Sugar Feeding by Coccinellids Under Field Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aphis Spiraecola
Rapid Pest Risk Analysis (PRA) for Aphis spiraecola STAGE 1: INITIATION 1. What is the name of the pest? Aphis spiraecola Patch (Hemiptera, Aphididae) – Spiraea aphid (also Green citrus aphid). Synonyms: many, due to historic confusion over its identity; most common is Aphis citricola van der Goot (see CABI, 2013). 2. What initiated this rapid PRA? The UK Plant Health Risk Register identified the need to update the first UK PRA (MacLeod, 2000), taking into account recent information on hosts, impacts, vectored pathogens and UK status. 3. What is the PRA area? The PRA area is the United Kingdom of Great Britain and Northern Ireland. STAGE 2: RISK ASSESSMENT 4. What is the pest’s status in the EC Plant Health Directive (Council Directive 2000/29/EC1) and in the lists of EPPO2? Aphis spiraecola is not listed in the EC Plant Health Directive, not recommended for regulation as a quarantine pest by EPPO and it is not on the EPPO Alert List. 5. What is the pest’s current geographical distribution? Aphis spiraecola probably originates in the Far East. It is now very widespread around the world in temperate and tropical regions, occurring across every continent except Antarctica (CABI, 2013). In Europe, A. spiraecola is found around the Mediterranean, with a patchy Balkan distribution and it is absent from Scandinavia and the Baltic states. It is stated as present in: Spain, Portugal, France, Switzerland, Italy, Slovenia, Croatia, Serbia, Hungary, Bulgaria, Greece, Cyprus, Malta, and Russia (west of the Urals) (CABI 2013). It is not confirmed as being established in the Netherlands, either outdoors or under protection. -
Melon Aphid Or Cotton Aphid, Aphis Gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L
EENY-173 Melon Aphid or Cotton Aphid, Aphis gossypii Glover (Insecta: Hemiptera: Aphididae)1 John L. Capinera2 Distribution generation can be completed parthenogenetically in about seven days. Melon aphid occurs in tropical and temperate regions throughout the world except northernmost areas. In the In the south, and at least as far north as Arkansas, sexual United States, it is regularly a pest in the southeast and forms are not important. Females continue to produce southwest, but is occasionally damaging everywhere. Be- offspring without mating so long as weather allows feeding cause melon aphid sometimes overwinters in greenhouses, and growth. Unlike many aphid species, melon aphid is and may be introduced into the field with transplants in the not adversely affected by hot weather. Melon aphid can spring, it has potential to be damaging almost anywhere. complete its development and reproduce in as little as a week, so numerous generations are possible under suitable Life Cycle and Description environmental conditions. The life cycle differs greatly between north and south. In the north, female nymphs hatch from eggs in the spring on Egg the primary hosts. They may feed, mature, and reproduce When first deposited, the eggs are yellow, but they soon parthenogenetically (viviparously) on this host all summer, become shiny black in color. As noted previously, the eggs or they may produce winged females that disperse to normally are deposited on catalpa and rose of sharon. secondary hosts and form new colonies. The dispersants typically select new growth to feed upon, and may produce Nymph both winged (alate) and wingless (apterous) female The nymphs vary in color from tan to gray or green, and offspring. -
Transgenic Crops.Pdf
MICHEL TEMER President of the Republic ELISEU PADILHA Chief of Staff of the Presidency of the Republic JOSÉ RICARDO ROSENO Special Secretary for Family Farming and Agrarian Development JEFFERSON CORITEAC Deputy Executive Secretary of for Family Farming and Agrarian Development JOSÉ ROBERTO VIEIRA SANTOS Subsecretary of Planning and Management RAQUEL SANTORI Subsecretary of de Agrarian Reordering EVERTON AUGUSTO PAIVA FERREIRA Subsecretary of Family Farming MARCELO MARTINS Subsecretary of Rural Development SORRIVAL DE LIMA Subsecretary of Land Regularization in the Legal Amazon CARLOS EDUARDO BOVO Director of the Coordination of Strategic Management, Monitoring and Evaluation (CGMA / NEAD) WILLY DE LA PIEDRA MESONES Coordinator-General for Strategic Management, Monitoring and Evaluation (CGMA / NEAD) Copyright 2017 MDA mda.gov.br Series NEAD Debate 27 Agrarian Studies and Rural Development Centre/ Coordination of Strategic Management, Monitoring and Evaluation (NEAD) Esplanada dos Ministérios, Bloco C, 5º andar – sala 543 CEP 70.046-900 Brasília/DF Editorial staff Editorial production: Ana Carolina Fleury and Mariana Camargo Spelling and grammar review: Ana Carolina Fleury, Mariana Camargo and Grafica Ideal Graphic and editorial design: Aline Pereira - Ascom/MDA Transgenic Crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies / Gilles Ferment ... [ et al. ].– Brasília: Ministry of Agrarian Development, 2017. 450p. _ ( Nead debate ; 27 ) ISBN 978-85- 8354-015- 1 1. Trangenic plants. 2. Agrobiodiversity. -
Detection of Citrus Tristeza Virus by Print Capture and Squash Capture-PCR in Plant Tissues and Single Aphids
Fourteenth IOCV Conference, 2000—Citrus Tristeza Virus Detection of Citrus Tristeza Virus by Print Capture and Squash Capture-PCR in Plant Tissues and Single Aphids M. Cambra, A. Olmos, M. T. Gorris, C. Marroquín, O. Esteban, S. M. Garnsey, R. Llauger, L. Batista, I. Peña, and A. Hermoso de Mendoza ABSTRACT. Two sensitive methods using immobilized targets on membranes (hemi-nested- PCR and nested-PCR in a single closed tube) were applied successfully for amplification of citrus tristeza virus (CTV) targets from plant material (print capture) and aphids (squash capture). Amplification was obtained from different aphid species regardless of transmission efficiency showing that CTV is acquired by different aphid species. The use of preprinted or presquashed targets offers a new and sensitive diagnostic tool for CTV detection for many applications includ- ing epidemiological studies. Index words. Citrus tristeza virus, detection, aphids, Toxoptera citricida, Aphis gossypii, Aphis nerii, Hyalopterus pruni, squash capture-PCR, print capture-PCR, hemi-nested-PCR, nested-PCR. Citrus tristeza virus (CTV) is one The use of certified pathogen-free of the most detrimental virus diseas- plants and epidemiological studies es of citrus (2), especially where CTV- to track the incidence and spread of sensitive rootstocks are used. CTV is CTV in the field are the two strate- vectored by a number of aphid spe- gies to manage the tristeza problem. cies (Homoptera, Aphididae) in a Accurate epidemiological data al- noncirculative, semi-persistent man- lows the proper recommendation to ner (19). Seven aphid species have be given to a grower on what to do to been determined as CTV vectors in control CTV such as the use of se- different geographical areas (13). -
Brown Citrus Aphid, Toxoptera Citricida (Kirkaldy) (Insecta: Hemiptera: Aphididae)1 S
EENY-007 Brown Citrus Aphid, Toxoptera citricida (Kirkaldy) (Insecta: Hemiptera: Aphididae)1 S. E. Halbert and L. G. Brown2 The Featured Creatures collection provides in-depth profiles The initial counties found to be infested in Florida were of insects, nematodes, arachnids and other organisms Dade and Broward, and the majority of infested trees were relevant to Florida. These profiles are intended for the use of in dooryard situations. Several months after detection, interested laypersons with some knowledge of biology as well infestations were discovered in the commercial lime as academic audiences. production area, indicating range expansion about 15 miles south of the area delimited by the original survey. An Introduction eventual spread throughout Florida is expected. The brown citrus aphid, Toxoptera citricida (Kirkaldy), is one of the world’s most serious pests of citrus. Although Identification brown citrus aphid alone can cause serious damage to Worldwide, 16 species of aphids are reported to feed citrus, it is even more of a threat to citrus because of its regularly on citrus. Four more species may be occasional efficient transmission of citrus tristeza closterovirus (CTV). pests (Blackman and Eastop 1984; Stoetzel 1994). Of these One of the most devastating citrus crop losses ever reported 20 species, four are found consistently in Florida groves: followed the introduction of brown citrus aphid into Brazil and Argentina: 16 million citrus trees on sour orange • Aphis craccivora Koch, cowpea aphid rootstock were killed by CTV (Carver 1978). • Aphis gossypii Clover, cotton or melon aphid Distribution • Aphis spiraecola Patch, spirea aphid • Toxoptera aurantii (Boyer de Fonscolombe), black citrus The current distribution of brown citrus aphid includes aphid Southeast Asia (Carver 1978; Tao and Tan 1961), Africa south of the Sahara, Australia, New Zealand, the Pacific An additional three species are rarely collected on citrus in Islands, South America, the Caribbean, and Florida. -
Ecology of Citrus Aphids and Their Importance to Virus Transmission
JARQ 28, 177 - 184 (1994) Ecology of Citrus Aphids and Their Importance to Virus Transmission Shinkichi KOMAZAKI* Okitsu Branch, Fruit Tree Research Station (Okitsu, Shimizu, Shizuoka, 424-02 Japan) Abstract World aphid species attacking citrus are reviewed. The 4 aphids, Toxoptera citricidus, T. aurantii, Aphis gossypii and A. spiraecola are the major species whereas other 11 species are less important. Their occurrence varies with the countries or districts. Aphid life cycle in general and that of the major 4 species are described. Ecology of and factors affecting the occurrence of 3 important citrus aphids in Japan are described and relations between aphid populations and some factors controlling aphid populations are outlined. Transmission of citrus tristeza virus (CTV) is reviewed and transmission rate of T. citricidus and A gossypii is compared in relation to different strains of CTV or of aphids. All of 4 world important species can transmit CTV. Especially, T. citrici dus andA. gossypii are efficient vectors of CTV in different areas of the world. Discipline: Insect pest Additional keywords: Aphis gossypii, Aphis spiraecola, CTV, Toxoptera citricidus, Toxopt,e ra aurantii attack citrus but they occur occasionally and World aphid species attacking citrus their populations are small. Several aphid species attack citrus in the General biology of aphids 2 4 13 2 world • • • 2.JS.37). All belong to the family Aphididae. Four important species i.nclude Fig. I depicts the aphid life-cycle. Aphid Toxoptera citricidus, Toxoptera auranlii, Aphis propagates parthenogenetically and partheno gossypii and Aphis spiraecola (Table 1). The genesis is linked to viviparity. Sexual and par species composition and seasonal occurrence thenogenetic reproduction alternates in the li fe differ in each area or country. -
Aphid Transmission of Potyvirus: the Largest Plant-Infecting RNA Virus Genus
Supplementary Aphid Transmission of Potyvirus: The Largest Plant-Infecting RNA Virus Genus Kiran R. Gadhave 1,2,*,†, Saurabh Gautam 3,†, David A. Rasmussen 2 and Rajagopalbabu Srinivasan 3 1 Department of Plant Pathology and Microbiology, University of California, Riverside, CA 92521, USA 2 Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA; [email protected] 3 Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]. † Authors contributed equally. Received: 13 May 2020; Accepted: 15 July 2020; Published: date Abstract: Potyviruses are the largest group of plant infecting RNA viruses that cause significant losses in a wide range of crops across the globe. The majority of viruses in the genus Potyvirus are transmitted by aphids in a non-persistent, non-circulative manner and have been extensively studied vis-à-vis their structure, taxonomy, evolution, diagnosis, transmission and molecular interactions with hosts. This comprehensive review exclusively discusses potyviruses and their transmission by aphid vectors, specifically in the light of several virus, aphid and plant factors, and how their interplay influences potyviral binding in aphids, aphid behavior and fitness, host plant biochemistry, virus epidemics, and transmission bottlenecks. We present the heatmap of the global distribution of potyvirus species, variation in the potyviral coat protein gene, and top aphid vectors of potyviruses. Lastly, we examine how the fundamental understanding of these multi-partite interactions through multi-omics approaches is already contributing to, and can have future implications for, devising effective and sustainable management strategies against aphid- transmitted potyviruses to global agriculture. -
Insect Communities in Soybeans of Eastern South Dakota: the Effects
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2013 Insect communities in soybeans of eastern South Dakota: The effects of vegetation management and pesticides on soybean aphids, bean leaf beetles, and their natural enemies Jonathan G. Lundgren USDA-ARS, [email protected] Louis S. Hesler USDA-ARS Sharon A. Clay South Dakota State University, [email protected] Scott F. Fausti South Dakota State University Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Part of the Agriculture Commons Lundgren, Jonathan G.; Hesler, Louis S.; Clay, Sharon A.; and Fausti, Scott F., "Insect communities in soybeans of eastern South Dakota: The effects of vegetation management and pesticides on soybean aphids, bean leaf beetles, and their natural enemies" (2013). Publications from USDA-ARS / UNL Faculty. 1164. https://digitalcommons.unl.edu/usdaarsfacpub/1164 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Crop Protection 43 (2013) 104e118 Contents lists available at SciVerse ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Insect communities in soybeans of eastern South Dakota: The effects of vegetation management and pesticides on soybean aphids, bean leaf beetles, and their natural enemies Jonathan G. Lundgren a,*, Louis S. Hesler a, Sharon A. Clay b, Scott F. -
Conserving Beneficial Arthropods in Residential Landscapes Conserving Beneficial Arthropods in Residential Landscapes
ConservingConserving BeneficialBeneficial ArthropodsArthropods inin ResidentialResidential LandscapesLandscapes E-1023 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University Conserving Beneficial Arthropods in Residential Landscapes Table of Contents Natural Enemies ......................................................................................................2 Predators ..............................................................................................................2 Beetles ..............................................................................................................2 Lady Beetles ...............................................................................................2 Ground Beetles ...........................................................................................3 True Bugs ..........................................................................................................3 Minute Pirate Bugs......................................................................................3 Damsel Bugs ..............................................................................................4 Assassin Bugs ............................................................................................4 Big-Eyed Bugs ............................................................................................5 Lacewings .........................................................................................................6 -
Impacts of Two Introduced Ladybeetles, Coccinella Septempunctata and Harmonia Axyridis (Coleoptera: Coccinellidae), on Native Coccinellid Species at Mount St
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2007 Impacts of Two Introduced Ladybeetles, Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae), on Native Coccinellid Species at Mount St. Helens, Washington and in Southwestern Virginia Catherine Marie Sheehy University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Ecology and Evolutionary Biology Commons Recommended Citation Sheehy, Catherine Marie, "Impacts of Two Introduced Ladybeetles, Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae), on Native Coccinellid Species at Mount St. Helens, Washington and in Southwestern Virginia. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/230 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Catherine Marie Sheehy entitled "Impacts of Two Introduced Ladybeetles, Coccinella septempunctata and Harmonia axyridis (Coleoptera: Coccinellidae), on Native Coccinellid Species at Mount St. Helens, Washington and in Southwestern Virginia." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Ecology and Evolutionary Biology. Dan Simberloff, Major Professor We have read this thesis and recommend its acceptance: Paris Lambdin, Nathan Sanders, James Fordyce Accepted for the Council: Carolyn R. -
Comparative Genetic Studies of Native and Introduced Coccinellidae in North America Elliot S
Entomology Publications Entomology 2005 Comparative genetic studies of native and introduced Coccinellidae in North America Elliot S. Krafsur Iowa State University, [email protected] John J. Obrycki University of Kentucky James D. Harwood University of Kentucky Follow this and additional works at: http://lib.dr.iastate.edu/ent_pubs Part of the Entomology Commons, Evolution Commons, and the Population Biology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ ent_pubs/413. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Comparative genetic studies of native and introduced Coccinellidae in North America Abstract During the past four decades, several species of aphidophagous Coccinellidae became established in North America, including Coccinella septempunctata, Harmonia axyridis, Hippodamia variegata, and Propylea quatuordecimpunctata. After their establishment, unknown circumstances favoured a rapid increase in population densities and distribution of H. axyridis and C. septempunctata at localities hundreds and thousands of kilometers from their release sites. Propylea quatuordecimpunctata and Hippodamia variegata have spread more slowly after becoming established in northeastern North America. Comparative studies based upon allozyme variation in these four introduced species and in six native North American species of ladybird beetles revealed no significant differences in genetic diversities. Genetic variation, assessed by allelic diversity and heterozygosity, was uncorrelated with the establishment and spread of these predatory species in North America. -
Harmonia Axyridis As a Model Species Helen E
From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species Helen E. Roy . Eric Wajnberg Editors From Biological Control to Invasion: the Ladybird Harmonia axyridis as a Model Species Foreword by Helen E. Roy and Eric Wajnberg Previously published in BioControl, Volume 53, No. 1, 2008 123 Helen E. Roy Eric Wajnberg Biological Records Centre I.N.R.A., Sophia Antipolis Huntingdon, UK Cedex, France Cover illustration: Harmonia axyridis egg-laying – Photograph by April Zobel Library of Congress Control Number: 2008920732 ISBN-13: 978-1-4020-6938-3 e-ISBN-13: 978-1-4020-6939-0 Printed on acid-free paper. Ó 2008 IOBC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the International Organization for Biological Control of Noxious Animals and Plants (IOBC, www.IOBC-Global.org), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 1 springer.com Contents FOREWORD From biological control to invasion: the ladybird Harmonia axyridis as a model species H. Roy · E. Wajnberg . 1 Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid P.M.J.