Amino Acids: Chemistry, Functionality and Selected ☆ Non-Enzymatic Post-Translational Modifications

Total Page:16

File Type:pdf, Size:1020Kb

Amino Acids: Chemistry, Functionality and Selected ☆ Non-Enzymatic Post-Translational Modifications JOURNAL OF PROTEOMICS 75 (2012) 2275– 2296 Available online at www.sciencedirect.com www.elsevier.com/locate/jprot Tutorial Amino acids: Chemistry, functionality and selected ☆ non-enzymatic post-translational modifications Rainer Bischoffa,⁎, Hartmut Schlüterb aUniversity of Groningen, Department of Pharmacy, Analytical Biochemistry, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands bInstitute of Clinical Chemistry, University Medicine Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany ARTICLE INFO ABSTRACT Article history: The ultimate goal of proteomics is determination of the exact chemical composition of Received 12 October 2011 protein species, including their complete amino acid sequence and the identification of Accepted 31 January 2012 each modified side chain, in every protein in a biological sample and their quantification. Available online 22 February 2012 We are still far from achieving this goal due to limitations in analytical methodology and data analysis but also due to the fact that we surely have not discovered all amino acid Keywords: modifications that occur in nature. To detect modified side chains and to discover new, Amino acid chemistry still unknown amino acid derivatives, an understanding of the chemistry of the reactive Post-translational modifications groups of amino acids is mandatory. This tutorial focuses on the chemistry of the amino Protein species acid side chains and addresses non-enzymatic modifications. By highlighting some exem- Thiol group plary reactions a glimpse of the huge diversity of modified amino acids provides the reader Deamidation with sufficient insight into amino acid chemistry to raise the awareness for unexpected side Carbonylation chain modifications. We further introduce the reader to a terminology, which enables the comprehensive description of the exact chemical composition of a protein species, includ- ing its full amino acid sequence and all modifications of its amino acid side chains. This Tu- torial is part of the International Proteomics Tutorial Programme (IPTP number 10). © 2012 Elsevier B.V. Open access under CC BY-NC-ND license. 1. Introduction hydrophilic to hydrophobic depending on the respective side chain R (Figs. 1–9). In 1806 Vauquelin and Robiquet iso- 1.1. Historical background lated the first amino acid as a substance from Asparagus sati- vus, which they named asparagine [2].Someyearslater Amino acids are the primary building blocks of proteins. Of Braconnot discovered glycine from an acid hydrolysate of the over 300 naturally occurring amino acids, 22 constitute gelatin [3]. Threonine was described by Rose et al. as an es- the monomer units of proteins [1], which are chemically sential food ingredient in 1935 [4] and selenocysteine and linked via peptide bonds in genetically predefined se- pyrrolysine, the last two of the 22 proteinogenic amino quences to constitute the backbone of all known proteins. acids to be discovered, were reported in 1986 [5] and 2002, Their properties range from acidic to basic and from respectively [6]. ☆ This Tutorial is part of the International Proteomics Tutorial Programme (IPTP number 10). Details can be found at: http://www. proteomicstutorials.org/. ⁎ Corresponding author. Tel.: +31 50 3633338. E-mail address: [email protected] (R. Bischoff). 1874-3919 © 2012 Elsevier B.V. Open access under CC BY-NC-ND license. doi:10.1016/j.jprot.2012.01.041 2276 JOURNAL OF PROTEOMICS 75 (2012) 2275– 2296 Amino acid structure COOH Carboxyl group H N A Amino group 2 C H General formula R Side-chain (R) - COOH 2.34 COO pH 7 + 9.60 H N 2 C H H3N C H B H H Glycine G Gly IP: 5.97 H: -0.4 75.032028 [u] Fig. 1 – (A) Chemical structure of the amino acid glycine with the side chain R = H. (B) Amino acids generally occur as zwitterions at physiological pH due to partial ionization of the carboxylic acid and the amino group. The formulas present the ionization state predominating at pH 7. The hydropathy index (H) can be used to predict the tendency of an amino acid to seek a hydrophobic (values >1) or an aqueous (values <1) environment. Ionization state, isoelectric points (IP), dissociation constant “ (pKa) values and hydropathy index from Lehninger Principles of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth Publishers. New York”. The exact monoisotopic mass is given in u (source: http://pubchem.ncbi.nlm.nih.gov). COO− 2.34 Amino Acids with Alkyl Residues + 9.69 H3N C H − 2.36 CH COO 3 + Alanine 9.68 H3N C H A Ala HC– CH3 IP: 6.01 CH H: 1.8 2 COO − 2.36 89.047678 [u] CH + 2 COO − 9.60 H N H 3 C Isoleucine H2C CH2 + 9.62 H N H 2.32 H 3 C CH I C Ile H2C + − C C IP: 6.02 N COO 1.99 H H 10.96 H H C CH H: 4.5 2 2 2 H2C CH2 131.094629 [u] Proline Valine Leucine P V L Pro Val Leu IP: 6.48 IP: 5.97 IP: 5.98 H: 1.6 H: 4.2 H: 3.8 115.063329 [u] 117.14634 [u] 131.094629 [u] Fig. 2 – Proteinogenic amino acids with alkyl residues. The formulas present the ionization state predominating at pH 7. The hydropathy index (H) can be used to predict the tendency of an amino acid to seek a hydrophobic (values >1) or an aqueous (values <1) environment. Ionization state, IP, pK values and hydropathy index from “Lehninger Principles of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth Publishers. New York”. The exact monoisotopic mass is given in u (source: http://pubchem.ncbi.nlm.nih.gov). JOURNAL OF PROTEOMICS 75 (2012) 2275– 2296 2277 Amino Acid with an Aryl Residue Amino Acids with Carboxy Residues COO − 1.83 COO − 1.88 COO − 2.19 + + + 9.13 H3N C H 9.60 9.67 H3N C H H3N C H CH2 CH2 CH2 − 3.65 COO CH2 COO − 4.25 Aspartic acid Phenylalanine D Glutamic acid F Asp E Phe IP: 2.77 Glu IP: 5.48 H: - 3.5 IP: 3.22 H: 2.8 133.037508 [u] 165.078979 [u] H: - 3.5 147.053158 [u] Fig. 3 – Proteinogenic amino acid with an aryl residue. The Fig. 5 – Proteinogenic amino acids with carboxy residues. formulas present the ionization state predominating at pH 7. The formulas present the ionization state predominating at The hydropathy index (H) can be used to predict the pH 7. The hydropathy index (H) can be used to predict the tendency of an amino acid to seek a hydrophobic (values >1) tendency of an amino acid to seek a hydrophobic (values >1) or an aqueous (values <1) environment. Ionization state, IP, or an aqueous (values <1) environment. Ionization state, IP, pK values and hydropathy index from “Lehninger Principles pK values and hydropathy index from “Lehninger Principles of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth Publishers. New York”. Publishers. New York”. The exact monoisotopic mass is given in u (source: http:// The exact monoisotopic mass is given in u (source: http:// pubchem.ncbi.nlm.nih.gov). pubchem.ncbi.nlm.nih.gov). 2. The chemistry of amino acids at least one carboxylic acid group providing a negative charge if deprotonated. At physiological pH both charges are present. 2.1. General aspects With respect to the functional side chain groups amino acids can have basic properties like arginine (isoelectric point (IP): Amino acids are zwitterions because they have at least one 10.76; Fig. 7) or acidic like glutamic acid (IP: 3.22; Fig. 5). amino group yielding a positive charge when protonated and Amino groups are protonated if the pH is lower than their Amino Acids with Hydroxy Residues COO − 2.21 COO − 2.11 COO − 2.20 + + + 9.15 9.11 H3N C H 9.62 H3N C H H3N C H CH2OH H-C-OH CH2 Serine CH3 S Threonine Ser T IP: 5.68 Thr H: - 0.8 OH 10.07 IP: 5.87 105.042593 [u] H: - 0.7 Tyrosine 119.058243 [u] Y Tyr IP: 5.66 H: -1.3 181.073893 [u] Fig. 4 – Proteinogenic amino acids with hydroxy residues. The formulas present the ionization state predominating at pH 7. The hydropathy index (H) can be used to predict the tendency of an amino acid to seek a hydrophobic (values >1) or an aqueous (values <1) environment. Ionization state, IP, pK values and hydropathy index from “Lehninger Principles of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth Publishers. New York”. The exact monoisotopic mass is given in u (source: http://pubchem.ncbi.nlm.nih.gov). 2278 JOURNAL OF PROTEOMICS 75 (2012) 2275– 2296 Amino Acids with Amide and Indole Residues COO − 2.02 COO − 2.17 COO − 2.38 + + + 8.80 9.13 9.39 H3N C H H3N C H H3N C H CH2 CH2 CH2 C=O CH2 Indole C=O NH2 N H Asparagine NH2 Tryptophan N W Asn Glutamine Trp IP: 5.41 Q IP: 5.89 H: - 3.5 Gln H: - 0.9 132.053492 [u] IP: 5.65 H: - 3.5 204.089878 [u] 146.069142 [u] Fig. 6 – Proteinogenic amino acids with amide and indole residues. The formulas present the ionization state predominating at pH 7. The hydropathy index (H) can be used to predict the tendency of an amino acid to seek a hydrophobic (values >1) or an aqueous (values <1) environment. Ionization state, IP, pK values and hydropathy index from “Lehninger Principles of Biochemistry. 2000. 3rd ed. Nelson DL, Cox MM. Worth Publishers. New York”. The exact monoisotopic mass is given in u (source: http://pubchem.ncbi.nlm.nih.gov).
Recommended publications
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • 01. Amino Acids
    01. Amino Acids 1 Biomolecules • Protein • Carbohydrate • Nucleic acid • Lipid 2 peptide polypeptide protein di-, tri-, oligo- 3 4 fibrous proteins proteins globular proteins 5 Figure 4.1 Anatomy of an amino acid. Except for proline and its derivatives, all of the amino acids commonly found in proteins possess this type of structure. 6 Glycine (Gly, G) Alanine (Ala, A) Valine (Val, V)* Leucine (Leu, L)* Isoleucine (Ile. I)* 7 Serine (Ser, S) Threonine (Thr, T)* Cysteine (Cys, C)cystine Methionine (Met, M)* 8 Aspartate (Asp, D) Glutamate (Glu, E) Asparagine (Asn, N) Glutamine (Gln, Q) 9 Lysine (Lys, K)* Arginine (Arg, R)* 10 Phenylalanine (Phe, F)* Tyrosine (Tyr, Y) Histidine (His, H)* Tryptophan (Trp, W)* 11 Proline (Pro, P) 12 Hydrophobic (A, G, I, L, F, V, P) Hydrophilic (D, E, R, S, T, C, N, Q, H) Amphipathic (K, M, W, Y) 13 Essential amino acids: V, L, I, T, M, K, R, F, H, W 14 Several Amino Acids Occur Rarely in Proteins We'll see some of these in later chapters • Selenocysteine in many organisms • Pyrrolysine in several archaeal species • Hydroxylysine, hydroxyproline - collagen • Carboxyglutamate - blood-clotting proteins • Pyroglutamate – in bacteriorhodopsin • GABA, epinephrine, histamine, serotonin act as neurotransmitters and hormones • Phosphorylated amino acids – a signaling device Several Amino Acids Occur Rarely in Proteins Several Amino Acids Occur Rarely in Proteins Figure 4.4 (b) Some amino acids are less common, but nevertheless found in certain proteins. Hydroxylysine and hydroxyproline are found in connective-tissue proteins; carboxy- glutamate is found in blood-clotting proteins; pyroglutamate is found in bacteriorhodopsin (see Chapter 9).
    [Show full text]
  • Subject Index
    Cambridge University Press 0521462924 - Amino Acids and Peptides G. C. Barrett and D. T. Elmore Index More information Subject index acetamidomalonate synthesis 123–4 in fossil dating 15 S-adenosyl--methionine 11, 12, 174, 181 in geological samples 15 alanine, N-acetyl 9 in Nature 1 structure 4 IR spectrometry 36 alkaloids, biosynthesis from amino acids 16–17 isolation from proteins 121 alloisoleucine 6 mass spectra 61 allosteric change 178 metabolism, products of 187 allothreonine 6 metal-binding properties 34 Alzheimer’s disease 14 NMR 41 amidation at peptide C-terminus 57, 94, 181 physicochemical properties 32 amides, cis–trans isomerism 20 protein 3 N-acylation 72 PTC derivatives 87 N-alkylation 72 quaternary ammonium salts 50 hydrolysis 57 reactions of amino group 49, 51 O-trimethylsilylation 72 reactions of carboxy group 49, 53 reduction to ␤-aminoalkanols 72 racemisation 56 amidocarbonylation in amino acid synthesis 125 routine spectrometry 35 amino acids, abbreviated names 7 Schöllkopf synthesis 127–8 acid–base properties 32 Schiff base formation 49 antimetabolites 200 sequence determination 97 et seq. as food additives 14 following selective chemical degradation 107 as neurotransmitters 17 following selective enzymic degradation 109 asymmetric synthesis 127 general strategy for 92 ␤- 17–18 identification of C-terminus 106–7 biosynthesis 121 identification of N-terminus 94, 97 biosynthesis from, of creatinine 183 by solid-phase methodology 100 of nitric oxide 186 by stepwise chemical degradation 97 of porphyrins 185 by use of dipeptidyl
    [Show full text]
  • A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids
    S S symmetry Hypothesis A Few Experimental Suggestions Using Minerals to Obtain Peptides with a High Concentration of L-Amino Acids and Protein Amino Acids Dimas A. M. Zaia 1,* and Cássia Thaïs B. V. Zaia 2 1 Laboratório de Química Prebiótica-LQP, Departamento de Química, Universidade Estadual de Londrina, CEP 86 057-970 Londrina, Brazil 2 Laboratório de Fisiologia Neuroendocrina e Metabolismo–LaFiNeM, Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, CEP 86 057-970 Londrina, Brazil; [email protected] * Correspondence: [email protected] Received: 9 October 2020; Accepted: 25 November 2020; Published: 10 December 2020 Abstract: The peptides/proteins of all living beings on our planet are mostly made up of 19 L-amino acids and glycine, an achiral amino acid. Arising from endogenous and exogenous sources, the seas of the prebiotic Earth could have contained a huge diversity of biomolecules (including amino acids), and precursors of biomolecules. Thus, how were these amino acids selected from the huge number of available amino acids and other molecules? What were the peptides of prebiotic Earth made up of? How were these peptides synthesized? Minerals have been considered for this task, since they can preconcentrate amino acids from dilute solutions, catalyze their polymerization, and even make the chiral selection of them. However, until now, this problem has only been studied in compartmentalized experiments. There are separate experiments showing that minerals preconcentrate amino acids by adsorption or catalyze their polymerization, or separate L-amino acids from D-amino acids. Based on the [GADV]-protein world hypothesis, as well as the relative abundance of amino acids on prebiotic Earth obtained by Zaia, several experiments are suggested.
    [Show full text]
  • Page Numbers in Bold Indicate Main Discus- Sion of Topic. Page Numbers
    168397_P489-520.qxd7.0:34 Index 6-2-04 26p 2010.4.5 10:03 AM Page 489 source of, 109, 109f pairing with thymine, 396f, 397, 398f in tricarboxylic acid cycle, 109–111, 109f Adenine arabinoside (vidarabine, araA), 409 Acetyl CoA-ACP acetyltransferase, 184 Adenine phosphoribosyltransferase (APRT), Index Acetyl CoA carboxylase, 183, 185f, 190 296, 296f in absorptive/fed state, 324 Adenosine deaminase (ADA), 299 allosteric activation of, 183–184, 184f deficiency of, 298, 300f, 301–302 allosteric inactivation of, 183, 184f gene therapy for, 485, 486f dephosphorylation of, 184 Adenosine diphosphate (ADP) in fasting, 330 in ATP synthesis, 73, 77–78, 78f Page numbers in bold indicate main discus- hormonal regulation of, 184, 184f isocitrate dehydrogenase activation by, sion of topic. Page numbers followed by f long-term regulation of, 184 112 denote figures. “See” cross-references direct phosphorylation of, 183–184 transport of, to inner mitochondrial short-term regulation of, 183–184, 184f membrane, 79 the reader to the synonymous term. “See Acetyl CoA carboxylase-2 (ACC2), 191 in tricarboxylic acid cycle regulation, 114, also” cross-references direct the reader to N4-Acetylcytosine, 292f 114f related topics. [Note: Positional and configura- N-Acetyl-D-glucosamine, 142 in urea cycle, 255–256 N-Acetylgalactosamine (GalNAc), 160, 168 ribosylation, 95 tional designations in chemical names (for N-Acetylglucosamindase deficiency, 164f Adenosine monophosphate (AMP; also called example, “3-“, “α”, “N-“, “D-“) are ignored in N-Acetylglucosamine (GlcNAc),
    [Show full text]
  • Collagen Structural Microheterogeneity and a Possible Role for Glycosylated Hydroxylysine in Type 1 Collagen
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 7684-7688, December 1982 Biochemistry Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type 1 collagen (nonreducible stable crosslinks/hydroxyaldolhistidine/specific cleavage/molecular location) MITSUO YAMAUCHI*t, CLAUDIA NOYES*t, YOSHINORI KUBOKI*t, AND GERALD L. MECHANIC*§¶ *Dental Research Center, §Department of Biochemistry and Nutrition, and tDepartment of Medicine, University of North Carolina, Chapel Hill, North Carolina 27514 Communicated by. Ernest L. Eliel, September 20, 1982 ABSTRACT A three-chained peptide from type I collagen, and Mechanic (8) that dehydro-HisOHMerDes, which was crosslinked by hydroxyaldolhistidine, has been isolated from a thought to be artifactual (9, 10) is a true crosslink in collagen tryptic digest of5 M guanidine HCI-insoluble bovine skin collagen fibrils. Bernstein and Mechanic found that one HisOHMerDes (a small but as yet unknown percentage of the total collagen in crosslink was present per molecule of collagen in freshly re- whole skin). Os04/NaIO4 specifically cleaved the crosslink at its constituted soluble collagen fibrils. double bond into a two-chained crosslink peptide and a single pep- Histidine was also found to be a constituent of the stable tide. The sequence of the two-chained peptide containing the bi- nonreducible trifunctional crosslink hydroxyaldolhistidine functional crosslink was determined after amino acid analysis of (OHAlHis), whose structure was elucidated by PMR and mass the separated peptides. The crosslink consists of an aldehyde de- spectrometry rived from hydroxylysine-87 in the aldehyde-containing cyanogen (11). OHAIHis was isolated from bovine skin col- bromide fragment alCB5ald and an aldehyde derived from the lagen.
    [Show full text]
  • Review Article
    REVIEW ARTICLE COLLAGEN METABOLISM COLLAGEN METABOLISM Types of Collagen 228 Structure of Collagen Molecules 230 Synthesis and Processing of Procollagen Polypeptides 232 Transcription and Translation 233 Posttranslational Modifications 233 Extracellular Processing of Procollagen and Collagen Fibrillogenesis 240 Functions of Collagen in Connective rissue 243 Collagen Degradation 245 Regulation of the Metabolism of Collagen 246 Heritable Diseases of Collagen 247 Recessive Dermatosparaxis 248 Recessive Forms of EDS 251 EDS VI 251 EDS VII 252 EDS V 252 Lysyl Oxidase Deficiency in the Mouse 253 X-Linked Cutis Laxa 253 Menke's Kinky Hair Syndrome 253 Homocystinuria 254 EDS IV 254 Dominant Forms of EDS 254 Dominant Collagen Packing Defect I 255 Dominant and Recessive Forms of Osteogenesis Imperfecta 258 Dominant and Recessive Forms of Cutis Laxa 258 The Marfan Syndrome 259 Acquired Diseases and Repair Processes Affecting Collagen 259 Acquired Changes in the Types of Collagen Synthesis 260 Acquired Changes in Amounts of Collagen Synthesized 263 Acquired Changes in Hydroxylation of Proline and Lysine 264 Acquired Changes in Collagen Cross-Links 265 Acquired Defects in Collagen Degradation 267 Conclusion 267 Bibliography 267 Collagen Metabolism A Comparison of Diseases of Collagen and Diseases Affecting Collagen Ronald R. Minor, VMD, PhD COLLAGEN CONSTITUTES approximately one third of the body's total protein, and changes in synthesis and/or degradation of colla- gen occur in nearly every disease process. There are also a number of newly described specific diseases of collagen in both man and domestic animals. Thus, an understanding of the synthesis, deposition, and turnover of collagen is important for the pathologist, the clinician, and the basic scientist alike.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,874,589 Campbell Et Al
    USOO5874589A United States Patent (19) 11 Patent Number: 5,874,589 Campbell et al. 45) Date of Patent: Feb. 23, 1999 54 METHODS FOR SYNTHESIZING DIVERSE El Marini et al., 1992, Synthesis pp. 1104-1108 Synthesis of COLLECTIONS OF TETRAMIC ACIDS AND enantiomerically pure B-and Y-amino acids from aspartic DERVATIVES THEREOF and glutamic acid derivatives. Evans et al., 1982, J. Amer. Chem. Soc. 104: 1737–1739 75 Inventors: David A. Campbell, San Mateo; Todd Asymmetric alkylation reactions of chiral imide enolates. A T. Romoff, San Jose, both of Calif. practical approach to the enantioselective Synthesis of C-Substituted carboxylic acid derivatives. 73 Assignee: GlaxoWellcome, Inc., Research Fontenot et al., 1991, Peptide Research, 4: 19-25A Survey Triangle Park, N.C. of potential problems and qulaity control in peptide Synthe sis by the flourenylmethocvarbonyl procedure. 21 Appl. No.: 896,799 Giesemann et al., 1982, J. Chem. Res. (S) pp. 79 Synthesis 22 Filed: Jul.18, 1997 of chiral C-isocyano esters and other base-Sensitive isocya nides with 51) Int. Cl. ........................ C07D 211/40; CO7D 207/00 oxomethylenebis-(3H-Imidazolium)Bis(methanesulphonate), 52 U.S. Cl. ............ ... 548/540; 546/220; 548/539 a versatile dehydrating reagent. 58 Field of Search ............................. 546/220; 548/539, Geysen et al., 1987, J. Immunol. Meth. 102: 259-274 548/540 Strategies for epitope analysis using peptide Synthesis. Giron-Forest et al., 1979, Analytical Profiles of Drug Sub 56) References Cited stances, 8: 47-81 Bromocriptine methaneSulphonate. U.S. PATENT DOCUMENTS Gokeletal, 1971, Isonitrile Chemistry, Ugi, I. ed., Academic 3,299.095 1/1967 Harris et al.
    [Show full text]
  • Ihyd-Pseaac: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity Into Pseudo Amino Acid Composition
    Int. J. Mol. Sci. 2014, 15, 7594-7610; doi:10.3390/ijms15057594 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition Yan Xu 1,5,*, Xin Wen 1, Xiao-Jian Shao 2, Nai-Yang Deng 3 and Kuo-Chen Chou 4,5 1 Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China; E-Mail: [email protected] 2 Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, China; E-Mail: [email protected] 3 College of Science, China Agricultural University, Beijing 100083, China; E-Mail: [email protected] 4 Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mail: [email protected] 5 Gordon Life Science Institute, Boston, MA 02478, USA * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel./Fax: +86-10-6233-2589. Received: 7 February 2014; in revised form: 4 April 2014 / Accepted: 17 April 2014 / Published: 5 May 2014 Abstract: Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers.
    [Show full text]
  • Ratio of Phosphate to Amino Acids
    National Institute for Health and Care Excellence Final Neonatal parenteral nutrition [D10] Ratio of phosphate to amino acids NICE guideline NG154 Evidence reviews February 2020 Final These evidence reviews were developed by the National Guideline Alliance which is part of the Royal College of Obstetricians and Gynaecologists FINAL Error! No text of specified style in document. Disclaimer The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or service users. The recommendations in this guideline are not mandatory and the guideline does not override the responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient, in consultation with the patient and/or their carer or guardian. Local commissioners and/or providers have a responsibility to enable the guideline to be applied when individual health professionals and their patients or service users wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with compliance with those duties. NICE guidelines cover health and care in England. Decisions on how they apply in other UK countries are made by ministers in the Welsh Government, Scottish Government, and Northern Ireland Executive.
    [Show full text]
  • Lysyl-Protocollagen Hydroxylase Deficiency in Fibroblasts from Siblings with Hydroxylysine-Deficient Collagen
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 10, pp. 2899-2903, October 1972 Lysyl-Protocollagen Hydroxylase Deficiency in Fibroblasts from Siblings with Hydroxylysine-Deficient Collagen (prolyl-protocollagen hydroxylase/connective tissue/inborn error/crosslinks) S. M. KRANE, S. R. PINNELL, AND R. W. ERBE Departments of Medicine, Dermatology, and Pediatrics, Harvard Medical School and the Medical, Dermatology, and Children's Services, Massachusetts General Hospital, Boston, Massachusetts 02114 Communicated by E. R. Blout, July 31, 1972 ABSTRACT Cell culture studies were performed on were normal. The hydroxylysine content of dermis was also members of a family in which two sisters, ages 9 and 12, normal in three patients, each with the Marfan and Ehlers- have a similar disorder characterized clinically by severe scoliosis, joint laxity and recurrent dislocations, hyper- Danlos syndromes. Collagen from the skin of the affected extensible skin, and thin scars. The skin collagen from the children was more soluble in denaturing solvents than that sisters was markedly deficient in hydroxylysine, but other derived from controls (4), consistent with a defect in cross- amino acids were present in normal amounts. Hydroxy- linking of collagen molecules, a process in which hydroxylysine lysine in collagen from fascia and bone was reduced to a to involved lesser extent. Since the most likely explanation for the has been thought be critically (2, 5-8). Hydroxyly- hydroxylysihie deficiency was a reduction in enzymatic sine per se is not used in collagen biosynthesis; specific lysyl hydroxylation of lysine residues in protocollagen, we mea- residues are hydroxylated after their incorporation into the sured the activity of lysyl-protocollagen hydroxylase in polypeptide chains of protocollagen (9-12).
    [Show full text]
  • Proteins, Peptides, and Amino Acids
    Proteins, Peptides, and Amino Acids Chandra Mohan, Ph.D. Calbiochem-Novabiochem Corp., San Diego, CA The Chemical Nature of Amino Acids Peptides and polypeptides are polymers of α-amino acids. There are 20 α-amino acids that make-up all proteins of biological interest. The α-amino acids in peptides and proteins α consist of a carboxylic acid (-COOH) and an amino (-NH2) functional group attached to the same tetrahedral carbon atom. This carbon is known as the -carbon. The type of R- group attached to this carbon distinguishes one amino acid from another. Several other amino acids, also found in the body, may not be associated with peptides or proteins. These non-protein-associated amino acids perform specialized functions. Some of the α-amino acids found in proteins are also involved in other functions in the body. For example, tyrosine is involved in the formation of thyroid hormones, and glutamate and aspartate act as neurotransmitters at fast junctions. R Amino acids exist in either D- or L- enantiomorphs or stereoisomers. The D- and L-refer to the absolute confirmation of optically active compounds. With the exception of glycine, all other amino acids are mirror images that can not be superimposed. Most of the amino acids found in nature are of the L-type. Hence, eukaryotic proteins are always composed of L-amino acids although D-amino acids are found in bacterial cell walls and in some peptide antibiotics. All biological reactions occur in an aqueous phase. Hence, it is important to know how the R-group of any given amino acid dictates the structure-function relationships of peptides and proteins in solution.
    [Show full text]