The Role of IFN-Γ in Regulating Nfkbiz Expression in Epidermal Keratinocytes

Total Page:16

File Type:pdf, Size:1020Kb

The Role of IFN-Γ in Regulating Nfkbiz Expression in Epidermal Keratinocytes Biomedical Research (Tokyo) 36 (2) 103-107, 2015 The role of IFN-γ in regulating Nfkbiz expression in epidermal keratinocytes 1 2 3 4 Toshina ISHIGURO-OONUMA , Kazuhiko OCHIAI , Kazuyoshi HASHIZUME , and Masami MORIMATSU 1 Department of Biological Resources, Integrated Center for Sciences, Ehime University, Ehime 791-0295, Japan; 2 Department of Veter- inary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; 3 Laboratory of Veterinary Physiology, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan; and 4 Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan (Received 25 November 2014; and accepted 25 December 2014) ABSTRACT Nfkbiz is an inhibitor of nuclear factor κB (IκB) protein localized to the nucleus. We previously found that Nfkbiz gene-disrupted mice showed atopic dermatitis-like lesion, implying the impor- tant role of Nfkbiz in skin homeostasis. The purpose of this study was to examine the effect of in- terferon (IFN)-γ on Nfkbiz expression in keratinocytes. IFN-γ induced Nfkbiz expression at a comparable level to IL-1. Promoter analysis revealed that interferon-stimulated response element (ISRE) located in the Nfkbiz promoter region is important for responding to the stimulation. Inter- estingly, IFN-γ and IL-1 displayed synergism in terms of inducing Nfkbiz expression. By using selective inhibitors, we found that Janus activated kinase (JAK) 1 and nuclear factor (NF)-κB are important for Nfkbiz expression after IFN-γ stimulation and for synergism between IFN-γ and IL- 1. These findings indicate a possible important role of Nfkbiz in modulating the progression of in- flammatory diseases in which IFN-γ and IL-1 are abundant. Nfkbiz is an inhibitor of nuclear factor κB (IκB) Interferon (IFN)-γ is a well-characterized, potent protein localized to the nucleus that is also termed inflammatory stimulus in a variety of biological sys- ‘molecule possessing ankyrin-repeats induced by li- tems (2). It exerts its cellular effects by interacting popolysaccharide (MAIL)’, ‘interleukin-1-inducible with its cell surface receptor, IFN-γR, which is com- nuclear ankyrin repeat protein (INAP)’, or IκBζ (5, posed of two subunits. The binding of IFN-γ to its 8, 20). Nfkbiz acts as a transcriptional regulator of receptor induces receptor oligomerization and acti- various genes on inflammatory stimuli such as LPS vation of the receptor-associated kinases called Ja- and IL-1 (19). We previously found that Nfkbiz nus activated kinase (JAK) 1 and JAK2 by trans- gene-disrupted mice showed atopic dermatitis-like phosphorylation (15). Activated JAKs phosphorylate lesion (16) and that Nfkbiz was constitutively ex- tyrosine residues within the cytoplasmic domains of pressed in epidermal keratinocytes (13). This consti- the receptor subunits, which act as docking sites for tutive expression was shown to be mediated by the STAT1 (2). Phosphorylation of STAT1 mediates di- activity of nuclear factor (NF)-κB (13). merization, which enables STAT1 dimers to translo- cate to the nucleus and bind to IFN-γ-activated sequence (GAS) or interferon-stimulated response Address correspondence to: Masami Morimatsu, DVM, element (ISRE) located within the promoters of Ph.D. IFN-γ-inducible genes (18). Keratinocytes express Laboratory of Laboratory Animal Science and Medi- cine, Department of Disease Control, Graduate School IFN-γ receptor and IFN-γ induces cytokine and che- of Veterinary Medicine, Hokkaido University, Sapporo mokine synthesis in these cells (4, 10). IFN-γ is also 060-0818, Japan known to promote exaggerated cytokine production Tel: +81-11-706-5106, Fax: +81-11-706-5106 in keratinocytes cultured from patients with atopic E-mail: [email protected] dermatitis, implying its important role in skin disor- 104 T. Ishiguro-Oonuma et al. ders (14). Recently, it was reported that several analyzed for the expression of Nfkbiz using an ABI ISREs are located at the Nfkbiz promoter region, al- PRISM 7700 with previously described primers and though there is no evidence that IFN-γ is involved probes (13). The amount of target gene expression in Nfkbiz expression (17). was calculated from the standard curves and was In the present study, we examined the effect of normalized using the expression of 18S ribosomal IFN-γ on Nfkbiz expression in epidermal keratino- RNA as an internal control. cytes and showed that IFN-γ is a strong inducer of Nfkbiz in keratinocytes. Luciferase assay. PAM212 cells were plated at 50% confluence in 12-well plates. After overnight cultiva- tion, the cells were transfected with plasmids (0.4 mg/ MATERIALS AND METHODS well) using FuGENE transfection reagent (Roche Animals. Wild-type pregnant C57BL/6 mice were Diagnostics, Indianapolis, IN, USA). The pRL-tk purchased from SLC Japan Inc. (Hamamatsu, Japan). vector was used as an internal control (Promega). The experimental procedure and care of animals Two days after transfection, IL-1 (20 ng/mL) and were in accordance with the National University IFN-γ (20 ng/mL) were added. After an additional Corporation Hokkaido University Regulations on one hour of incubation, the cells were washed once Animal Experimentation. in PBS and lysed in Passive Lysis Buffer (Promega). Luciferase activity was measured using the Dual- Cell culture. Primary keratinocytes were isolated Luciferase reporter assay system (Promega) as pre- from neonatal mice as previously reported (13). In viously described (6). brief, neonatal mice were sacrificed within 3 days of birth, and the skin was excised and sterilized using RESULTS 70% ethanol. After overnight dispase treatment to separate the epidermis and dermis, the epidermis was Expression analysis of Nfkbiz after stimulation with trypsinized for 10 min at 37°C to disaggregate the IFN-γ in primary keratinocytes and keratinocyte cell keratinocytes. The trypsin was neutralized with PBS line PAM212 containing 5% chelex-treated fetal calf serum (FCS). To determine the effect of IFN-γ on Nfkbiz expres- Then, cells were washed with serum-free PBS twice sion in keratinocytes, we carried out qRT-PCR. As a and suspended in serum-free keratinocyte growth positive control, we used IL-1 because this cytokine medium (KGM2 Bullet kit; Cambrex, Walkersville, is known to induce Nfkbiz expression strongly in MD, USA) containing 20 μM CaCl2, 1 × human ke- keratinocytes and macrophages. In primary keratino- ratinocyte growth supplement, 100 U/mL penicillin, cytes, IFN-γ increased Nfkbiz expression by 7.7-fold and 100 μg/mL streptomycin. The mouse keratino- (Fig. 1a). The magnitude of Nfkbiz expression by cyte cell line PAM212 was a kind gift from Dr. IFN-γ was comparable to that by IL-1 (Fig. 1a). Hajime Nakano (Hirosaki University). The cells were IFN-γ also increased Nfkbiz expression by 1.8-fold in maintained at 37°C in 5% CO2 in Eagle’s minimum the keratinocyte cell line PAM212 (Fig. 1b). Interest- essential medium supplemented with 10% heat-inac- ingly, co-stimulation with IFN-γ plus IL-1 synergis- tivated FCS, 100 U/mL penicillin, and 100 μg/mL tically enhanced Nfkbiz expression in both primary streptomycin. keratinocytes and PAM212 (Fig. 1). Reagents. IL-1β was obtained from Wako (Osaka, Promoter analysis of Nfkbiz Japan). Bay11-7082 was obtained from Biomol Re- To determine whether ISREs in the Nfkbiz promoter search Laboratories (Plymouth Meeting, PA, USA). are important for Nfkbiz expression, we performed AG490 and pan-JAK inhibitor were obtained from truncation analysis of this promoter. We used two Calbiochem (San Diego, CA, USA). fragments. One was a −723 to +18-bp Nfkbiz pro- moter fragment that contains three ISREs and the Quantitative reverse transcription-polymerase chain other was a −357 to +18-bp Nfkbiz promoter frag- reaction (qRT-PCR). Total RNA was prepared from ment. We transfected these constructs into PAM212 cells using TRIzol reagent (Invitrogen Corp., Carls- cells and measured luciferase activity in the presence bad, CA, USA). After RNA extraction, reverse tran- or absence of IFN-γ plus IL-1. When the ISRE con- scription reaction was carried out using SuperScript taining region (−723 to −358) was deleted, promoter II (Invitrogen) according to the manufacturer’s in- responsiveness significantly decreased (Fig. 2). The structions. Complementary DNA was quantitatively promoter activities of unstimulated controls were IFN-γ induces Nfkbiz expression 105 also decreased by the deletion. combined stimulation, pan-JAK inhibitor and Bay11- 7082 showed significant effects on Nfkbiz expres- Effects of selective inhibitors on Nfkbiz expression sion in PAM212 cells treated with IL-1 alone or in keratinocytes IFN-γ alone (Fig. 3c). We used selective inhibitors to investigate which signaling pathway is involved in Nfkbiz expression DISCUSSION after stimulation with IFN-γ plus IL-1 in keratino- cytes. We used three compounds; AG490 as a JAK2 Nfkbiz was originally identified in macrophages (8). inhibitor, pan-JAK inhibitor as a broad inhibitor of Interestingly, Nfkbiz gene-disrupted mice showed JAK 1 to 3, and Bay11-7082 as an inhibitor of NF- atopic dermatitis-like lesion, indicating that Nfkbiz κB. In primary keratinocytes, pan-JAK inhibitor and has an important role in the skin (16). However, the Bay11-7082 significantly reduced Nfkbiz expression, role of Nfkbiz in keratinocytes is largely unknown. although AG490 did not show any effect after stim- We previously reported that Nfkbiz is constitutively ulation (Fig. 3a). Similar effects were observed when expressed in keratinocytes and its expression is me- PAM212 cells were analyzed (Fig. 3b). Next, to an- diated by NF-κB (13). In this study we examined alyze the signaling mechanism in detail, we stimu- the role of IFN-γ in regulating Nfkbiz expression in lated PAM212 cells with a single stimulus, IL-1 or keratinocytes. IFN-γ induced Nfkbiz expression at a IFN-γ, after treatment with inhibitors. Similar to comparable level to IL-1, a strong inducer of Nfkbiz in keratinocytes, indicating that IFN-γ plays an im- portant role in regulating Nfkbiz expression in kera- tinocytes.
Recommended publications
  • Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function
    Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function This information is current as Emily Mavin, Lindsay Nicholson, Syed Rafez Ahmed, Fei of September 24, 2021. Gao, Anne Dickinson and Xiao-nong Wang J Immunol published online 28 November 2016 http://www.jimmunol.org/content/early/2016/11/26/jimmun ol.1502487 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/11/26/jimmunol.150248 Material 7.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 28, 2016, doi:10.4049/jimmunol.1502487 The Journal of Immunology Human Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell Function Emily Mavin,*,1 Lindsay Nicholson,*,1 Syed Rafez Ahmed,* Fei Gao,† Anne Dickinson,* and Xiao-nong Wang* Regulatory T cells (Treg) attenuate dendritic cell (DC) maturation and stimulatory function. Current knowledge on the functional impact of semimature DC is limited to CD4+ T cell proliferation and cytokine production.
    [Show full text]
  • Single-Cell RNA Sequencing Identifies Senescent Cerebromicrovascular Endothelial Cells in the Aged Mouse Brain
    GeroScience (2020) 42:429–444 https://doi.org/10.1007/s11357-020-00177-1 ORIGINAL ARTICLE/UNDERSTANDING SENESCENCE IN BRAIN AGING AND ALZHEIMER’SDISEASE Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain Tamas Kiss & Ádám Nyúl-Tóth & Priya Balasubramanian & Stefano Tarantini & Chetan Ahire & Jordan DelFavero & Andriy Yabluchanskiy & Tamas Csipo & Eszter Farkas & Graham Wiley & Lori Garman & Anna Csiszar & Zoltan Ungvari Received: 31 January 2020 /Accepted: 1 March 2020 /Published online: 31 March 2020 # American Aging Association 2020 Abstract Age-related phenotypic changes of therapeutic exploitation of senolytic drugs in preclinical cerebromicrovascular endothelial cells lead to dysregula- studies. However, difficulties with the detection of senes- tion of cerebral blood flow and blood-brain barrier dis- cent endothelial cells in wild type mouse models of aging ruption, promoting the pathogenesis of vascular cognitive hinder the assessment of the efficiency of senolytic treat- impairment (VCI). In recent years, endothelial cell senes- ments. To detect senescent endothelial cells in the aging cence has emerged as a potential mechanism contributing mouse brain, we analyzed 4233 cells in fractions enriched to microvascular pathologies opening the avenue to the for cerebromicrovascular endothelial cells and other cells Tamas Kiss, Ádám Nyúl-Tóth, Priya Balasubramanian and Stefano Tarantini contributed equally to this work. T. Kiss : Á. Nyúl-Tóth : P. Balasubramanian : S. Tarantini : S. Tarantini : A. Yabluchanskiy : Z. Ungvari C. Ahire : J. DelFavero : A. Yabluchanskiy : T. Csipo : Department of Public Health, International Training Program in A. Csiszar (*) : Z. Ungvari Geroscience, Doctoral School of Basic and Translational Medicine, Department of Biochemistry and Molecular Biology, Reynolds Semmelweis University, Budapest, Hungary Oklahoma Center on Aging/Center for Geroscience and Healthy Brain Aging, Vascular Cognitive Impairment and T.
    [Show full text]
  • Macrophage Activation JUNB Is a Key Transcriptional Modulator Of
    JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana, Alyssa Baccarella, Nidhi Pancholi, Miles A. Pufall, De'Broski R. Herbert and Charles C. Kim This information is current as of October 2, 2021. J Immunol 2015; 194:177-186; Prepublished online 3 December 2014; doi: 10.4049/jimmunol.1401595 http://www.jimmunol.org/content/194/1/177 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/12/03/jimmunol.140159 Material 5.DCSupplemental References This article cites 40 articles, 7 of which you can access for free at: http://www.jimmunol.org/content/194/1/177.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology JUNB Is a Key Transcriptional Modulator of Macrophage Activation Mary F. Fontana,* Alyssa Baccarella,* Nidhi Pancholi,* Miles A.
    [Show full text]
  • NFKBIZ Antibody Cat
    NFKBIZ Antibody Cat. No.: 13-686 NFKBIZ Antibody Immunofluorescence analysis of Raw264.7 cells using NFKBIZ antibody (13-686) at dilution of 1:100. Blue: DAPI for nuclear staining. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat Recombinant fusion protein containing a sequence corresponding to amino acids 1-220 of IMMUNOGEN: human NFKBIZ (NP_113607.1). TESTED APPLICATIONS: IF, WB WB: ,1:500 - 1:2000 APPLICATIONS: IF: ,1:50 - 1:200 POSITIVE CONTROL: 1) LO2 2) THP-1 September 28, 2021 1 https://www.prosci-inc.com/nfkbiz-antibody-13-686.html 3) Mouse kidney 4) Rat kidney PREDICTED MOLECULAR Observed: 68-90kDa WEIGHT: Properties PURIFICATION: Affinity purification CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: PBS with 0.02% sodium azide, 50% glycerol, pH7.3. STORAGE CONDITIONS: Store at -20˚C. Avoid freeze / thaw cycles. Additional Info OFFICIAL SYMBOL: NFKBIZ IKBZ, INAP, MAIL, NF-kappa-B inhibitor zeta, I-kappa-B-zeta, IL-1 inducible nuclear ankyrin- repeat protein, Ikappa B-zeta variant 3, IkappaB-zeta, ikB-zeta, ikappaBzeta, molecule ALTERNATE NAMES: possessing ankyrin repeats induced by lipopolysaccharide, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta GENE ID: 64332 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References This gene is a member of the ankyrin-repeat family and is induced by lipopolysaccharide (LPS). The C-terminal portion of the encoded product which contains the ankyrin repeats, shares high sequence similarity with the I kappa B family of proteins. The latter are known BACKGROUND: to play a role in inflammatory responses to LPS by their interaction with NF-B proteins through ankyrin-repeat domains.
    [Show full text]
  • WO 2017/015637 Al 26 January 2017 (26.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/015637 Al 26 January 2017 (26.01.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) C12N 15/63 (2006.01) kind of national protection available): AE, AG, AL, AM, C07K 19/00 (2006.01) C12N 15/65 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 5/22 (2006.0 1) C12N 15/867 (2006.0 1) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2016/043756 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 22 July 2016 (22.07.2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/195,680 22 July 2015 (22.07.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/293,3 13 9 February 2016 (09.02.2016) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: DUKE UNIVERSITY [US/US]; 2812 Erwin DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Road, Suite 306, Durham, NC 27705 (US).
    [Show full text]
  • Upregulation of NFKBIZ Affects Bladder Cancer Progression Via the PTEN/PI3K/Akt Signaling Pathway
    INTERNATIONAL JOURNAL OF MOleCular meDICine 47: 109, 2021 Upregulation of NFKBIZ affects bladder cancer progression via the PTEN/PI3K/Akt signaling pathway TAO XU1*, TING RAO1*, WEI‑MING YU1, JIN‑ZHUO NING1, XI YU1, SHAO‑MING ZHU1, KANG YANG1, TAO BAI2 and FAN CHENG1 1Department of Urology, Renmin Hospital of Wuhan University; 2Department of Urology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430060, P.R. China Received January 7, 2021; Accepted March 26, 2021 DOI: 10.3892/ijmm.2021.4942 Abstract. NF‑κB inhibitor ζ (NFKBIZ), a member of the Introduction IκB family that interacts with NF‑κB, has been reported to be an important regulator of inflammation, cell prolifera‑ According to global cancer data, bladder cancer (BC) is tion and survival. However, the role of NFKBIZ in bladder estimated to be the 9th most common type of cancer world‑ cancer (BC) remains unknown. The present study aimed wide, with ~400,000 new cases diagnosed annually (1,2). The to investigate the functions of NFKBIZ in BC. First, the majority of BC cases are diagnosed as non‑muscle invasive BC expression levels of NFKBIZ and the associations between (NMIBC), for which the mortality rate is generally low due to NFKBIZ expression and the clinical survival of patients its good prognosis; however, NMIBC often recurs and develops were determined using BC tissue samples, BC cell lines into MIBC (3). MIBC is characterized by rapid metastasis and and datasets from different databases. Two BC cell lines progression, in addition to poor prognosis, and is the main (T24 and 5637) were selected to overexpress NFKBIZ, and cause of BC‑associated mortality (4‑6), with the 5‑year overall the proliferative, migratory and invasive abilities of cells survival rate being ~50% following surgery (7).
    [Show full text]
  • IKB Zeta (NFKBIZ) (NM 031419) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC219121L2V IKB zeta (NFKBIZ) (NM_031419) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: IKB zeta (NFKBIZ) (NM_031419) Human Tagged ORF Clone Lentiviral Particle Symbol: NFKBIZ Synonyms: IKBZ; INAP; MAIL Vector: pLenti-C-mGFP (PS100071) ACCN: NM_031419 ORF Size: 2154 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC219121). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_031419.3 RefSeq Size: 3934 bp RefSeq ORF: 2157 bp Locus ID: 64332 UniProt ID: Q9BYH8 Domains: ANK Protein Families: Druggable Genome MW: 78.5 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 IKB zeta (NFKBIZ) (NM_031419) Human Tagged ORF Clone Lentiviral Particle – RC219121L2V Gene Summary: This gene is a member of the ankyrin-repeat family and is induced by lipopolysaccharide (LPS).
    [Show full text]
  • Insights Into the Genomic Landscape of MYD88 Wild-Type Waldenström
    REGULAR ARTICLE Insights into the genomic landscape of MYD88 wild-type Waldenstrom¨ macroglobulinemia Zachary R. Hunter,1,2 Lian Xu,1 Nickolas Tsakmaklis,1 Maria G. Demos,1 Amanda Kofides,1 Cristina Jimenez,1 Gloria G. Chan,1 Jiaji Chen,1 Xia Liu,1 Manit Munshi,1 Joshua Gustine,1 Kirsten Meid,1 Christopher J. Patterson,1 Guang Yang,1,2 Toni Dubeau,1 Mehmet K. Samur,2,3 Jorge J. Castillo,1,2 Kenneth C. Anderson,2,3 Nikhil C. Munshi,2,3 and Steven P. Treon1,2 1Bing Center for Waldenstrom¨ ’s Macroglobulinemia, Dana-Farber Cancer Institute, Boston, MA; 2Harvard Medical School, Boston, MA; and 3Jerome Lipper Myeloma Center, Dana-Farber Cancer Institute, Boston, MA Activating MYD88 mutations are present in 95% of Waldenstrom¨ macroglobulinemia (WM) Key Points patients, and trigger NF-kB through BTK and IRAK. The BTK inhibitor ibrutinib is active • MUT Mutations affecting in MYD88-mutated (MYD88 ) WM patients, but shows lower activity in MYD88 wild-type k WT WT NF- B, epigenomic (MYD88 ) disease. MYD88 patients also show shorter overall survival, and increased regulation, or DNA risk of disease transformation in some series. The genomic basis for these findings remains damage repair were to be clarified. We performed whole exome and transcriptome sequencing of sorted tumor identified in MYD88 WT samples from 18 MYD88 patients and compared findings with WM patients with wild-type WM. MUT MYD88 disease. We identified somatic mutations predicted to activate NF-kB(TBL1XR1, • k NF- B pathway muta- PTPN13, MALT1, BCL10, NFKB2, NFKBIB, NFKBIZ, and UDRL1F), impart epigenomic tions were downstream dysregulation (KMT2D, KMT2C, and KDM6A), or impair DNA damage repair (TP53, ATM, and of BTK, and many TRRAP).
    [Show full text]
  • Nfkbiz Regulates the Proliferation and Differentiation of Keratinocytes
    Title Nfkbiz regulates the proliferation and differentiation of keratinocytes Author(s) Ishiguro-Oonuma, Toshina; Ochiai, Kazuhiko; Hashizume, Kazuyoshi; Iwanaga, Toshihiko; Morimatsu, Masami Citation Japanese Journal of Veterinary Research, 63(3), 107-114 Issue Date 2015-08 DOI 10.14943/jjvr.63.3.107 Doc URL http://hdl.handle.net/2115/59881 Type bulletin (article) File Information JJVR63-3_p.107-114.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Japanese Journal of Veterinary Research 63(3): 107-114, 2015 FULL PAPER Nfkbiz regulates the proliferation and differentiation of keratinocytes Toshina Ishiguro-Oonuma1), Kazuhiko Ochiai2), Kazuyoshi Hashizume3), Toshihiko Iwanaga4) and Masami Morimatsu5)* 1) Division of Laboratory Animal Research, Advanced Research Support Center, Ehime University, Ehime 791-0295, Japan 2) Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan 3) Laboratory of Veterinary Physiology, Co-Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Iwate 020-8550, Japan 4) Laboratory of Histology and Cytology, Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan. 5) Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan Received for publication, May 12, 2015; accepted, June 19, 2015 Abstract Nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB) inhibitor zeta (Nfkbiz) is a nuclear inhibitor of NF-κB (IκB) protein that is also termed as molecule possessing ankyrin repeats induced by lipopolysaccharide, interleukin-1-inducible nuclear ankyrin repeat protein, or IκBζ.
    [Show full text]
  • A Molecular Map of Murine Lymph Node Blood Vascular Endothelium at Single Cell Resolution
    ARTICLE https://doi.org/10.1038/s41467-020-17291-5 OPEN A molecular map of murine lymph node blood vascular endothelium at single cell resolution Kevin Brulois1,13, Anusha Rajaraman1,2,3,13, Agata Szade 1,4,13,Sofia Nordling1,13, Ania Bogoslowski 5,6, Denis Dermadi 1, Milladur Rahman 1, Helena Kiefel1, Edward O’Hara1, Jasper J. Koning3, Hiroto Kawashima7, Bin Zhou 8, Dietmar Vestweber 9, Kristy Red-Horse10, Reina E. Mebius3, Ralf H. Adams 11, ✉ Paul Kubes 5,6, Junliang Pan1,2 & Eugene C. Butcher1,2,12 1234567890():,; Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicro- scopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis. 1 Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
    [Show full text]
  • Imiquimod Has Strain-Dependent Effects in Mice and Does Not Uniquely Model Human Psoriasis William R
    Swindell et al. Genome Medicine (2017) 9:24 DOI 10.1186/s13073-017-0415-3 RESEARCH Open Access Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis William R. Swindell1,2*†, Kellie A. Michaels3, Andrew J. Sutter3, Doina Diaconu3, Yi Fritz3, Xianying Xing2, Mrinal K. Sarkar2, Yun Liang2, Alex Tsoi2, Johann E. Gudjonsson2† and Nicole L. Ward3,4† Abstract Background: Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. Methods: RNA-seq was used to evaluate the psoriasiform phenotype elicited by 6 days of Aldara (5% IMQ) treatment in both sexes of seven mouse strains (C57BL/6 J (B6), BALB/cJ, CD1, DBA/1 J, FVB/NJ, 129X1/SvJ, and MOLF/EiJ). Results: In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and B6). Compared with BALB/c, the B6 phenotype showed increased expression of genes associated with DNA replication, IL-17A stimulation, and activated CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells.
    [Show full text]
  • Transcriptional Repression of NFKBIA Triggers Constitutive IKK‐
    Article Transcriptional repression of NFKBIA triggers constitutive IKK- and proteasome-independent p65/RelA activation in senescence Marina Kolesnichenko1,* , Nadine Mikuda1, Uta E Hopken€ 2, Eva Kargel€ 1, Bora Uyar3 , Ahmet Bugra Tufan1, Maja Milanovic4 , Wei Sun5,† , Inge Krahn1, Kolja Schleich4, Linda von Hoff1, Michael Hinz1, Michael Willenbrock1, Sabine Jungmann1, Altuna Akalin3 , Soyoung Lee4, Ruth Schmidt-Ullrich1 , Clemens A Schmitt4 & Claus Scheidereit1,** Abstract Introduction The IjB kinase (IKK)-NF-jB pathway is activated as part of the Chemo- and radiotherapies activated oncogenes and shortened DNA damage response and controls both inflammation and resis- telomeres trigger via the DNA damage response (DDR) a terminal tance to apoptosis. How these distinct functions are achieved proliferative arrest called cellular senescence (Blagosklonny, 2014; remained unknown. We demonstrate here that DNA double-strand Salama et al, 2014; Lasry & Ben-Neriah, 2015; Lee & Schmitt, 2019). breaks elicit two subsequent phases of NF-jB activation in vivo The associated alterations include formation of senescence-associ- and in vitro, which are mechanistically and functionally distinct. ated heterochromatin foci (SAHF), increased synthesis of cell cycle RNA-sequencing reveals that the first-phase controls anti-apop- inhibitors, including p21 (CDKN1A) and p16 (CDKN2A) and of totic gene expression, while the second drives expression of senes- inflammatory cytokines and chemokines that constitute the senes- cence-associated secretory phenotype (SASP) genes. The rapidly cence-associated secretory phenotype (SASP) and a related, low- activated first phase is driven by the ATM-PARP1-TRAF6-IKK grade inflammation termed senescence inflammatory response (SIR) cascade, which triggers proteasomal destruction of inhibitory IjBa, that affects surrounding tissues in a paracrine manner (Shelton and is terminated through IjBa re-expression from the NFKBIA et al, 1999; Lasry & Ben-Neriah, 2015).
    [Show full text]