Metabolic Profiling Detects Biomarkers of Protein Degradation in COPD Patients

Total Page:16

File Type:pdf, Size:1020Kb

Metabolic Profiling Detects Biomarkers of Protein Degradation in COPD Patients Metabolic profiling detects biomarkers of protein degradation in COPD patients On‐line data supplement Baljit K. Ubhi, John H. Riley, Paul A. Shaw, David A. Lomas, Ruth Tal-Singer, William MacNee, Jules L Griffin, Susan C Connor Materials and Methods: ECLIPSE is a 3 year longitudinal study with samples collected at baseline, 3 and 6 months and then every 6 months for 3 years. Control subjects consisting of current or former smokers and individuals who have never smoked (n=566), were recruited as comparators with the COPD subjects (2756). The COPD patients were selected according to the following criteria; an forced expiratory volume in the first second (FEV1) of less than 80% of predicted normal and a baseline FEV1/ forced vital capacity(FVC) ratio of less than 0.7, aged 40-75 and either current or ex-smokers with a greater than 10 pack-year history. Patients were categorised according to the criteria from the Global Initiative for Chronic Obstructive Lung Disease (GOLD status; (E1)) i.e. COPD patients had an FEV1/FVC ratio of less than 70% and were subdivided into GOLD stage II, stage III and stage IV based on an 50%<FEV1<80%, 30%<FEV1<50% and <30% FEV1 predicted respectively. The control group consists of a cohort of 343 current and ex-smokers with greater than 10 pack-year smoking history and a second cohort of 223 who have never smoked (less than 1 pack-year smoking history). Both cohorts that make up the control groups have a baseline FEV1 greater than 85% predicted and a FEV1/FVC ratio of greater than 0.7. The metabolomics cohort was selected as a subset of these patients, excluding current smokers. Patients were in a stable state, free of exacerbations, for one month prior to sampling. Initial pair-matched selection of metabolomics patients excluded current smokers so that power for detecting COPD-related effects was not reduced by the confounding effects of smoking. However a few individuals (n=5) were found by cotinine assay to be current smokers and these were excluded from further analysis. The ECLIPSE study was ethically approved in each of the participating centres and all participants provided written informed consent. (Clinicaltrials.gov identifier NCT00292552; GSK Study Identifier SCO104960). Study Assessments: All subjects performed standardized spirometry according to international guidelines (E2) before and after salbutamol (180 ug) with reversible airflow obstruction being defined as an increase in FEV1 of 15% and at least 200ml post- bronchdilator. Study assessments also included pulmonary function measurements, computed chest tomography, biomarkers (in blood, sputum, urine and exhaled breath condensate), health outcome questionnaires and exercise testing (6 minute walk test, measured according to international guidelines (E3)). Several known and potential biomarkers of pulmonary, vascular, cardiac, and systemic disease including cachexia were also measured. Body mass index (BMI) was calculated and the subjects split into two groups <21 cachectic and >40 extremely obese. The BMI and fat free mass (measured by bioelectrical impedence) were also used as continous variables for PLS and Pearson correlation calculations. Body composition was determined by whole body plethmysography as described in the clinical protocol. These variables were treated independently as continuous variables. Exercise testing was carried out according to the protocol and utilized the 6 minute walking test. Subjects were divided into 2 groups based on the distance walked < 350m or >= 350 m. CT Scan All subjects underwent a low-dose computed tomography (CT) scan of the chest All of the CT scans were evaluated at the central imaging unit at the University of British Columbia, Vancouver, Canada. All ECLIPSE subjects underwent a low-dose CT scan of the chest to quantitfy the degree of emphysema using multi-detector-row CT scanners (GE Healthcare or Siemens Healthcare) with a minimum of 4 rows, obtained in supine position at suspended full inspiration without administration of intravenous contrast. Exposure settings were 120 kVp and 40 mAs and images were reconstructed using 1.0 mm (Siemens) or 1.25 mm (GE) contiguous slices and a low spatial frequency reconstruction algorithm (GE: Standard; Siemens: b35f). CT scanners were calibrated regularly using industry and institutional standards. The CT scans were evaluated at the central imaging unit at the University of British Columbia, Vancouver. The percentage of lung CT voxels below a threshold of -950 Hounsfield Units (%LAA) as a representative of the presence of emphysema, was performed using the software Pulmonary Workstation 2.0 (VIDA Diagnostics, Iowa City, IA, U.S.A.). A cut off of <10% low attenuation areas (LAA) was utilised for minimal emphysema and 20% for emphysema [18]. The %LAA was also used as a continuous variable . Open Profiling Metabolomics Experiments Sampling and Data acquisition 2 and 4 ml aliquots of blood were collected into 4ml BD Serum Vacutainer with Silica Act Clot Activator, incubated at room temperature for 30 minutes and centrifuged at 1500 x g for 10 minutes. 5 x 500ul of serum were then aliquoted into cryotubes and stored at –80C until analysis. Serum samples were thawed once at the time of NMR sample preparation and data acquisition. NMR samples were partly prepared using a Tecan robot; 150ul of serum were added to 450ul of cold isotonic saline containing D2O ((10% (v/v) D2O; 90% (v/v) deionised H2O; 0.9% (w/v) NaCl (BDH Lab. Supplies, UK)) and 4,4-dimethyl-4-silapentane-1- ammonium trifluoroacetate (DSA; Onyx Scientific Limited, Silverbriar, Sunderland Enterprise Park East, Sunderland, UK; Alum et al 2008), mixed and then centrifuged at 2400g for 20 minutes at 4 degrees. 550ul of each supernatant was transferred into 5mm Wilmad NMR tubes (507PP). Proton NMR spectra were acquired for each sample using a TXI probe on a Bruker Avance III 700MHz NMR spectrometer operating at 699.72 MHz.. A Carr- Purcell-Meiboom-Gill (CPMG) pulse sequence was used to reduce interference from background proteins with a total spin-spin relaxation delay of 320ms. The free induction decays were collected into 64k datapoints with a spectral width of 20 ppm. The spectra were zero-filled to double size and an exponential line broadening factor of 1 Hz applied prior to Fourier transformation. The water resonance was suppressed by presaturation during the relaxation delay prior to the 90 degree pulse. The experimental parameters used have been previously described (E4). Amino acid analysis A targeted LC-MS/MS method was developed to provide analytical validation of the COPD- related amino acid changes observed by open profiling metabolomics and subsequently to assist in the biological evaluation of their biomarker potential. Analytical validation of one dimensional NMR findings is usually required due to the high degree of signal overlap and this can only be partly achieved for some metabolites (eg proline) by additional metabolite spiking and two dimensional NMR experiments. There are also other limitations to open profiling metabolomics including semi rather than absolute quantitative measurement and, in the case of NMR, lower sensitivity compared to other techniques. A targeted amino acid assay using an LC-MS/MS platform was chosen because it could provide quantitative amino acid information on metabolites present in low concentration. A smaller sample size (male smoker control (n=30) versus GOLD IV (n=30) was selected from the original NMR dataset (n=244) for the purposes of the analytical validation. In this case the most severely affected COPD patients were compared with controls with the main purpose of confirming the NMR findings. Chemicals HPLC grade methanol was purchased from Fisher (Fisher Scientific GmbH, Ulm, Germany) and ammonium formate was purchased from Sigma/Aldrich (MO, USA). The Phenomenex EZ:Faast LC-MS kit (Phenomenex Inc, Torrence, CA, USA) was used for the preparation of samples for amino acid analysis. Sample Preparation Samples were first prepared according to the EZ:Faast amino acid analysis procedure ((www.phenomenex.com) and the dried down organic extracts were reconstituted in 100 μl of a 1:2 (v/v) 10 mM ammonium formate in water: 10 mM ammonium formate in methanol solution. Liquid Chromatography The LC-MS/MS assay was developed using a Waters Acquity UPLC system attached to a Waters Quattro Premier XE Triple Quadrupole mass spectrometer to detect chloroformate amino acid derivatives prepared by the EZ: Faast amino acid derivatisation procedure (www.phenomenex.com). Sample aliquots of 5 μl were injected onto a Phenomenex EZ:Faast AAA-MS column (250 mm × 2.0 mm; room temperature). A linear gradient of 68-83% buffer B in buffer A (10mM ammonium formate buffer A: 10mM ammonium formate in methanol buffer B) was applied over 11 minutes and equibrated at 68% buffer B for 2 minutes between injections at constant eluent flow of 0.25ml/min. Carry-over was eliminated by using a strong and weak needle wash in between each sample injection (83:17 methanol:water and 10:90 methanol:water were strong and weak washes respectively). A 5-point calibration curve at the beginning and end of each batch was acquired for a standard amino acid mix and a QC sample was run every ten injections to test for system reproducibility. The QC sample consisted of the three internal standards, homoarginine (HARG), methionine-d3 (MET-d3) and homophenylalanine (HPHE), diluted 1:100. A derivatised, pooled sample of 10 μl of each sample was injected every ten samples. Mass Spectrometry Mass spectrometric data was collected using a Waters Quattro Premier XE Triple Quadrupole mass spectrometer equipped with an electrospray source in positive ionisation mode. The source temperature was set to 120˚C with a cone gas flow of 50 l/hr, a desolvation temperature of 350˚C and a desolvation gas flow of 700 l/hr. A capillary voltage of 1000 V was applied.
Recommended publications
  • Collagen and Elastin Fibres
    J Clin Pathol: first published as 10.1136/jcp.s3-12.1.49 on 1 January 1978. Downloaded from J. clin. Path., 31, Suppl. (Roy. Coll. Path.), 12, 49-58 Collagen and elastin fibres A. J. BAILEY From the Agricultural Research Council, Meat Research Institute, Langford, Bristol Although an understanding of the intracellular native collagen was generated from type I pro- biosynthesis of both collagen and elastin is of collagen. Whether this means that the two pro- considerable importance it is the subsequent extra- collagens are converted by different enzyme systems cellular changes involving fibrogenesis and cross- and the type III enzyme was deficient in these linking that ensure that these proteins ultimately fibroblast cultures, or that the processing of pro become the major supporting tissues of the body. type III is extremely slow, is not known. The latter This paper summarises the formation and stability proposal is consistent with the higher proportion of collagen and elastin fibres. of soluble pro type III extractable from tissue (Lenaers and Lapiere, 1975; Timpl et al., 1975). Collagen Basement membrane collagens, on the other hand, do not form fibres and this property may be The non-helical regions at the ends of the triple due to the retention of the non-helical extension helix of procollagen probably provide a number of peptides (Kefalides, 1973). In-vivo biosynthetic different intracellular functions-that is, initiating studies showing the absence of any extension peptide rapid formation of the triple helix; inhibiting intra- removal support this (Minor et al., 1976), but other cellular fibrillogenesis; and facilitating transmem- workers have reported that there is some cleavage brane movement.
    [Show full text]
  • 01. Amino Acids
    01. Amino Acids 1 Biomolecules • Protein • Carbohydrate • Nucleic acid • Lipid 2 peptide polypeptide protein di-, tri-, oligo- 3 4 fibrous proteins proteins globular proteins 5 Figure 4.1 Anatomy of an amino acid. Except for proline and its derivatives, all of the amino acids commonly found in proteins possess this type of structure. 6 Glycine (Gly, G) Alanine (Ala, A) Valine (Val, V)* Leucine (Leu, L)* Isoleucine (Ile. I)* 7 Serine (Ser, S) Threonine (Thr, T)* Cysteine (Cys, C)cystine Methionine (Met, M)* 8 Aspartate (Asp, D) Glutamate (Glu, E) Asparagine (Asn, N) Glutamine (Gln, Q) 9 Lysine (Lys, K)* Arginine (Arg, R)* 10 Phenylalanine (Phe, F)* Tyrosine (Tyr, Y) Histidine (His, H)* Tryptophan (Trp, W)* 11 Proline (Pro, P) 12 Hydrophobic (A, G, I, L, F, V, P) Hydrophilic (D, E, R, S, T, C, N, Q, H) Amphipathic (K, M, W, Y) 13 Essential amino acids: V, L, I, T, M, K, R, F, H, W 14 Several Amino Acids Occur Rarely in Proteins We'll see some of these in later chapters • Selenocysteine in many organisms • Pyrrolysine in several archaeal species • Hydroxylysine, hydroxyproline - collagen • Carboxyglutamate - blood-clotting proteins • Pyroglutamate – in bacteriorhodopsin • GABA, epinephrine, histamine, serotonin act as neurotransmitters and hormones • Phosphorylated amino acids – a signaling device Several Amino Acids Occur Rarely in Proteins Several Amino Acids Occur Rarely in Proteins Figure 4.4 (b) Some amino acids are less common, but nevertheless found in certain proteins. Hydroxylysine and hydroxyproline are found in connective-tissue proteins; carboxy- glutamate is found in blood-clotting proteins; pyroglutamate is found in bacteriorhodopsin (see Chapter 9).
    [Show full text]
  • Collagen Structural Microheterogeneity and a Possible Role for Glycosylated Hydroxylysine in Type 1 Collagen
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 7684-7688, December 1982 Biochemistry Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type 1 collagen (nonreducible stable crosslinks/hydroxyaldolhistidine/specific cleavage/molecular location) MITSUO YAMAUCHI*t, CLAUDIA NOYES*t, YOSHINORI KUBOKI*t, AND GERALD L. MECHANIC*§¶ *Dental Research Center, §Department of Biochemistry and Nutrition, and tDepartment of Medicine, University of North Carolina, Chapel Hill, North Carolina 27514 Communicated by. Ernest L. Eliel, September 20, 1982 ABSTRACT A three-chained peptide from type I collagen, and Mechanic (8) that dehydro-HisOHMerDes, which was crosslinked by hydroxyaldolhistidine, has been isolated from a thought to be artifactual (9, 10) is a true crosslink in collagen tryptic digest of5 M guanidine HCI-insoluble bovine skin collagen fibrils. Bernstein and Mechanic found that one HisOHMerDes (a small but as yet unknown percentage of the total collagen in crosslink was present per molecule of collagen in freshly re- whole skin). Os04/NaIO4 specifically cleaved the crosslink at its constituted soluble collagen fibrils. double bond into a two-chained crosslink peptide and a single pep- Histidine was also found to be a constituent of the stable tide. The sequence of the two-chained peptide containing the bi- nonreducible trifunctional crosslink hydroxyaldolhistidine functional crosslink was determined after amino acid analysis of (OHAlHis), whose structure was elucidated by PMR and mass the separated peptides. The crosslink consists of an aldehyde de- spectrometry rived from hydroxylysine-87 in the aldehyde-containing cyanogen (11). OHAIHis was isolated from bovine skin col- bromide fragment alCB5ald and an aldehyde derived from the lagen.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,874,589 Campbell Et Al
    USOO5874589A United States Patent (19) 11 Patent Number: 5,874,589 Campbell et al. 45) Date of Patent: Feb. 23, 1999 54 METHODS FOR SYNTHESIZING DIVERSE El Marini et al., 1992, Synthesis pp. 1104-1108 Synthesis of COLLECTIONS OF TETRAMIC ACIDS AND enantiomerically pure B-and Y-amino acids from aspartic DERVATIVES THEREOF and glutamic acid derivatives. Evans et al., 1982, J. Amer. Chem. Soc. 104: 1737–1739 75 Inventors: David A. Campbell, San Mateo; Todd Asymmetric alkylation reactions of chiral imide enolates. A T. Romoff, San Jose, both of Calif. practical approach to the enantioselective Synthesis of C-Substituted carboxylic acid derivatives. 73 Assignee: GlaxoWellcome, Inc., Research Fontenot et al., 1991, Peptide Research, 4: 19-25A Survey Triangle Park, N.C. of potential problems and qulaity control in peptide Synthe sis by the flourenylmethocvarbonyl procedure. 21 Appl. No.: 896,799 Giesemann et al., 1982, J. Chem. Res. (S) pp. 79 Synthesis 22 Filed: Jul.18, 1997 of chiral C-isocyano esters and other base-Sensitive isocya nides with 51) Int. Cl. ........................ C07D 211/40; CO7D 207/00 oxomethylenebis-(3H-Imidazolium)Bis(methanesulphonate), 52 U.S. Cl. ............ ... 548/540; 546/220; 548/539 a versatile dehydrating reagent. 58 Field of Search ............................. 546/220; 548/539, Geysen et al., 1987, J. Immunol. Meth. 102: 259-274 548/540 Strategies for epitope analysis using peptide Synthesis. Giron-Forest et al., 1979, Analytical Profiles of Drug Sub 56) References Cited stances, 8: 47-81 Bromocriptine methaneSulphonate. U.S. PATENT DOCUMENTS Gokeletal, 1971, Isonitrile Chemistry, Ugi, I. ed., Academic 3,299.095 1/1967 Harris et al.
    [Show full text]
  • Ihyd-Pseaac: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity Into Pseudo Amino Acid Composition
    Int. J. Mol. Sci. 2014, 15, 7594-7610; doi:10.3390/ijms15057594 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition Yan Xu 1,5,*, Xin Wen 1, Xiao-Jian Shao 2, Nai-Yang Deng 3 and Kuo-Chen Chou 4,5 1 Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China; E-Mail: [email protected] 2 Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, China; E-Mail: [email protected] 3 College of Science, China Agricultural University, Beijing 100083, China; E-Mail: [email protected] 4 Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mail: [email protected] 5 Gordon Life Science Institute, Boston, MA 02478, USA * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel./Fax: +86-10-6233-2589. Received: 7 February 2014; in revised form: 4 April 2014 / Accepted: 17 April 2014 / Published: 5 May 2014 Abstract: Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers.
    [Show full text]
  • Lysyl-Protocollagen Hydroxylase Deficiency in Fibroblasts from Siblings with Hydroxylysine-Deficient Collagen
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 10, pp. 2899-2903, October 1972 Lysyl-Protocollagen Hydroxylase Deficiency in Fibroblasts from Siblings with Hydroxylysine-Deficient Collagen (prolyl-protocollagen hydroxylase/connective tissue/inborn error/crosslinks) S. M. KRANE, S. R. PINNELL, AND R. W. ERBE Departments of Medicine, Dermatology, and Pediatrics, Harvard Medical School and the Medical, Dermatology, and Children's Services, Massachusetts General Hospital, Boston, Massachusetts 02114 Communicated by E. R. Blout, July 31, 1972 ABSTRACT Cell culture studies were performed on were normal. The hydroxylysine content of dermis was also members of a family in which two sisters, ages 9 and 12, normal in three patients, each with the Marfan and Ehlers- have a similar disorder characterized clinically by severe scoliosis, joint laxity and recurrent dislocations, hyper- Danlos syndromes. Collagen from the skin of the affected extensible skin, and thin scars. The skin collagen from the children was more soluble in denaturing solvents than that sisters was markedly deficient in hydroxylysine, but other derived from controls (4), consistent with a defect in cross- amino acids were present in normal amounts. Hydroxy- linking of collagen molecules, a process in which hydroxylysine lysine in collagen from fascia and bone was reduced to a to involved lesser extent. Since the most likely explanation for the has been thought be critically (2, 5-8). Hydroxyly- hydroxylysihie deficiency was a reduction in enzymatic sine per se is not used in collagen biosynthesis; specific lysyl hydroxylation of lysine residues in protocollagen, we mea- residues are hydroxylated after their incorporation into the sured the activity of lysyl-protocollagen hydroxylase in polypeptide chains of protocollagen (9-12).
    [Show full text]
  • Lysine and Novel Hydroxylysine Lipids in Soil Bacteria: Amino Acid Membrane Lipid Response to Temperature and Ph in Pseudopedobacter Saltans
    Rowan University Rowan Digital Works School of Earth & Environment Faculty Scholarship School of Earth & Environment 6-1-2015 Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans Elisha Moore Rowan University Ellen Hopmans W. Irene Rijpstra Irene Sanchez Andrea Laura Villanueva See next page for additional authors Follow this and additional works at: https://rdw.rowan.edu/see_facpub Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moore, E.K., Hopmans, E., Rijpstra, W.I.C., Sanchez-Andrea, I., Villanueva, L., Wienk, H., ...& Sinninghe Damste, J. (2015). Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. Frontiers in Microbiology, Volume 6, Article 637. This Article is brought to you for free and open access by the School of Earth & Environment at Rowan Digital Works. It has been accepted for inclusion in School of Earth & Environment Faculty Scholarship by an authorized administrator of Rowan Digital Works. Authors Elisha Moore, Ellen Hopmans, W. Irene Rijpstra, Irene Sanchez Andrea, Laura Villanueva, Hans Wienk, Frans Schoutsen, Alfons Stams, and Jaap Sinninghe Damsté This article is available at Rowan Digital Works: https://rdw.rowan.edu/see_facpub/17 ORIGINAL RESEARCH published: 29 June 2015 doi: 10.3389/fmicb.2015.00637 Lysine and novel hydroxylysine lipids in soil bacteria: amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans Eli K. Moore 1*, Ellen C. Hopmans 1, W. Irene C. Rijpstra 1, Irene Sánchez-Andrea 2, Laura Villanueva 1, Hans Wienk 3, Frans Schoutsen 4, Alfons J.
    [Show full text]
  • Reducible Crosslinks in Hydroxylysine-Deficient Collagens of a Heritable Disorder of Connective Tissue (Skin/Bone/Cartilage/Aminoacid Analysis)
    Proc. Nat. Acad. Sci. USA Vol. 69, No. 9, pp. 2594-2598, September 1972 Reducible Crosslinks in Hydroxylysine-Deficient Collagens of a Heritable Disorder of Connective Tissue (skin/bone/cartilage/aminoacid analysis) DAVID R. EYRE AND MELVIN J. GLIMCHER* Department of Orthopedic Surgery, Harvard Medical School, Children's Hospital Medical Center, Boston, Massachusetts 02115 Communicated by Francis 0. Schmitt, July 3, 1972 ABSTRACT Reducible compounds that participate don, bone, and cartilage collagens (3-11). Each tissue reveals in crosslinking were analyzed in hydroxylysine-deficient a unique distribution of these reducible crosslinks that changes collagens of patients with a heritable disorder of connec- tive tissue. After treatment with [3H1sodium borohydride, as the tissue matures and ages (8, 10). new compounds, as well as a totally different pattern of Since connective tissues of patients with this disorder are tritiated compounds, were found in hydroxylysine-de- deficient in hydroxylysine, a crosslink precursor, it seemed ficient collagen from skin as compared with age-matched likely that the reducible crosslinks would either be absent or controls. The amount of desmosines detected indicated collagen cross- that more elastin was present in abnormal skin than in abnormal. Such a deficiency or abnormality in control skin. linking might be responsible for changes in the solubility Bone collagen, which was not as deficient in hydroxy- characteristics of the collagen (1), and for changes in the lysine as skin collagen, had the same compounds as normal structural properties of the tissues and the consequent skeletal bone collagen, but their relative proportions were altered, and connective tissue abnormalities. consistent with a deficiency of hydroxylysine, a precursor of the crosslinks.
    [Show full text]
  • Biochemistry Centennial Celebration 1915 - 2015
    BIOCHEMISTRY CENTENNIAL CELEBRATION 1915 - 2015 FEATURED SPEAKERS Dr. Hung-Ying Kao (Ph.D., 1995) Dr. Rebecca Moen (Ph.D., 2013) Professor of Biochemistry Assistant Professor of Chemistry & Geology Case Western Reserve University | Cleveland, OH Minnesota State University | Mankato, MN Dr. Venkateswarlu Pothapragada (Ph.D., 1962) Dr. Amy Rocklin (Ph.D., 2000) Division Scientist, 3M | Minneapolis-St. Paul, MN Corning, Inc. | Painted Post, NY Dr. Melanie Simpson (Ph.D., 1997) Dr. Brad Wallar (Ph.D., 2000) Professor of Biochemistry Associate Professor of Chemistry University of Nebraska | Lincoln, NE Grand Valley State University | Allendale, MI Thursday, May 14, 2015, 1:00-5:30 PM 2-470 Phillips-Wangensteen Building Minneapolis Campus Sponsored by The Frederick James Bollum Endowed Research Fund for Biochemistry NIVERSITY OF INNESOTA _____________________________________________________________________________________________U M Twin Cities Campus Department of Biochemistry, 6-155 Jackson Hall Molecular Biology and Biophysics 321 Church St. SE Minneapolis, MN, 55455 Medical School and V: (612) 625-6100 College of Biological Sciences F: (612) 625-2163 http://www.cbs.umn.edu/bmbb May 14, 2015 Dear Friends; Welcome to the Centennial Celebration commemorating the 100th anniversary of the first PhD granted in biochemistry at the University of Minnesota. Morris J. Blish was our first PhD recipient and he went on to a marvelously distinguished career in the food industry and was recognized by the U of MN in 1952 by President Morrill with the Outstanding
    [Show full text]
  • Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes
    molecules Article Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes Piotr Minkiewicz * , Małgorzata Darewicz , Anna Iwaniak and Marta Turło Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn-Kortowo, Poland; [email protected] (M.D.); [email protected] (A.I.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +48-89-523-3715 Abstract: Phosphorylation represents one of the most important modifications of amino acids, peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of foods. Although all these substances are broadly annotated in internet databases, there is no unified code for their annotation. The present publication aims to describe a simple code for the annotation of phosphopeptide sequences. The proposed code describes the location of phosphate residues in amino acid side chains (including new rules of atom numbering in amino acids) and the diversity of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article also includes translating the proposed biological code into SMILES, being the most commonly used chemical code. Finally, it discusses possible errors associated with applying the proposed code and in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to describe other modifications in the future. Keywords: amino acids; peptides; phosphorylation; phosphate groups; databases; code; bioinformatics; cheminformatics; SMILES Citation: Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Turło, M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using 1. Introduction Biological and Chemical Codes.
    [Show full text]
  • Properties and Units in the Clinical Laboratory Sciences Part X
    Pure Appl. Chem., Vol. 72, No. 5, pp. 747–972, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART X. PROPERTIES AND UNITS IN GENERAL CLINICAL CHEMISTRY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, INGE IBSEN1, IVAN BRUUNSHUUS1, DESMOND KENNY2, RENÉ DYBKÆR3, XAVIER FUENTES-ARDERIU4, GILBERT HILL5, PEDRO SOARES DE ARAUJO6, AND CLEM McDONALD7 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Dublin, Ireland; 3Dept. of Standardisation in Laboratory Medicine, Kommunehospitalet, Copenhagen, Denmark; 4Dept. of Clinical Biochemistry, Ciutat Sanitària i Universitària de Bellvitge, Barcelona, Spain; 5Dept. of Clinical Chemistry, Hospital for Sick Children, Toronto, Canada; 6Dept. of Biochemistry, IQUSP, São Paolo, Brazil; 7Regenstrief Inst. for Health Care, Indiana University School of Medicine, Indianapolis, Indiana, USA #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994 to 1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996). Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada; 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H.
    [Show full text]
  • WO 2010/037397 Al
    (12) INTERNATIONALAPPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 8 April 2010 (08.04.2010) WO 2010/037397 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/17 (2006.01) C07K 14/705 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 47/48 (2006.01) GOlN 33/50 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/DK2009/050257 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 1 October 2009 (01 .10.2009) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, (26) Publication Language: English TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every PA 2008 0 1381 1 October 2008 (01 .10.2008) DK kind of regional protection available): ARIPO (BW, GH, 61/101,898 1 October 2008 (01 .10.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): DAKO TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, DENMARK A/S [DK/DK]; Produktionsvej 42, DK-2600 ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Glostrup (DK).
    [Show full text]