Anatomical Characteristics of Palatoglossus and the Anterior Faucial Pillar

Total Page:16

File Type:pdf, Size:1020Kb

Anatomical Characteristics of Palatoglossus and the Anterior Faucial Pillar Anatomical Characteristics of Palatoglossus and the Anterior Faucial Pillar DAVID P. KUEHN, Ph.D. NABIL A. AZZAM, Ph.D. Iowa City, Iowa 52242 Palatoglossus and the anterior faucial pillar were studied using three techniques: 1) gross dissection, 2) radiographic filming, and 3) histological sectioning. The total subject sample included 25 normal adult male and female cadavers. Palatoglossus has a flattened belly within the faucial pillar, a fan-shaped termination within the palate, and a vertical tapering termination within the tongue. The region of attachment into the palate differs among individuals which could influence its relative importance in velar versus lingual movement. The pillar contains a large investment of loose connective tissue whlch also penetrates palatoglossus. The collagenous framework would apparently allow expansion of the pillars but also prevent rupture of the tissue at extreme extension. The anterior portion of the pillar contains a sheath of elastic fibers with a density gradient increasing from the tongue to the soft palate. The elastic fibers, which also intermingle with palatoglossus fascicles, could provide a restorative force in lowering the palate, helping to keep the nasopharyngeal airway patent. Palatoglossus is classified as a muscle of the atoglossus, few details about its morphology soft palate in the 1968 Nomina Anatomica have been provided (Dickson et al., 1974). For although some authors describe it in relation example, its size has not been well-docu- to the lingual muscles. The classification is mented. Luschka (1868) reported that pala- somewhat arbitrary since the muscle attaches toglossus is only 1.5 and 3 mm in its narrow to both movable structures. However, as and wide diameters at the level of the anterior pointed out by Crouch (1972), its embryo- faucial pillar. However, according to Hoeve's logical origin and innervation are more simi- (1910) manual of dissection, palatoglossus is lar to those of the palatal muscles. The lingual 13 mm in diameter and is cylindrically muscles receive their innervation from the shaped. Reports regarding the size of palato- hypoglossal nerve and the palatal muscles glossus in cleft palate individuals also are excluding tensor veli palatini, are supplied disparate. Veau (1931) and later Kriens through the pharyngeal plexus. (1975) found palatoglossus to be extremely Although there is general agreement con- hypoplastic in cleft palate newborns. In con- cerning the anatomical characteristics of pal- trast, Fara and Dvorak (1970) reported "com- paratively good development" of palatoglos- sus in relation to other palatal muscles in 18 Dr. David P. Kuehn is Associate Research Scientist, Department of Otolaryngology and Maxillofacial Sur- stillborn children with cleft palate. gery, University of Iowa, Iowa City, IA 52242. Dr. Az- Palatoglossus is in a position to lower the zam, who has been Associate Professor, Department of palate, elevate the tongue dorsum, and con- Anatomy, College of Medicine, University of Iowa, is strict the anterior faucial pillars. It is generally currently Professor of Anatomy, Department of Human Morphology and Experimental Pathology, Faculty of agreed that tongue elevation and constriction Medicine, Kuwait University, Kuwait. of the fauces helps to propel the bolus of food A paper and poster based on this study were presented toward the esophagus during swallowing. at the Third International Congress on Cleft Palate and - This activity also tends to occlude the oral Related Craniofacial Anomalies, Toronto, Canada 1977. cavity thus preventing retrograde flow. How- This project was supported in part by PHS Research Grant DE-00853, The National Institute of Dental Re- ever, such action may not occur in those cleft search. palate and normal individuals who utilize the 349 350 _ Cleft Palate Journal, October 1978, Vol. 15 No. 4 so-called "free fall" mechanism of swallowing sible to provide a medial-to-lateral dissection (Flowers and Morris, 1973). » approach. In this approach, the anterior fau- The function of palatoglossus during speech cial pillar was easily accessible (Figure 1). The has not yet been resolved. Electromyographic mucous membrane and submucous fascia of activity recorded from palatoglossus in asso- the anterior faucial pillar were removed with ciation with velar and lingual movements relative ease exposing the palatoglossus mus- varies between speakers (Fritzell, 1969; Lub- cle (Figure 2). (The muscle attachments were ker et al., 1970; Lubker and May, 1973; Bell- dissected after the second phase had been Berti, 1976; Benguerel et al., 1977). As pointed completed). The widest diameter of the mus- out by Bell-Berti (1976) it is not known cle was measured with a caliper midway be- whether such variation is due to idiosyncratic tween the tongue and soft palate. Levator veli behavioral differences or to anatomical fac- palatini also was exposed with dissection ex- tors. ' tending as close to the origin and insertion as The anterior faucial pillar has received lit- possible without damaging or displacing the tle attention in the literature in spite of the attachments. The levator diameter also was fact that it is the site of a common surgical measured to provide a comparison with that procedure, tonsillectomy. Even with present of palatoglossus. The measurement was made day surgical techniques the anterior faucial in the region of the auditory tube orifice after pillar is invaded in some cases which undoubt- torus tubarius had been removed. It should edly injures palatoglossus and causes consid- be pointed out that these measurements may erable scarring (B.F. McCabe, personal com- deviate somewhat from muscle size in vivo munication). Tissue contracture due to scar- due to fixation artifacts. ring might be expected to constrain velar The second phase of the study provided an elevation in these cases. However, speech indication of possible force vectors of palato- problems apparently have not been docu- glossus and levator relative to the soft palate. mented in relation specifically to the effects Radiographic filming was utilized and in- of this surgical trauma. volved wrapping the midportion of palato- The purpose of the present study is to pro- glossus and levator with a radiopaque thin vide additional information concerning the metal foil (Dryfoil) to enable visualization of anatomy of palatoglossus and its surrounding the muscles. A blunt-end thumb forceps was anterior faucial pillar, all of which is necessary used to guide the foil through the bed which to clarify the uncertainties and conflicts re- lay deep to each muscle. The foil was then lated to the configuration and function of the folded securely around the muscle belly. The muscle-pillar complex. muscle was not displaced during this proce- dure and the muscle attachments were left Procedure intact. Hemisections from nine cadavers were The sample included 25 heads from adult x-rayed in lateral, frontal, and basal projec- human male and female cadavers represent- tions using a cephalostat. ative of the fifth, sixth, or seventh decades at In four of the specimens, the jaw opening the time of death. They were selected from appeared to be unnaturally large. The x-ray bodies donated to the University of Iowa for films were repeated for these specimens with medical research. Available medical histories the jaw in a more closed position. Lateral indicated no gross orofacial pathologies and radiographs showed that a closer jaw position none of the subjects had undergone tonsillec- had no effect on levator position but changed tomy. This was verified by both investigators the orientation of palatoglossus. Since the pal- during dissection. atoglossus muscle attachments were intact, The study was conducted in three phases. raising the jaw, which also raised the tongue, The first phase consisted of gross dissection of decreased the angle formed by palatoglossus fourteen cadaver heads which were sectioned and the hard palate. That is, the angle be- parasagittally as close to the midline as pos- came more acute. The third or histologic phase involved sec- ' Professor and Head, Department of Otolaryngology tioning of undissected blocks of tissue from and Maxillofacial Surgery, University of Iowa. eleven cadavers. These blocks consisted of the Kuehn, Azzam, PALATOGLOSSUS AND FAUCIAL PII LAR 351 FIGURE |. Parasagittal section showing the undissected anterior faucial pillar (arrow) bulging into the oral cavity. Tongue (T); Hard Palate (HP). entire anterior faucial pillar with lingual and Results palatal tags attached. However, because of the excessively large size of the blocks other- Macroscopic OrservaTIons. The anterior wise required, the lingual and palatal tags faucial pillar was well-defined in all speci- were not extended to the midline. The tissue mens. The bulge which projected medially blocks were post-fixed in 10 per cent formalin coursed between the soft palate and tongue prior to paraffin embedding and sectioning. (Figure 1). After removing the mucous mem- Serial sections at 15 um intervals proceeded brane, palatoglossus was found to have a flat- superiorly into the soft palate and inferiorly tened belly within the anterior faucial pillar. into the tongue. Thus, transverse sections were In most specimens, a substantial investment obtained in the soft palate and tongue por- of connective tissue was noted within the mus- tions as well as the anterior faucial pillar. cle itself as well as within the surrounding A spectrum of histological detail was visu- tissue
Recommended publications
  • The Role of the Tensor Veli Palatini Muscle in the Development of Cleft Palate-Associated Middle Ear Problems
    Clin Oral Invest DOI 10.1007/s00784-016-1828-x REVIEW The role of the tensor veli palatini muscle in the development of cleft palate-associated middle ear problems David S. P. Heidsieck1 & Bram J. A. Smarius1 & Karin P. Q. Oomen2 & Corstiaan C. Breugem1 Received: 8 July 2015 /Accepted: 17 April 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Conclusion More research is warranted to clarify the role of Objective Otitis media with effusion is common in infants the tensor veli palatini muscle in cleft palate-associated with an unrepaired cleft palate. Although its prevalence is Eustachian tube dysfunction and development of middle ear reduced after cleft surgery, many children continue to suffer problems. from middle ear problems during childhood. While the tensor Clinical relevance Optimized surgical management of cleft veli palatini muscle is thought to be involved in middle ear palate could potentially reduce associated middle ear ventilation, evidence about its exact anatomy, function, and problems. role in cleft palate surgery is limited. This study aimed to perform a thorough review of the lit- Keywords Cleft palate . Eustachian tube . Otitis media with erature on (1) the role of the tensor veli palatini muscle in the effusion . Tensor veli palatini muscle Eustachian tube opening and middle ear ventilation, (2) ana- tomical anomalies in cleft palate infants related to middle ear disease, and (3) their implications for surgical techniques used in cleft palate repair. Introduction Materials and methods A literature search on the MEDLINE database was performed using a combination of the keywords Otitis media with effusion is very common in infants with an Btensor veli palatini muscle,^ BEustachian tube,^ Botitis media unrepaired cleft palate under the age of 2 years.
    [Show full text]
  • The Articulatory System Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D
    The articulatory system Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D. STRUCTURE/FUNCTION VOCAL TRACT CLASSIFICATION OF CONSONANTS AND VOWELS MORE ON RESONANCE ACOUSTIC ANALYSIS/ SPECTROGRAMS SUPRSEGMENTALS, COARTICULATION 1 Midsagittal dissection From Kent, 1997 2 Oral Cavity 3 Oral Structures – continued • Moistened by saliva • Lined by mucosa • Saliva affected by meds 4 Tonsils • PALATINE* (laterally – seen in oral periph • LINGUAL (inf.- root of tongue) • ADENOIDS (sup.) [= pharyngeal] • Palatine, lingual tonsils are larger in children • *removed in tonsillectomy 5 Adenoid Facies • Enlargement from infection may cause problems (adenoid facies) • Can cause problems with nasal sounds or voicing • Adenoidectomy; also tonsillectomy (for palatine tonsils) 6 Adenoid faces (example) 7 Oral structures - frenulum Important component of oral periphery exam Lingual frenomy – for ankyloglossia “tongue-tie” Some doctors will snip for infants, but often will loosen by itself 8 Hard Palate Much variability in palate shape and height Very high vault 9 Teeth 10 Dentition - details Primary (deciduous, milk teeth) Secondary (permanent) n=20: n=32: ◦ 2 incisor ◦ 4 incisor ◦ 1 canine ◦ 2 canine ◦ 2 molar ◦ 4 premolar (bicuspid) Just for “fun” – baby ◦ 6 molar teeth pushing in! NOTE: x 2 for upper and lower 11 Types of malocclusion • Angle’s classification: • I, II, III • Also, individual teeth can be misaligned (e.g. labioversion) Also “Neutrocclusion/ distocclusion/mesiocclusion” 12 Dental Occlusion –continued Other terminology 13 Mandible Action • Primary movements are elevation and depression • Also…. protrusion/retraction • Lateral grinding motion 14 Muscles of Jaw Elevation Like alligators, we are much stronger at jaw elevation (closing to head) than depression 15 Jaw Muscles ELEVATORS DEPRESSORS •Temporalis ✓ •Mylohyoid ✓ •Masseter ✓ •Geniohyoid✓ •Internal (medial) Pterygoid ✓ •Anterior belly of the digastric (- Kent) •Masseter and IP part of “mandibular sling” •External (lateral) pterygoid(?)-- also protrudes and rocks side to side.
    [Show full text]
  • Dr. Maue-Dickson Is Associate Professor of Pediat- Rics, University of Miami, Mailman Center for Child Development, University
    Section II. Anatomy and Physiology WILMA MAUE-DICKSON, Ph.D. (CHAIRMAN) Introduction Middle Ear Musculature, The Auditory Tube, and The Velopharyngeal This Section has been prepared for the Mechanism purpose of updating the previous report, "Status of Research in Cleft Palate: Anat- 1. Tur Mippour® Ear omy and Physiology," published in two parts in the Cleft Palate Journal, Volume 11, The authors of the previous report 1974, and Volume 12, 1975. questioned the validity of the concept that As indicated in the previous two-part the tensor tympani and the stapedius mus- report, it is imperative to consider not only cles provide protection to the inner ear the palate but all of the oral-facial-pharyn- from loud sounds, except perhaps for geal system, both in normal and abnormal minimal protection (less than 10 dB) at low conditions, and both in the adult and in frequencies. They also cited research the developing child. Thus, this review in- which indicated that stapedius contraction cludes normal, abnormal, and develop- is more closely associated with voicing and mental studies on middle ear musculature, coughing than with acoustic stimuli, and the auditory tube, the velopharyngeal that the middle ear muscles might be in- mechanism, the tongue, the larynx, the volved in auditory tube opening. face and mandible, and blood supply and The literature reviewed for this report innervation relevant to cleft lip and palate. does not resolve all of these questions, but Though the relevance of embryology of it does add some focus for future research. the orofacial complex is obvious, it has Greisen and Neergaard (1975) used extra- been reviewed in a recently published re- tympanic phonometry to study middle ear port (Dickson, 1975) and will not be in- reflex activity and were able to demon- cluded as a separate topic in this review strate a tensor tympani reflex in response because of space limitations.
    [Show full text]
  • The Myloglossus in a Human Cadaver Study: Common Or Uncommon Anatomical Structure? B
    Folia Morphol. Vol. 76, No. 1, pp. 74–81 DOI: 10.5603/FM.a2016.0044 O R I G I N A L A R T I C L E Copyright © 2017 Via Medica ISSN 0015–5659 www.fm.viamedica.pl The myloglossus in a human cadaver study: common or uncommon anatomical structure? B. Buffoli*, M. Ferrari*, F. Belotti, D. Lancini, M.A. Cocchi, M. Labanca, M. Tschabitscher, R. Rezzani, L.F. Rodella Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy [Received: 1 June 2016; Accepted: 18 July 2016] Background: Additional extrinsic muscles of the tongue are reported in literature and one of them is the myloglossus muscle (MGM). Since MGM is nowadays considered as anatomical variant, the aim of this study is to clarify some open questions by evaluating and describing the myloglossal anatomy (including both MGM and its ligamentous counterpart) during human cadaver dissections. Materials and methods: Twenty-one regions (including masticator space, sublin- gual space and adjacent areas) were dissected and the presence and appearance of myloglossus were considered, together with its proximal and distal insertions, vascularisation and innervation. Results: The myloglossus was present in 61.9% of cases with muscular, ligamen- tous or mixed appearance and either bony or muscular insertion. Facial artery pro- vided myloglossal vascularisation in the 84.62% and lingual artery in the 15.38%; innervation was granted by the trigeminal system (buccal nerve and mylohyoid nerve), sometimes (46.15%) with hypoglossal component. Conclusions: These data suggest us to not consider myloglossus as a rare ana- tomical variant.
    [Show full text]
  • Head & Neck Muscle Table
    Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division
    [Show full text]
  • Initial Stage of Fetal Development of the Pharyngotympanic Tube Cartilage with Special Reference to Muscle Attachments to the Tube
    Original Article http://dx.doi.org/10.5115/acb.2012.45.3.185 pISSN 2093-3665 eISSN 2093-3673 Initial stage of fetal development of the pharyngotympanic tube cartilage with special reference to muscle attachments to the tube Yukio Katori1, Jose Francisco Rodríguez-Vázquez2, Samuel Verdugo-López2, Gen Murakami3, Tetsuaki Kawase4,5, Toshimitsu Kobayashi5 1Division of Otorhinolaryngology, Sendai Municipal Hospital, Sendai, Japan, 2Department of Anatomy and Embryology II, Faculty of Medicine, Complutense University, Madrid, Spain, 3Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, 4Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, 5Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan Abstract: Fetal development of the cartilage of the pharyngotympanic tube (PTT) is characterized by its late start. We examined semiserial histological sections of 20 human fetuses at 14-18 weeks of gestation. As controls, we also observed sections of 5 large fetuses at around 30 weeks. At and around 14 weeks, the tubal cartilage first appeared in the posterior side of the pharyngeal opening of the PTT. The levator veli palatini muscle used a mucosal fold containing the initial cartilage for its downward path to the palate. Moreover, the cartilage is a limited hard attachment for the muscle. Therefore, the PTT and its cartilage seemed to play a critical role in early development of levator veli muscle. In contrast, the cartilage developed so that it extended laterally, along a fascia-like structure that connected with the tensor tympani muscle. This muscle appeared to exert mechanical stress on the initial cartilage.
    [Show full text]
  • Ear Pain in Patients with Oropharynx Carcinoma: Karlt.Beer Peter Vock How MRI Contributes to the Explanation Richard H
    Eur Radiol (2004) 14:2206–2211 DOI 10.1007/s00330-004-2340-2 HEAD AND NECK Harriet C. Thoeny Ear pain in patients with oropharynx carcinoma: KarlT.Beer Peter Vock how MRI contributes to the explanation Richard H. Greiner of a prognostic and predictive symptom Received: 22 October 2003 Abstract Reflex otalgia is a predic- glossus muscle, stylopharyngeus Revised: 11 March 2004 tive and prognostic parameter for lo- muscle, hyoglossus muscle and pre- Accepted: 5 April 2004 cal control in patients with orophar- epiglottic space. No difference was Published online: 1 May 2004 ynx carcinoma. Can a morphologic found for the muscles of mastication, © Springer-Verlag 2004 correlate of this important symptom levator and tensor veli palatini mus- be detected by MRI? Thirty-six pa- cles, styloglossus muscle, genioglos- tients were prospectively evaluated sus muscle, intrinsic muscles of the by MRI before radical radiotherapy. tongue, digastric muscles, mucosal Sixteen patients had reflex otalgia; surface of the lateral and posterior 20 did not. The oropharynx and adja- pharyngeal wall, uvula, valleculae, cent regions were analyzed. Alter- parapharyngeal space and larynx. An ation was defined as effacement of alteration of structures innervated by H. C. Thoeny (✉) · P. Vock anatomical structures, signal alter- the glossopharyngeal nerve was vi- Department of Diagnostic Radiology, ation or enhancement after contrast sualized on MRI significantly more Inselspital, χ2 University of Bern, medium administration. The -test often when reflex otalgia was pres- Freiburgstrasse 10, 3010 Bern, Switzerland was used to compare categorical pa- ent. Involvement of structures inner- e-mail: [email protected], rameters. In patients with reflex vated by other cranial nerves did not [email protected] otalgia, alteration of the following show the same association with ear Tel.: +41-31-6322939 structures innervated by the glosso- pain.
    [Show full text]
  • Functional Anatomy of the Soft Palate Applied to Wind Playing
    Review Functional Anatomy of the Soft Palate Applied to Wind Playing Alison Evans, MMus, Bronwen Ackermann, PhD, and Tim Driscoll, PhD Wind players must be able to sustain high intraoral pressures in dition occurs because of a structural deformity, such as with order to play their instruments. Prolonged exposure to these high cleft palate. It is also associated with some other speech dis- pressures may lead to the performance-related disorder velopharyn- orders. VPI occurs when the soft palate fails to completely geal insufficiency (VPI). This disorder occurs when the soft palate fails to completely close the air passage between the oral and nasal close the oronasal cavity while attempting to blow air through cavities in the upper respiratory cavity during blowing tasks, this clo- the mouth, resulting in air escaping from the nose.5 Without sure being necessary for optimum performance on a wind instru- a tight air seal, the air passes into the nasal cavity and can ment. VPI is potentially career threatening. Improving music teach- then escape out the nose. This has a disastrous effect on wind ers’ and students’ knowledge of the mechanism of velopharyngeal playing, as the power behind the wind musicians’ sound closure may assist in avoiding potentially catastrophic performance- related disorders arising from dysfunction of the soft palate. In the relies on enough controlled expired air through the mouth. functional anatomy of the soft palate as applied to wind playing, Understandably, this disorder may potentially end the musi- seven muscles of the soft palate involved in the velopharyngeal clo- cian’s career.6 sure mechanism are reviewed.
    [Show full text]
  • Atlas of the Facial Nerve and Related Structures
    Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries.
    [Show full text]
  • Appendix B: Muscles of the Speech Production Mechanism
    Appendix B: Muscles of the Speech Production Mechanism I. MUSCLES OF RESPIRATION A. MUSCLES OF INHALATION (muscles that enlarge the thoracic cavity) 1. Diaphragm Attachments: The diaphragm originates in a number of places: the lower tip of the sternum; the first 3 or 4 lumbar vertebrae and the lower borders and inner surfaces of the cartilages of ribs 7 - 12. All fibers insert into a central tendon (aponeurosis of the diaphragm). Function: Contraction of the diaphragm draws the central tendon down and forward, which enlarges the thoracic cavity vertically. It can also elevate to some extent the lower ribs. The diaphragm separates the thoracic and the abdominal cavities. 2. External Intercostals Attachments: The external intercostals run from the lip on the lower border of each rib inferiorly and medially to the upper border of the rib immediately below. Function: These muscles may have several functions. They serve to strengthen the thoracic wall so that it doesn't bulge between the ribs. They provide a checking action to counteract relaxation pressure. Because of the direction of attachment of their fibers, the external intercostals can raise the thoracic cage for inhalation. 3. Pectoralis Major Attachments: This muscle attaches on the anterior surface of the medial half of the clavicle, the sternum and costal cartilages 1-6 or 7. All fibers come together and insert at the greater tubercle of the humerus. Function: Pectoralis major is primarily an abductor of the arm. It can, however, serve as a supplemental (or compensatory) muscle of inhalation, raising the rib cage and sternum. (In other words, breathing by raising and lowering the arms!) It is mentioned here chiefly because it is encountered in the dissection.
    [Show full text]
  • Palatoglossus Muscle Stimulation for Treatment of Obstructive Sleep Apnea
    Palatoglossus Muscle Stimulation for Treatment of Obstructive Sleep Apnea Summary A Vanderbilt researcher has developed a device to stimulate the palatoglossus muscle in order to treat sleep apnea. This has the potential to treat patients who have failed to succeed with current sleep apnea treatments. Addressed Need Hypoglossal nerve stimulation (HNS) has been established as an effective form of treatment for patients with obstructive sleep apnea who cannot tolerate positive airway pressure. HNS works by stiffening the tongue muscles to increase pharyngeal airway size. However, patients with significant retropalatal airway collapse are not candidates for HNS offered in the US. This new treatment would provide these patients with an alternative therapy method to combat sleep apnea. Unique Features Electrical stimulation of the nerve to the palatoglossus muscle Potential to dilate retropalatal space and reduce obstructive sleep apnea Can treat patients who may be unsuccessful with other sleep apnea treatments Technology Description The palatoglossus muscle forms the anterior tonsillar pillar. It approximates the tongue and soft palate, sealing off the oral cavity and dilating the retropalatal space. This muscle is innervated by branches of the pharyngeal plexus and functions independently of the hypoglossal nerve innervating the remaining tongue musculature. Electrical stimulation of the nerve to the palatoglossus muscle has the potential to dilate the retropalatal space and reduce the burden of obstructive sleep apnea. Technology Development Status The treatment process has been designed, and physiological studies are pending. Cadaveric studies are being completed to evaluate the accessibility of the palatoglossus muscle through the neck. Intellectual Property Status A patent application has been filed.
    [Show full text]
  • Anatomy and Physiology of the Velopharyngeal Mechanism
    Anatomy and Physiology of the Velopharyngeal Mechanism Jamie L. Perry, Ph.D.1 ABSTRACT Understanding the normal anatomy and physiology of the velopharyngeal mechanism is the first step in providing appropriate diagnosis and treatment for children born with cleft lip and palate. The velopharyngeal mechanism consists of a muscular valve that extends from the posterior surface of the hard palate (roof of mouth) to the posterior pharyngeal wall and includes the velum (soft palate), lateral pharyngeal walls (sides of the throat), and the posterior pharyngeal wall (back wall of the throat). The function of the velopharyngeal mechanism is to create a tight seal between the velum and pharyngeal walls to separate the oral and nasal cavities for various purposes, including speech. Velopharyngeal closure is accomplished through the contraction of several velopharyngeal muscles including the levator veli palatini, musculus uvulae, superior pharyngeal con- strictor, palatopharyngeus, palatoglossus, and salpingopharyngeus. The tensor veli palatini is thought to be responsible for eustachian tube function. KEYWORDS: Anatomy, physiology, velopharyngeal muscles, cleft palate anatomy Downloaded by: SASLHA. Copyrighted material. Learning Outcomes: As a result of this activity, the reader will be able to (1) list the major muscles of the velopharyngeal mechanism and discuss their functions; (2) list the sensory and motor innervation patterns for the muscles of the velopharyngeal mechanism; and (3) discuss the variations in velopharyngeal anatomy found in an unrepaired cleft palate. Understanding the normal anatomy and and treatment for children born with cleft lip physiology of the velopharyngeal mechanism is and palate. Most of the diagnostic and therapy the first step in providing appropriate diagnosis approaches are based on a strong foundation of 1Department of Communication Sciences and Disorders, Guest Editor, Ann W.
    [Show full text]