CONTENTS This Article Is Based on the Conference from Dedicating the Meeting in Her Memory Opening Talk Given at the Just the Same

Total Page:16

File Type:pdf, Size:1020Kb

CONTENTS This Article Is Based on the Conference from Dedicating the Meeting in Her Memory Opening Talk Given at the Just the Same January 2005 But this has not deterred the organizers of this CONTENTS This article is based on the conference from dedicating the meeting in her memory opening talk given at the just the same. This is not the first such conference conference Stellar Populations dedicated in her memory. The very first STScI Beatrice Tinsley: A Tribute 2003, held in Garching, Germany Symposium in 1985, also entitled Stellar Populations, Robert C. Kennicutt, Jr. on October 6–10, 2003. The was dedicated to Beatrice, and that meeting opened 1 conference was dedicated in with a similar dedicatory talk by Jim Gunn. memory of Beatrice M. Tinsley. For the many of you who never met Beatrice Nobel Prize for a “Computer” Photo by Moire Prescott Tinsley or worked on the subject when she was named Henrietta Leavitt active, it may come as a surprise that her colleagues would still be honoring her memory so (1868–1921) Beatrice Tinsley: A Tribute many years after her death. My task in this talk is to Pangratios Papacosta By Robert C. Kennicutt, Jr. explain why. I approach the task with some reluctance, because unlike Jim Gunn and her other 1 t has become customary in our profession, when close collaborators, I only met Tinsley briefly at the a distinguished scientist reaches the age of 60 or What Works for Women in end of her career (and at the beginning of my own), beyond, to organize a conference in his or her I so I cannot speak from firsthand observation. This is Undergraduate Physics? honor, a Festschrift. If Beatrice Tinsley were still with important because much of the greatness in this complex Barbara L. Whitten, Suzanne R. Foster, and us today there is little doubt that we would be holding person came from the way in which she interacted this conference on Stellar Populations in her honor. Margaret L. Duncombe with other scientists, young astronomers in particular. Unfortunately 22 years have passed since Tinsley’s So in order to remain on solid ground I will focus 9 death at age 40, so she was deprived of her Festschrift. Applying to Graduate School Continued on page 2 Fran Bagenal 15 ❊ Pangratios Papacosta came to the US from Cyprus (via the University of London, England) and Notes from a Life teaches science at Columbia College, Chicago. The following is a commentary on the life of Anonymous Readers’ Contributions Henrietta Leavitt. 17 The purpose of this short paper is Nobel Prize for a “Computer” to summarize the contents of a Women in Canadian Astronomy: named Henrietta Leavitt (1868–1921) A Ten Year Survey poster paper given by the author at the 2004 AAS annual meeting By Pangratios Papacosta Mike Reid and Brenda Matthews in Denver. The first objective of t is amazing that less than a hundred years ago 18 that poster paper was to disclose people believed that our universe was just the the content of letters by Professor I Progress on Gender Equity at Milky Way galaxy and that the spiral nebulae seen at Mittag, of the Swedish Academy its very edge were just disorganized leftover material. Nine Top Research Universities of Sciences, and by Dr. Harlow In 1924, only four years after the Great Debate J. L. Sokoloski Shapley, the director of the Harvard College between Heber D. Curtis and Harlow Shapley on the 21 Observatory. To the knowledge of the author none of size of our galaxy and on the possibility of “island these letters were published before. The second objective universes,” Edwin Hubble showed that one of those Childcare at University of of the poster paper was to suggest that the importance spiral nebulae, Andromeda, was indeed a galaxy with Arizona: Investing in the Future of Henrietta Leavitt’s discovery, the period-luminosity billions of stars, not at the edge of our galaxy but relation, has not been fully recognized by the public almost a million light years away. Hubble was Joannah Hinz and Jill Bechtold or fully appreciated by the astronomical community. meticulous and thorough in his work, but even with 23 Detailed description of the life and works of Henrietta such refined qualities, he would not have been able Leavitt and the difficult conditions under which she, to make this discovery if not for two other significant A Publication of the like most women of her time, had to work are topics factors. First, he was fortunate to be operating the American Astronomical of future publication. Society Committee 100-inch Hooker telescope at Mount Wilson, for on the Status of Women many years the largest telescope in the world. With in Astronomy Continued on page 7 2 STATUS A Tribute to Tinsley continued from page 1 most of my talk on her many fundamental contributions to the subjects of stellar populations and galaxy STATUS evolution, and the aspects of her science that were so special. Whenever appropriate I have added a few Edited by remarks about her life and the personal qualities Fran Bagenal (University of Colorado) behind her success, based on published accounts [email protected] (some of which are listed at the end of this article) and from conversations with many of her colleagues and Associate Editors friends. Hers is a remarkable story of scientific genius, Joannah Hinz (University of Arizona) personal courage and perseverance, and generosity of [email protected] spirit, and there are lessons in the story for all of us. Patricia Knezek (WIYN Observatory) [email protected] Early Life and Graduate School: 1941–1967 Contributing Editor Beatrice Muriel Hill was born in 1941 in Meg Urry (Yale University) Chester, England. Her family moved to New [email protected] Figure 1: Beatrice Tinsley, gifted Zealand five years later, and she remained there and dedicated teacher, mentor, through college. Today she is embraced as a and scientist. Design by national hero in her adopted homeland (see Krista Wildt (STScI) http://www.nzedge.com/index.html). Her intellectual [email protected] brilliance became apparent at an early age, and by age 14 she had decided to pursue a path in Published by astrophysics. She graduated from high school at age the American Astronomical Society 16 and entered Canterbury University, where she 2000 Florida Avenue, NW, Suite 400 earned a First in Physics (BSc), followed by an MSc Washington, DC 20009 degree in 1963. While in school she married a fellow © 2004 AAS space physicist, Brian A. Tinsley, and 1963 the couple All rights reserved. moved to Dallas, where Brian had been offered a long-term position at what is now the University of STATUS is produced at the Texas at Dallas. For the next 13 years Beatrice filled Space Telescope Science Institute the all-too-familiar role of the trailing partner, and in 3700 San Martin Drive the absence of a permanent job supported herself Baltimore, MD 21218 with an assortment of part-time teaching positions, visiting appointments, and research fellowships. Copyrights for contributed or reproduced Since UT Dallas did not offer a doctoral material may rest with the author. These articles program in astronomy at the time, Tinsley enrolled reflect the opinions of the authors, which are in the newly created Ph.D. program at UT Austin, not necessarily the opinions of the editors, and commuted the 200 miles weekly to complete her STScI or the AAS. STATUS is published for degree. Her graduate career at Austin is a department the personal use of AAS members. legend. She completed her degree in record time (1964–1967), working largely on her own, and the The STATUS newsletter is distributed to AAS thesis that emerged became a landmark work in its members at the January and June meetings and field. When The Astrophysical Journal published a sent to home institutions of subscribers during collection of 53 seminal papers from the 20th century the week of the meeting. Contributed articles in its 1999 Centennial Issue, Tinsley’s thesis paper are encouraged. Deadlines for submission are Evolution of the Stars and Gas in Galaxies was one October 1 and March 1, respectively. of them (Tinsley 1968, ApJ, 151, 547; also * ApJ, 525C, 1146 ). In her thesis Tinsley developed, For more information on subscribing to virtually from scratch, the theoretical apparatus for STATUS, submitting articles constructing evolutionary synthesis models of the or obtaining back issues, colors, gas contents, and chemical abundances please visit the STATUS website: of galaxies. She then applied her models to two http://www.aas.org/~cswa/status fundamental problems, the evolutionary nature of the Hubble sequence, and the change in the observed AAS members may receive hard copy by magnitudes and colors of galaxies with cosmological sending their postal address to look back time. In this one paper she helped to Dennis Renner, [email protected] establish the modern evolutionary picture of the Hubble sequence, and demonstrate that the effects of January 2005 3 galaxy evolution were readily observable to even But the main objective was to compute the modest redshifts, and thus needed to be accounted evolution in galaxies properties with cosmological for in the prevailing cosmological tests of the time. lookback time. Tinsley used her models to calculate From today’s perspective, when anyone can how the luminosities, colors, gas contents, and chemical access web-based model programs and compute a full abundances of galaxies evolved with cosmic time, grid of evolutionary models in a few mouseclicks, it and then applied these in turn to quantify how is difficult to overstate the groundbreaking and evolutionary brightening (what we today call forward-looking character of this work. For the “passive evolution”) would affect the use of elliptical modeling she had to collect evolutionary tracks from galaxies as standard candles for constraining the dozens of papers, and use color-magnitude diagrams geometry and deceleration history of the universe.
Recommended publications
  • President's Column
    July/August 2007 Issue 136 A Publication for the members of the American Astronomical Society 4 AAS Elections President’s Column Preliminary Slate J. Craig Wheeler, [email protected] From all indications, the Hawaii meeting was a success. The hotels were near the beach, and the 4 convention center was a great environment for the scientific presentations. The interaction with Council Actions the members of the Solar Physics Division was very satisfactory. The Sun is a star, and we do have issues in common! I got my first ever Aloha shirts from a nice little shop in the Ala Moana mall and sported two leis at the banquet. 5 Member Deaths For those of you keeping score, the summer meeting is when people elected in January take office. John Huchra is now formally President Elect. I offer my personal thanks and that of the Society to Bob Kirshner for his four years of service as he steps down as Past President. We have a new Vice- 5 President, Lee Hartmann, but will miss Wal Sargent who has completed his three-year tour. New Prize Nomination Councilors are Chryssa Kouveliotou, Nick Suntzeff, Jay Lockman, and Gary Ferland, who will fill Form out the last year of Lee Hartmann’s term. Our thanks to retiring Councilors, Karen Bjorkman, Jill Bechtold, and Alan Title. Richard Green became Chair-elect of the Publications Board and next June will replace Mike A’Hearn who really pitched in during this turbulent time for our journals. 8-9 On that front, the journal transition is going quite smoothly.
    [Show full text]
  • Kavli IPMU Annual 2014 Report
    ANNUAL REPORT 2014 REPORT ANNUAL April 2014–March 2015 2014–March April Kavli IPMU Kavli Kavli IPMU Annual Report 2014 April 2014–March 2015 CONTENTS FOREWORD 2 1 INTRODUCTION 4 2 NEWS&EVENTS 8 3 ORGANIZATION 10 4 STAFF 14 5 RESEARCHHIGHLIGHTS 20 5.1 Unbiased Bases and Critical Points of a Potential ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙20 5.2 Secondary Polytopes and the Algebra of the Infrared ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙21 5.3 Moduli of Bridgeland Semistable Objects on 3- Folds and Donaldson- Thomas Invariants ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙22 5.4 Leptogenesis Via Axion Oscillations after Inflation ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙23 5.5 Searching for Matter/Antimatter Asymmetry with T2K Experiment ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 24 5.6 Development of the Belle II Silicon Vertex Detector ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙26 5.7 Search for Physics beyond Standard Model with KamLAND-Zen ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙28 5.8 Chemical Abundance Patterns of the Most Iron-Poor Stars as Probes of the First Stars in the Universe ∙ ∙ ∙ 29 5.9 Measuring Gravitational lensing Using CMB B-mode Polarization by POLARBEAR ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ 30 5.10 The First Galaxy Maps from the SDSS-IV MaNGA Survey ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙32 5.11 Detection of the Possible Companion Star of Supernova 2011dh ∙ ∙ ∙ ∙ ∙ ∙
    [Show full text]
  • Gruber Foundation Formed at Yale Yale Joins Sloan Digital Sky Survey
    Yale University Astronomy Department Newsletter Vol. 3 Fall 2011 No. 1 Yale joins Sloan Digital Sky Survey III Yale is now a fully participating member of the Sloan Digital Sky Survey III (SDSS-III) Collaboration. Although Yale was not a member during the first two phases of SDSS, the suc- cess of SDSS and the excitement of Yale astronomers about the projects and data of SDSS-III led Yale to join now. Based on citations in refereed articles and meeting abstracts, SDSS has been rated as the telescope project with the biggest sci- entific impact in history, beating out even the Hubble Space Telescope and the Keck Telescopes (c.f. Madrid, Juan P. and Macchetto, Duccio 2009arXiv0901.4552M). The previous incarnations of SDSS have imaged 13,000 square degrees, corresponding to about a third of the en- tire sky. SDSS-III is taking spectra of interesting objects that were found in these images, through a program of four sur- veys that cover three scientific themes. The Baryon Oscil- lation Spectroscopic Survey (BOSS) studies dark energy and the geometry of space. (SEE SDSS-III, p. 4) SDSS-III Data Release 8 image from January 2011 Gruber Foundation formed at Yale with prizes and fellowships in astronomy and cosmology In May of 2011, Patricia and Peter Gruber officially formed the Gruber Founda- tion at Yale University, dedicated to the advancement of science, support of young scientists, global justice, and women’s rights. The Gruber Foundation at Yale will succeed The Peter and Patricia Gruber Foundation, originally estab- lished in 1993, and carry on its philanthropic mission, including its prestigious annual science prizes.
    [Show full text]
  • The Birth of Stars and Planets
    Unit 6: The Birth of Stars and Planets This material was developed by the Friends of the Dominion Astrophysical Observatory with the assistance of a Natural Science and Engineering Research Council PromoScience grant and the NRC. It is a part of a larger project to present grade-appropriate material that matches 2020 curriculum requirements to help students understand planets, with a focus on exoplanets. This material is aimed at BC Grade 6 students. French versions are available. Instructions for teachers ● For questions and to give feedback contact: Calvin Schmidt [email protected], ​ ● All units build towards the Big Idea in the curriculum showing our solar system in the context of the Milky Way and the Universe, and provide background for understanding exoplanets. ● Look for Ideas for extending this section, Resources, and Review and discussion ​ ​ ​ ​ ​ questions at the end of each topic in this Unit. These should give more background on ​ each subject and spark further classroom ideas. We would be happy to help you ​ expand on each topic and develop your own ideas for your students. Contact us at ​ the [email protected]. ​ ​ Instructions for students ● If there are parts of this unit that you find confusing, please contact us at [email protected] for help. ​ ● We recommend you do a few sections at a time. We have provided links to learn more about each topic. ● You don’t have to do the sections in order, but we recommend that. Do sections you find interesting first and come back and do more at another time. ● It is helpful to try the activities rather than just read them.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • The Mutable Galaxies How Galaxies Enrich with Heavy Elements
    GENERAL I ARTICLE The Mutable Galaxies How Galaxies Enrich with Heavy Elements Biman Nath Biman Nath is an Soon after the discovery of the expansion of the astrophysicist at the universe, astronomers hoped to determine the Raman Research parameters of the universe by comparing dis­ Institute, Bangalore. tant galaxies with nearby ones. Observing dis­ tant galaxies, however, meant observing them as they were long ago. A crucial assumption in Keywords these studies was that galaxies hardly change, in Galaxies, evolution of stars, the time scale of the expansion of the universe. production of elements. Beatrice Tinsley was one of the first astronomers to point out that galaxies do change. Here we discuss a simplified model of galactic evolution, and show that the comparison of its prediction with observations uncovers clues to how galaxies evolve with time. A cursory look at the starry sky at night is likely to make us think that stars, galaxies and the universe are immutable and changeless. Stars and galaxies do how­ ever change with time. The beginning of the last century was marked by the discovery of the expansion of the uni­ verse and also the development of our knowledge of the evolution of stars. Yet, the overall evolution of galaxies, as a result of stellar evolution, was considered too messy, and perhaps even negligible. The study of stars told us that stars shine as a result of thermonuclear reactions inside their cores. These Beatrice Tinsley reactions synthesize heavy elements like carbon, oxy­ was one of the first gen, nitrogen and so forth, beginning with hydrogen astronomers to and helium (which were created in the first few minutes point out that of the birth of the universe).
    [Show full text]
  • Women in Astronomy: an Introductory Resource Guide
    Women in Astronomy: An Introductory Resource Guide by Andrew Fraknoi (Fromm Institute, University of San Francisco) [April 2019] © copyright 2019 by Andrew Fraknoi. All rights reserved. For permission to use, or to suggest additional materials, please contact the author at e-mail: fraknoi {at} fhda {dot} edu This guide to non-technical English-language materials is not meant to be a comprehensive or scholarly introduction to the complex topic of the role of women in astronomy. It is simply a resource for educators and students who wish to begin exploring the challenges and triumphs of women of the past and present. It’s also an opportunity to get to know the lives and work of some of the key women who have overcome prejudice and exclusion to make significant contributions to our field. We only include a representative selection of living women astronomers about whom non-technical material at the level of beginning astronomy students is easily available. Lack of inclusion in this introductory list is not meant to suggest any less importance. We also don’t include Wikipedia articles, although those are sometimes a good place for students to begin. Suggestions for additional non-technical listings are most welcome. Vera Rubin Annie Cannon & Henrietta Leavitt Maria Mitchell Cecilia Payne ______________________________________________________________________________ Table of Contents: 1. Written Resources on the History of Women in Astronomy 2. Written Resources on Issues Women Face 3. Web Resources on the History of Women in Astronomy 4. Web Resources on Issues Women Face 5. Material on Some Specific Women Astronomers of the Past: Annie Cannon Margaret Huggins Nancy Roman Agnes Clerke Henrietta Leavitt Vera Rubin Williamina Fleming Antonia Maury Charlotte Moore Sitterly Caroline Herschel Maria Mitchell Mary Somerville Dorrit Hoffleit Cecilia Payne-Gaposchkin Beatrice Tinsley Helen Sawyer Hogg Dorothea Klumpke Roberts 6.
    [Show full text]
  • Cosmic Times Teachers' Guide Table of Contents
    Cosmic Times Teachers’ Guide Table of Contents Cosmic Times Teachers’ Guide ....................................................................................... 1 1919 Cosmic Times ........................................................................................................... 3 Summary of the 1919 Articles...................................................................................................4 Sun’s Gravity Bends Starlight .................................................................................................4 Sidebar: Why a Total Eclipse?.................................................................................................4 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............4 Expanding or Contracting? ......................................................................................................4 In Their Own Words................................................................................................................4 Notes on the 1919 Articles .........................................................................................................5 Sun's Gravity Bends Starlight..................................................................................................5 Sidebar: Why a Total Eclipse?.................................................................................................7 Mount Wilson Astronomer Estimates Milky Way Ten Times Bigger Than Thought ............7 Expanding or Contracting? ......................................................................................................8
    [Show full text]
  • Beatrice Tinsley, New Zealand Mathematician
    Beatrice Tinsley. New Zealand Mathematician. Beatrice Hill was born on 27th January, 1941 in Chester, England. She was the middle of three sisters. The family emigrated to New Zealand when she was 5 years old. Her father became an Anglican curate and the family moved around a lot when she was young. Primary schools which Beatrice attended were St. Margaret’s College, Southbridge Primary School, and New Plymouth Central Primary School. For High School she studied at New Plymouth Girls High School, where she was an outstanding student. Beatrice’s family called her by a nick-name. What was it? 1. (a) Beetle (b) Blondie (c) B (d) Babs. Beatrice Hill started at New Plymouth Girls High School when she was 13 years old. She was an outstanding student and gained her form prize every year along with prizes in piano and violin. In her last year at school she insisted on taking extra maths. This was unusual at the time and few girls took the subject. During which years was she at New Plymouth Girls High School? 2. (a) 1954-1957 (b) 1955-1958 (c) 1956-1959 (d) 1957-1960. Beatrice studied a wide range of subjects at school. She enjoyed playing the violin and reached a very high standard. In her final year at New Plymouth Girls High School she was top of her class in both mathematics, Latin, English and Science. She was awarded Dux of the school. What does Dux mean? 3. (a) Head Prefect of her school (b) Top student at sport in her school.
    [Show full text]
  • President's Column
    March/AprilAAS 2011, Issue 157 - TheNewsletter Online Publication for the members of the American Astronomical Society CONTENTS President's Column Debra Meloy Elmegreen, [email protected] 3 From the Seattle was the scene for a grand, fast-paced and entertaining Executive Officer 217th meeting, filled with exciting new results presented by our wonderful AAS members. We set a record for the West Coast and achieved the largest AAS meeting ever, outside of DC, with over 5 2900 participants, including over 600 junior members. As usual, Council Actions the hard work of AAS Executive Officer Kevin Marvel and his staff resulted in a smooth meeting experience for us. We were captivated by plenary sessions covering the gamut from exoplanets to the 6 early universe. The inaugural Lancelot Berkeley prizewinners, Bill Borucki and David Koch, gave Boston Meeting inspiring talks about the exciting Kepler results, and the first Kavli Prize lecturer, Dr. Carolyn Porco, 22-26 May described the Cassini mission. Our Warner prizewinner Scott Ransom expounded on exotic pulsars, while Pierce prizewinner Tommaso Treu discussed the growth of black holes and galaxy evolution, 8 and Cannon prizewinner Anna Frebel explored the oldest known stars. Rossi prizewinners Felix Committee News Aharonian, Werner Hoffmann, and Heinz Voelk described the successful H.E.S.S collaboration, while Heineman awardees Michael Turner and Rocky Kolb entertained us with a lively cosmology and particle astrophysics lecture. 10 With these prizewinners and so many other exciting talks still fresh in mind, I exhort you to nominate Seattle Meeting your colleagues for the next round of AAS prizes.
    [Show full text]
  • [Your Letterhead Here]
    FOR IMMEDIATE RELEASE Astronomical Society of the Pacific Announces 2019 Awards for Astronomy Research and Education San Francisco, California – July 25, 2019 The Astronomical Society of the Pacific (ASP), one of the oldest, innovative, and respected organizations in the U.S. dedicated to increasing the understanding and teaching of astronomy, is honored to announce the recipients of its 2019 awards for excellence in astronomy research and education. Join us in celebration of these prestigious awards at the ASP Awards Gala (Ceremony and Banquet) on November 9, 2019, at the Doubletree by Hilton Hotel, Burlingame, CA. Astronomical Society of the Pacific • 390 Ashton Avenue, San Francisco, CA 94112 • tel. (415) 337-1100 Maria and Eric Muhlmann Award The Maria and Eric Muhlmann Award recognizes significant observational results made possible by innovative advances in astronomical instrumentation, software, or observational infrastructure. The 2019 recipient of the Muhlmann Award is Dr. Mark J. Reid, Senior Radio Astronomer at the Smithsonian Astrophysical Observatory, a pioneer in the use of Very Long Baseline Interferometry (VLBI) and in the development of the Very Long Baseline Array (VLBA). Among his numerous achievements in radio astronomy made over the course of his career, Dr. Reid is being recognized for his unique use of VLBI to study the intense radio emissions coming from excited molecules, also known as astrophysical masers, to make incredibly accurate distance measurements to both nearby and distant galaxies. Reid also used this technique to make detailed, 3-dimensional measurements of our own Milky Way Galaxy’s and its elusive center, a feat earning him the deep respect of his peers.
    [Show full text]
  • Not Yet Imagined: a Study of Hubble Space Telescope Operations
    NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR NOT YET IMAGINED NOT YET IMAGINED A STUDY OF HUBBLE SPACE TELESCOPE OPERATIONS CHRISTOPHER GAINOR National Aeronautics and Space Administration Office of Communications NASA History Division Washington, DC 20546 NASA SP-2020-4237 Library of Congress Cataloging-in-Publication Data Names: Gainor, Christopher, author. | United States. NASA History Program Office, publisher. Title: Not Yet Imagined : A study of Hubble Space Telescope Operations / Christopher Gainor. Description: Washington, DC: National Aeronautics and Space Administration, Office of Communications, NASA History Division, [2020] | Series: NASA history series ; sp-2020-4237 | Includes bibliographical references and index. | Summary: “Dr. Christopher Gainor’s Not Yet Imagined documents the history of NASA’s Hubble Space Telescope (HST) from launch in 1990 through 2020. This is considered a follow-on book to Robert W. Smith’s The Space Telescope: A Study of NASA, Science, Technology, and Politics, which recorded the development history of HST. Dr. Gainor’s book will be suitable for a general audience, while also being scholarly. Highly visible interactions among the general public, astronomers, engineers, govern- ment officials, and members of Congress about HST’s servicing missions by Space Shuttle crews is a central theme of this history book. Beyond the glare of public attention, the evolution of HST becoming a model of supranational cooperation amongst scientists is a second central theme. Third, the decision-making behind the changes in Hubble’s instrument packages on servicing missions is chronicled, along with HST’s contributions to our knowledge about our solar system, our galaxy, and our universe.
    [Show full text]