymous (2007), Bee researchers close in on colony collapse disorder, American Bee Journal, 147, pp. 930-931, <Go to ISI>://WOS:000250349200007 Anonymous (2007), Questions and answers about colony collapse disorder and Israeli acute paralysis virus, American Bee Journal, 147, pp. 932-932, <Go to ISI>://WOS:000250349200008
Recommended publications
  • News from the CREW
    Volume 6 • March 200 News from the CREW lthough 2009 has been a Asteraceae family) in full flower. REW, the Custodians of Areally challenging year with These plants are usually rather C Rare and Endangered the global recession having had inconspicuous and are very hard Wildflowers, is a programme a heavy impact on all of us, it to spot when not flowering, so that involves volunteers from we were very lucky to catch it could not break the strong spir- the public in the monitoring it of CREW. Amidst the great in flower. The CREW team has taken a special interest in the and conservation of South challenges we came up tops genus Marasmodes (we even Africa’s threatened plants. once again, with some excep- have a day in April dedicated to CREW aims to capacitate a tionally great discoveries. the monitoring of this genus) network of volunteers from as they all occur in the lowlands a range of socio-economic Our first great adventure for and are severely threatened. I backgrounds to monitor the year took place in the knew from the herbarium speci- and conserve South Afri- Villiersdorp area. We had to mens that there have not been ca’s threatened plant spe- collect flowering material of any collections of Marasmodes Prismatocarpus lycioides, a data cies. The programme links from the Villiersdorp area and volunteers with their local deficient species in the Campan- was therefore very excited conservation agencies and ulaceae family. We rediscovered about this discovery. As usual, this species in the area in 2008 my first reaction was: ‘It’s a particularly with local land and all we had to go on was a new species!’ but I soon so- stewardship initiatives to en- scrappy nonflowering branch.
    [Show full text]
  • Basic Biology and Applications of Actinobacteria
    Edited by Shymaa Enany Basic Biology and Applications of ActinobacteriaBasic of Biology and Applications Actinobacteria have an extensive bioactive secondary metabolism and produce a huge Basic Biology and amount of naturally derived antibiotics, as well as many anticancer, anthelmintic, and antifungal compounds. These bacteria are of major importance for biotechnology, medicine, and agriculture. In this book, we present the experience of worldwide Applications of Actinobacteria specialists in the field of Actinobacteria, exploring their current knowledge and future prospects. Edited by Shymaa Enany ISBN 978-1-78984-614-0 Published in London, UK © 2018 IntechOpen © PhonlamaiPhoto / iStock BASIC BIOLOGY AND APPLICATIONS OF ACTINOBACTERIA Edited by Shymaa Enany BASIC BIOLOGY AND APPLICATIONS OF ACTINOBACTERIA Edited by Shymaa Enany Basic Biology and Applications of Actinobacteria http://dx.doi.org/10.5772/intechopen.72033 Edited by Shymaa Enany Contributors Thet Tun Aung, Roger Beuerman, Oleg Reva, Karen Van Niekerk, Rian Pierneef, Ilya Korostetskiy, Alexander Ilin, Gulshara Akhmetova, Sandeep Chaudhari, Athumani Msalale Lupindu, Erasto Mbugi, Abubakar Hoza, Jahash Nzalawahe, Adriana Ribeiro Carneiro Folador, Artur Silva, Vasco Azevedo, Carlos Leonardo De Aragão Araújo, Patricia Nascimento Da Silva, Jorianne Thyeska Castro Alves, Larissa Maranhão Dias, Joana Montezano Marques, Alyne Cristina Lima, Mohamed Harir © The Editor(s) and the Author(s) 2018 The rights of the editor(s) and the author(s) have been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights to the book as a whole are reserved by INTECHOPEN LIMITED. The book as a whole (compilation) cannot be reproduced, distributed or used for commercial or non-commercial purposes without INTECHOPEN LIMITED’s written permission.
    [Show full text]
  • Design a Database of Italian Vascular Alimurgic Flora (Alimurgita): Preliminary Results
    plants Article Design a Database of Italian Vascular Alimurgic Flora (AlimurgITA): Preliminary Results Bruno Paura 1,*, Piera Di Marzio 2 , Giovanni Salerno 3, Elisabetta Brugiapaglia 1 and Annarita Bufano 1 1 Department of Agricultural, Environmental and Food Sciences University of Molise, 86100 Campobasso, Italy; [email protected] (E.B.); [email protected] (A.B.) 2 Department of Bioscience and Territory, University of Molise, 86090 Pesche, Italy; [email protected] 3 Graduate Department of Environmental Biology, University “La Sapienza”, 00100 Roma, Italy; [email protected] * Correspondence: [email protected] Abstract: Despite the large number of data published in Italy on WEPs, there is no database providing a complete knowledge framework. Hence the need to design a database of the Italian alimurgic flora: AlimurgITA. Only strictly alimurgic taxa were chosen, excluding casual alien and cultivated ones. The collected data come from an archive of 358 texts (books and scientific articles) from 1918 to date, chosen with appropriate criteria. For each taxon, the part of the plant used, the method of use, the chorotype, the biological form and the regional distribution in Italy were considered. The 1103 taxa of edible flora already entered in the database equal 13.09% of Italian flora. The most widespread family is that of the Asteraceae (20.22%); the most widely used taxa are Cichorium intybus and Borago officinalis. The not homogeneous regional distribution of WEPs (maximum in the south and minimum in the north) has been interpreted. Texts published reached its peak during the 2001–2010 decade. A database for Italian WEPs is important to have a synthesis and to represent the richness and Citation: Paura, B.; Di Marzio, P.; complexity of this knowledge, also in light of its potential for cultural enhancement, as well as its Salerno, G.; Brugiapaglia, E.; Bufano, applications for the agri-food system.
    [Show full text]
  • Fecundity of Ant Queens in Relation to Their Age and the Mode of Colony Founding L
    Insectes Sociaux, Paris Masson, Paris, 1990 1990, Volume 37, n ~ 2, pp. 116-130 FECUNDITY OF ANT QUEENS IN RELATION TO THEIR AGE AND THE MODE OF COLONY FOUNDING L. KELLER (1) and L. PASSERA (2) (1) Musde Zoologique, Palais de Rumine, CP 448, 1000 Lausanne 17, Switzerland (2) Laboratoire d'Entomologie, Universitd Paul Sabatier, 118, route de Narbonne, F 31062 Toulouse Cedex, France, U.A. C.N.R.S. 303 Regu le 23 janvier 1989 Accept6 le 15 juin 1989 SUMMARY The change over time in the fecundity and weight of queens was investigated in three monogynous, independent colony founding species, Lasius niger, Camponotus ligniperda and C. herculaneus, and two polygynous dependent colony founding species, Plagiolepis pygmaea and Iridomyrmex humilis. Queens of the three species founding independently exhibited a similar pattern with a significant loss of weight between mating and the emergence of the first workers. In contrast, weights of queens of the species employing dependent colony founding remained more stable. Fecundity of queens founding inde- pendently increased slowly with time whereas fecundity of queens founding dependently reached the maximum level some weeks after the beginning of the first reproductive season. These results are discussed in relation to some differences in the life history (e.g., life-span) between queens utilizing independent and dependent colony founding. RESUME Fdcondit6 des reines de fourmis en relation avec leur &ge et le mode de fondation de la soci6t6 On a 6tud6 dans ce travail les variations en fonction du temps de la f6condit6 et du poids des reines fondatrices de trois esp6ces monogynes h fondation ind6pendante (Lasius niger, Camponotus ligniperda, Camponotus herculeanus) et de deux esp6ces polygynes h fondation d6pendante (Plagiolepis pygmaea et Iridomyrmex humilis).
    [Show full text]
  • Recursos Florales Usados Por Dos Especies De Bombus En Un Fragmento De Bosque Subandino (Pamplonita-Colombia)
    ARTÍCULO ORIGINAL REVISTA COLOMBIANA DE CIENCIA ANIMAL Rev Colombiana Cienc Anim 2017; 9(1):31-37. Recursos florales usados por dos especies de Bombus en un fragmento de bosque subandino (Pamplonita-Colombia) Floral resources use by two species of Bombus in a subandean forest fragment (Pamplonita-Colombia) 1* 2 3 Mercado-G, Jorge M.Sc, Solano-R, Cristian Biol, Wolfgang R, Hoffmann Biol. 1Universidad de Sucre, Departamento de Biología y Química, Grupo Evolución y Sistemática Tropical. Sincelejo. Colombia. 2IANIGLA, Departamento de Paleontología, CCT CONICET. Mendoza, Argentina. 3Universidad de Pamplona, Facultad de Ciencias Básicas, Grupo de Biocalorimetría. Pamplona, Colombia Keywords: Abstract Pollen; It is present the results of a palynological analysis of two species of the genus palinology; Bombus in vicinity of Pamplonita-Norte of Santander. On feces samples were diet; identified and counted (april and may of 2010) 1585 grains of pollen, within which Norte de Santander; Solanaceae, Asteraceae, Malvaceae and Fabaceae were the more abundat taxa. Hymenoptera, feces. With regard to the diversity, April was the most rich, diverse and dominant month; however in B. pullatus we observed greater wealth and dominance. Finally, it was possible to determine that a large percentage of pollen grains that were identified as Solanaceae correspond to Solanum quitoense. The results of this study make clear the importance of palynology at the time of establishing the diet of these species, in addition to reflect its role of those species as possible provider in ecosistemic services either in wild plant as a crops in Solanaceae case. Palabras Clave: Resumen Polen; Se presentan los resultados de un análisis palinológico en dos especies del palinología; género Bombus en cercanías de Pamplonita (Norte de Santander-Colombia) dieta; durante los meses de abril y mayo de 2010.
    [Show full text]
  • Of Connecting Plants and People
    THE NEWSLEttER OF THE SINGAPORE BOTANIC GARDENS VOLUME 34, JANUARY 2010 ISSN 0219-1688 of connecting plants and people p13 Collecting & conserving Thai Convolvulaceae p2 Sowing the seeds of conservation in an oil palm plantation p8 Spindle gingers – jewels of Singapores forests p24 VOLUME 34, JANUARY 2010 Message from the director Chin See Chung ARTICLES 2 Collecting & conserving Thai Convolvulaceae George Staples 6 Spotlight on research: a PhD project on Convolvulaceae George Staples 8 Sowing the seeds of conservation in an oil palm plantation Paul Leong, Serena Lee 12 Propagation of a very rare orchid, Khoo-Woon Mui Hwang, Lim-Ho Chee Len Robiquetia spathulata Whang Lay Keng, Ali bin Ibrahim 150 years of connecting plants and people: Terri Oh 2 13 The making of stars Two minds, one theory - Wallace & Darwin, the two faces of evolution theory I do! I do! I do! One evening, two stellar performances In Search of Gingers Botanical diplomacy The art of botanical painting Fugitives fleurs: a unique perspective on floral fragments Falling in love Born in the Gardens A garden dialogue - Reminiscences of the Gardens 8 Children celebrate! Botanical party Of saints, ships and suspense Birthday wishes for the Gardens REGULAR FEATURES Around the Gardens 21 Convolvulaceae taxonomic workshop George Staples What’s Blooming 18 22 Upside down or right side up? The baobab tree Nura Abdul Karim Ginger and its Allies 24 Spindle gingers – jewels of Singapores forests Jana Leong-Škornicková From Education Outreach 26 “The Green Sheep” – a first for babies and toddlers at JBCG Janice Yau 27 International volunteers at the Jacob Ballas Children’s Garden Winnie Wong, Janice Yau From Taxonomy Corner 28 The puzzling bathroom bubbles plant..
    [Show full text]
  • The Conservation Management and Ecology of Northeastern North
    THE CONSERVATION MANAGEMENT AND ECOLOGY OF NORTHEASTERN NORTH AMERICAN BUMBLE BEES AMANDA LICZNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO September 2020 © Amanda Liczner, 2020 ii Abstract Bumble bees (Bombus spp.; Apidae) are among the pollinators most in decline globally with a main cause being habitat loss. Habitat requirements for bumble bees are poorly understood presenting a research gap. The purpose of my dissertation is to characterize the habitat of bumble bees at different spatial scales using: a systematic literature review of bumble bee nesting and overwintering habitat globally (Chapter 1); surveys of local and landcover variables for two at-risk bumble bee species (Bombus terricola, and B. pensylvanicus) in southern Ontario (Chapter 2); identification of conservation priority areas for bumble bee species in Canada (Chapter 3); and an analysis of the methodology for locating bumble bee nests using detection dogs (Chapter 4). The main findings were current literature on bumble bee nesting and overwintering habitat is limited and biased towards the United Kingdom and agricultural habitats (Ch.1). Bumble bees overwinter underground, often on shaded banks or near trees. Nests were mostly underground and found in many landscapes (Ch.1). B. terricola and B. pensylvanicus have distinct habitat characteristics (Ch.2). Landscape predictors explained more variation in the species data than local or floral resources (Ch.2). Among local variables, floral resources were consistently important throughout the season (Ch.2). Most bumble bee conservation priority areas are in western Canada, southern Ontario, southern Quebec and across the Maritimes and are most often located within woody savannas (Ch.3).
    [Show full text]
  • Catálogo De Las Abejas Del Género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) De Guatemala
    Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Catálogo de las abejas del género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) de Guatemala Catalogue of the bees of the genus Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) in Guatemala María J. Dardón1, Carmen L. Yurrita 2 y Mabel Vásquez 3 1 Instituto de Investigaciones Químicas y Biológicas 2 Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, 3Centro de Estudios Conservacionistas, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala (USAC) [email protected], [email protected] Recibido: enero, 2016 . Aceptado: marzo, 2016 Resumen Este catálogo contiene un inventario actualizado de las especies del género Bombus que han sido citadas para Guatemala. Se presentan los datos taxonómicos, incluyendo sinonimias, de un total de 13 especies. Además, para cada especie se indica su distribución geográfica y las regiones bióticas de Guatemala en las que se ha recolectado. Este trabajo es la base para la posterior revisión del género Bombus en Guatemala. Palabras clave: Abejorros, biomas, taxonomía, Neotropical. Abstract This catalog contains an updated list of the species of the genus Bombus registered for Guatemala. Taxonomic data are presented for a total of 13 species, including synonyms and their geographical distribution, with emphasis in Guatemala. This work is the basis for the subsequent revision of the genus Bombus in Guatemala. Keywords: Bumblebees, biomes, taxonomy, Neotropical. Revista Científica| Vol. 26 No. 1 | Año 2016 9 Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Introducción Las abejas del género Bombus Latreille, 1802 se espera mayor información para determinar se encuentran distribuidas principalmente su estatus (Williams, 2016).
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Symbiotic Adaptations in the Fungal Cultivar of Leaf-Cutting Ants
    ARTICLE Received 15 Apr 2014 | Accepted 24 Oct 2014 | Published 1 Dec 2014 DOI: 10.1038/ncomms6675 Symbiotic adaptations in the fungal cultivar of leaf-cutting ants Henrik H. De Fine Licht1,w, Jacobus J. Boomsma2 & Anders Tunlid1 Centuries of artificial selection have dramatically improved the yield of human agriculture; however, strong directional selection also occurs in natural symbiotic interactions. Fungus- growing attine ants cultivate basidiomycete fungi for food. One cultivar lineage has evolved inflated hyphal tips (gongylidia) that grow in bundles called staphylae, to specifically feed the ants. Here we show extensive regulation and molecular signals of adaptive evolution in gene trancripts associated with gongylidia biosynthesis, morphogenesis and enzymatic plant cell wall degradation in the leaf-cutting ant cultivar Leucoagaricus gongylophorus. Comparative analysis of staphylae growth morphology and transcriptome-wide expressional and nucleotide divergence indicate that gongylidia provide leaf-cutting ants with essential amino acids and plant-degrading enzymes, and that they may have done so for 20–25 million years without much evolutionary change. These molecular traits and signatures of selection imply that staphylae are highly advanced coevolutionary organs that play pivotal roles in the mutualism between leaf-cutting ants and their fungal cultivars. 1 Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden. 2 Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark. w Present Address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg, Denmark. Correspondence and requests for materials should be addressed to H.H.D.F.L.
    [Show full text]
  • Inbreeding and Kinship in the Ant Plagiolepis Pygmaea
    Molecular Ecology (2005) 14, 2007–2015 doi: 10.1111/j.1365-294X.2005.02529.x InbreedingBlackwell Publishing, Ltd. and kinship in the ant Plagiolepis pygmaea K. TRONTTI,* S. ARON† and L. SUNDSTRÖM* *Department of Biological and Environmental Sciences, P.O. Box 65 (Viikinkaari 1), FIN-00014 University of Helsinki, Finland, †Behavioural and Evolutionary Ecology, CP 160/12, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium Abstract In ants the presence of multiple reproductive queens (polygyny) decreases the relatedness among workers and the brood they rear, and subsequently dilutes their inclusive fitness benefits from helping. However, adoption of colony daughters, low male dispersal in con- junction with intranidal (within nest) mating and colony reproduction by budding may preserve local genetic differences, and slow down the erosion of relatedness. Reduced dis- persal and intranidal mating may, however, also lead to detrimental effects owing to com- petition and inbreeding. We studied mating and dispersal patterns, and colony kinship in three populations of the polygynous ant Plagiolepis pygmaea using microsatellite markers. We found that the populations were genetically differentiated, but also a considerable degree of genetic structuring within populations. The genetic viscosity within populations can be attributed to few genetically homogeneous colony networks, which presumably have arisen through colony reproduction by budding. Hence, selection may act at different levels, the individuals, the colonies and colony networks. All populations were also significantly inbred (F = 0.265) suggesting high frequencies of intranidal mating and low male dispersal. Consequently the mean regression relatedness among workers was significantly higher (r = 0.529–0.546) than would be expected under the typically reported number (5–35) of queens in nests of the species.
    [Show full text]
  • Evolutionary History of Inquiline Social Parasitism in Plagiolepis Ants
    Journal Pre-proofs Evolutionary history of inquiline social parasitism in Plagiolepis ants Félicien Degueldre, Patrick Mardulyn, Alexandre Kuhn, Amélie Pinel, Celal Karaman, Claude Lebas, Enrico Schifani, Gregor Bračko, Herbert C. Wagner, Kadri Kiran, Lech Borowiec, Luc Passera, Sílvia Abril, Xavier Espadaler, Serge Aron PII: S1055-7903(20)30288-8 DOI: https://doi.org/10.1016/j.ympev.2020.107016 Reference: YMPEV 107016 To appear in: Molecular Phylogenetics and Evolution Received Date: 8 January 2020 Revised Date: 12 November 2020 Accepted Date: 17 November 2020 Please cite this article as: Degueldre, F., Mardulyn, P., Kuhn, A., Pinel, A., Karaman, C., Lebas, C., Schifani, E., Bračko, G., Wagner, H.C., Kiran, K., Borowiec, L., Passera, L., Abril, S., Espadaler, X., Aron, S., Evolutionary history of inquiline social parasitism in Plagiolepis ants, Molecular Phylogenetics and Evolution (2020), doi: https://doi.org/10.1016/j.ympev.2020.107016 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier Inc. Evolutionary history of inquiline social parasitism in Plagiolepis ants Félicien Degueldre1, Patrick Mardulyn1, Alexandre Kuhn1, Amélie Pinel1, Celal Karaman2, Claude Lebas3, Enrico Schifani4, Gregor Bračko5, Herbert C.
    [Show full text]