City of Palm Springs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Airworthiness Directives; Airbus Dated September 12, 2013
Federal Register / Vol. 78, No. 220 / Thursday, November 14, 2013 / Rules and Regulations 68347 PART 39—AIRWORTHINESS in accordance with Part 2 of the (j) Related Information DIRECTIVES Accomplishment Instructions of Boeing Alert For more information about this AD, Service Bulletin 747–57A2343, dated contact Nathan Weigand, Aerospace ■ 1. The authority citation for part 39 September 12, 2013. If any cylindrical defect Engineer, Airframe Branch, ANM–120S, continues to read as follows: is found, before further flight, do the actions FAA, Seattle Aircraft Certification Office, specified in paragraph (h)(1)(i) or (h)(1)(ii) of 1601 Lind Avenue SW., Renton, WA 98057– this AD. Authority: 49 U.S.C. 106(g), 40113, 44701. 3356; phone: 425–917–6428; fax: 425–917– (i) Do a minimum thickness inspection of 6590; email: [email protected]. § 39.13 [Amended] the inboard actuator attach fitting to determine minimum wall thickness of the (k) Material Incorporated by Reference ■ 2. The FAA amends § 39.13 by adding actuator fitting assembly, in accordance with (1) The Director of the Federal Register the following new airworthiness Part 3 of the Accomplishment Instructions of approved the incorporation by reference directive (AD): Boeing Alert Service Bulletin 747–57A2343, (IBR) of the service information listed in this dated September 12, 2013. If the minimum 2013–23–03 The Boeing Company: paragraph under 5 U.S.C. 552(a) and 1 CFR thickness of the wall is less than 0.130 inch: Amendment 39–17658; Docket No. part 51. Before further flight, replace the inboard FAA–2013–0871; Directorate Identifier actuator attach fitting of the outboard flap, in (2) You must use this service information 2013–NM–187–AD. -
Aerospace Engine Data
AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16 -
Facts & Figures & Figures
OCTOBER 2019 FACTS & FIGURES & FIGURES THE STAR ALLIANCE NETWORK RADAR The Star Alliance network was created in 1997 to better meet the needs of the frequent international traveller. MANAGEMENT INFORMATION Combined Total of the current Star Alliance member airlines: FOR ALLIANCE EXECUTIVES Total revenue: 179.04 BUSD Revenue Passenger 1,739,41 bn Km: Daily departures: More than Annual Passengers: 762,27 m 19,000 Countries served: 195 Number of employees: 431,500 Airports served: Over 1,300 Fleet: 5,013 Lounges: More than 1,000 MEMBER AIRLINES Aegean Airlines is Greece’s largest airline providing at its inception in 1999 until today, full service, premium quality short and medium haul services. In 2013, AEGEAN acquired Olympic Air and through the synergies obtained, network, fleet and passenger numbers expanded fast. The Group welcomed 14m passengers onboard its flights in 2018. The Company has been honored with the Skytrax World Airline award, as the best European regional airline in 2018. This was the 9th time AEGEAN received the relevant award. Among other distinctions, AEGEAN captured the 5th place, in the world's 20 best airlines list (outside the U.S.) in 2018 Readers' Choice Awards survey of Condé Nast Traveler. In June 2018 AEGEAN signed a Purchase Agreement with Airbus, for the order of up to 42 new generation aircraft of the 1 MAY 2019 FACTS & FIGURES A320neo family and plans to place additional orders with lessors for up to 20 new A/C of the A320neo family. For more information please visit www.aegeanair.com. Total revenue: USD 1.10 bn Revenue Passenger Km: 11.92 m Daily departures: 139 Annual Passengers: 7.19 m Countries served: 44 Number of employees: 2,498 Airports served: 134 Joined Star Alliance: June 2010 Fleet size: 49 Aircraft Types: A321 – 200, A320 – 200, A319 – 200 Hub Airport: Athens Airport bases: Thessaloniki, Heraklion, Rhodes, Kalamata, Chania, Larnaka Current as of: 14 MAY 19 Air Canada is Canada's largest domestic and international airline serving nearly 220 airports on six continents. -
Airbus A340-300 Technical Specifications
Technical Specifications Airbus A340-300 AIRCRAFT ZS-SXD (0643) TECHNICAL SPECIFICATION AIRCRAFT Aircraft Type: A340-300 Current Registration: ZS -SXD TT : 63319 As of : 2019-09-30 Serial No: 0643 Date of Manufacture: 25 November 2004 TC : 7935 ENGINE Manufacturer: CFM Model : CFM56=5C4/P International Thrust Rating Engine 1 Engine 2 Engine 3 Engine 4 Serial Number: 567278 567276 567277 567279 56000 lbs (249KN) TT: FH 57016 56317 54787 58026 FC 7134 7060 6944 7385 AS OF 2019-09-30 WEIGHTS AND FUEL Weights Pounds Kilograms Maximum Taxi Weight 608 248 lbs. 275000 kg Maximum Take-Off Weight 606 264 lbs. 275000 kg Maximum Landing Weight 423 287 lbs. 192000 kg Maximum Zero Fuel Weight 396 823 lbs. 180000 kg LANDING GEAR Nose Centre Main LH Wing Main RH Wing Part Number D23581100-20 37100-1001 201490001 201490002 Serial Number B558 DCL331/03 MDL582 MDL582 Status As Of 2019-09-30 2017-12-31 2017-12-31 2017-12-31 Next O/H Date 2024-11-22 2024-11-22 2024-11-22 2024-11-22 WHEELS Nose Centre Main LH Wing Main RH Wing Vendor Goodrich Honeywell Honeywell Honeywell Part Number 3-1596 2612201-3 2612201-3 2612201-3 BRAKES Vendor N/A N/A Honeywell Honeywell Part Number N/A N/A 2612202-4 2612202-4 TYRES Vendor Bridgestone Bridgestone Bridgestone Bridgestone Part Number APR06500 APR06911 APR06911 APR06911 APU Manufacturer: Honeywell Total Time (TT) : FH =16563 FC = 12212 Type /Model : 3800454-6 AS OF 2019-09-30 Serial number : P791 INTERIOR CONFIGURATION Passengers J/C=38 Y/C=215 Total=253 Galleys 9 Lavatories 9 Refer to the attached LOPA and Equipment -
A Fond Farewell to Ve Fantastic Eets
NEWS RELEASE A fond farewell to ve fantastic eets 4/30/2020 Last month, American Airlines announced plans to accelerate the retirement of some older, less fuel-ecient aircraft from its eet sooner than originally planned. As ying schedules and aircraft needs are ne-tuned during this period of record low demand, American will take the unique step of retiring a total of ve aircraft types. American has ocially retired the Embraer E190 and Boeing 767 eets, which were originally scheduled to retire by the end of 2020. The airline has also accelerated the retirement of its Boeing 757s and Airbus A330-300s. Additionally, American is retiring 19 Bombardier CRJ200 aircraft operated by PSA Airlines. These changes remove operating complexity and will bring forward cost savings and eciencies associated with operating fewer aircraft types. It will also help American focus on ying more advanced aircraft as we continue receiving new deliveries of the Airbus A321neo and the Boeing 737 MAX and 787 family. American’s narrowbody eet also becomes more simplied with just two cockpit types – the Airbus A320 and the Boeing 737 families. This benets American’s operational performance through training eciency and streamlined maintenance. American continues to evaluate its schedule and remains committed to caring for customers on life’s journey. These changes will help American continue to provide a reliable travel experience around the world, even during these uncertain times. Here’s a snapshot of the aircraft exiting American’s eet: Airbus A330-300 — Blue Sky News/Pittsburgh International AirportAirbus A330-300 1 Joined the US Airways eet in 2000 prior to joining American’s eet in 2013. -
Risk to Ozone and Ozone-Derived Oxidation Products on Commercial Aircraft Clifford P
Risk to Ozone and ozone-derived oxidation products on commercial aircraft Clifford P. Weisela Charles J. Weschlera,b Kris Mohana Jack Spenglerc Jose Vallarinoc William W Nazaroffc aEnvironmental & Occupational Health Sciences Institute, Rutgers University, NJ bInternational Centre for Indoor Environment and Energy,Tech Inst Denmark cHarvard School of Public Health, Boston, MA dDepartment of Civil and Environmental Engineering, UC, Berkeley, CA Background • At cruise altitude (10000 to 11000 m), ozone levels outside an aircraft are high – typically 200 to 800 ppb • Atmospheric conditions, such as folds in the tropopause, can result in an influx of stratospheric air into the lower atmosphere. Thus even lower flying aircraft can encounter high ozone levels Background • In the 1960s high ozone levels Dr. David Bates placed rubber bands (specially produced without antioxidants) in planes and observed that they cracked in an analogous fashion to a similar set exposed to ozone on the ground. At the same time toxicological symptom associated with ozone was observed occurring in flight attendants • To reduce ozone on planes that cruise at high altitude most wide-body aircraft have ozone filters to remove ~85% of the ozone from the ventilation air • However, only ~ 1/2 narrow-body aircraft remove ozone from the ventilation air Background • In 1980 FAA set an ozone standard in the airplane cabin of 100ppb average for flights exceeded 3 hours and 250ppb maximum – sea level equivalent. (Note ground level standard in 75ppb for 8 hours and 120ppm for -
Aircraft Design Was Modeled More Closely After It
Aircraft Final Project GD3-200 Prepared by: Group 3 Tian Chen. Quoc Tran . Oge Onuoha. Tony Haughton. Jean-Etienne Dongmo. Introduction The GD3-200 is a twin engine, new technology jet airplane designed for low fuel burn and short-to-medium range operations. This airplane uses new aerodynamics, advanced composite materials, structures, and systems to fill market requirement that cannot be efficiently provided by existing equipment or derivatives. The GD3-200 will provide airlines with unmatched fuel efficiency. The airplane will use 20 percent less fuel for comparable missions than any other airplane in its class. The key to this exceptional performance lies in the use of advanced composite materials for the majority of the airplane’s fuselage and wing structure. GD3 has also enlisted General Electric to develop engines for the new airplane. The GD3-200 is a highly fuel efficient low-noise airplane powered by General Electric new GEnx CF6-6 engines. These 9.5 to 1 high-bypass-ratio engines are reliable and easy to maintain. Using GEnx derived technology means these engines bring an average 15 percent improvement in specific fuel consumption over all other engines in its class. In the passenger configuration, the GD3-200 can typically carry 186 passengers (200 including crew) in a six-abreast, mixed class configuration over a 3000 mile range with full load. The GD3-200 can be equipped for Extended Range Operations (EROPS) to allow extended over-water operations. Changes include a backup hydraulic motor-generator set and an auxiliary fan for equipment cooling. Mission Requirement Payload: -200 passengers/crew at 200 lb each (includes baggage) 40000lb -5000 lb Cruise: 0.8 Mach at 33000 ft Cruise Range: 3000 miles Cruise Altitude: 33,000 ft Loiter: 30 minutes at 0.8 m Mach at 33000 ft Climb: Initial climb to cruise altitude starting at maximum takeoff weight Take-off distance: 5000 to 6000 ft with 50 ft clearance at sea level and standard conditions at maximum takeoff weight Power plant: more than 1; high-by-pass turbofan; choose from existing ones. -
Travel & Tourism Industry – Non-Stop Transatlantic Flights from Germany to the United States Summer 2017
Non-stop Flights Germany-USA Summer 2017 Germany: Travel & Tourism Industry – Non-StopPage 1 of 5 Transatlantic Flights from Germany to the United States Summer 2017 Elizabeth Walsh/Tanja Kufner March 17 Summary This is an inventory of non-stop transatlantic flights from Germany to the United States, based on information received from the airlines in January 2017. It is an indication of summer 2017 capacity using April 1 as the sample date, unless otherwise stated. While there are many direct flights with one stopover offered by U.S. and European carriers from Germany to the United States, this overview covers only non-stop flights. Market Data Airline From To Plane Capacity Frequency per week airberlin DUS, BOS, Airbus A330-200 268 Eco 7 daily Dusseldorf Boston 46 XL Eco 19 Business Airberlin DUS, JFK, Airbus A330-200 268 Eco 14 2x daily Dusseldorf New York 46 XL Eco 19 Business airberlin DUS, LAX, Airbus A330-200 268 Eco 7 daily Dusseldorf Los Angeles 46 XL Eco 19 Business Airberlin DUS, MIA, Airbus A330-200 268 Eco 7 daily Dusseldorf Miami 46 XL Eco 19 Business Airberlin DUS, RSW, Airbus A330-200 268 Eco 4 Tue/Thu/Sat/Sun Dusseldorf Fort Myers 46 XL Eco 19 Business airberlin DUS, SFO, Airbus A330-200 268 Eco 7 daily Dusseldorf San Francisco 46 XL Eco 19 Business Airberlin TXL, JFK, Airbus A330-200 268 Eco 14 2x daily Berlin (Tegel) New York 46 XL Eco 19 Business Airberlin TXL, ORD, Airbus A330-200 268 Eco 7 daily Berlin (Tegel) Chicago 46 XL Eco 19 Business Airberlin TXL, MIA, Airbus A330-200 268 Eco 5 Tue/Thu/Fri/Sat/Sun Berlin (Tegel) Miami 46 XL Eco 19 Business Airberlin TXL, SFO, Airbus A330-200 268 Eco 4 Mon, Wed, Fri & Sun from Berlin (Tegel) San Francisco 46 XL Eco May 19 Business Airberlin TXL, LAX, Airbus A330-200 268 Eco 3 Tue, Thu & Sat from May Berlin (Tegel) Los Angeles 46 XL Eco 19 Business Airberlin DUS, MCO, Airbus A330-200 268 Eco 5 Mon, Wed, Fri, Sat & Sun Dusseldorf Orlando 46 XL Eco from May 19 Business export.gov The U.S. -
Aircraft: Boeing 727, 737, 747, 757; Douglas DC-8, DC-9
No.: 2009-20080703001 Date: September 4, 2009 http://www.faa.gov/aircraft/safety/programs/sups/upn AFFECTED PRODUCTS: Aircraft: Boeing 727, 737, 747, 757; Douglas DC-8, DC-9 and MD-11 aircraft Part Number: Half Hinge Assembly, P/N 3953095U504 Notes: Additional parts may be affected (see parts list below). PURPOSE: The notification advises all aircraft owners, operators, manufacturers, maintenance organizations, parts suppliers and distributors regarding the unapproved parts produced by Watson’s Profiling Corporation, located in Ontario, CA 91761. BACKGROUND: Information received during a Federal Aviation Administration (FAA) Suspected Unapproved Parts (SUP) investigation revealed that between August 2005 and November 2007, Watson’s Profiling Corp., 1460 Balboa Avenue, Ontario, CA 91761, produced and sold parts (SEE ATTACHED PARTS LIST) without Direct Ship or Drop Ship authority from The Boeing Company. Furthermore, Watson’s Profiling Corp. is not an FAA Production Approval Holder. The parts produced by Watson’s Profiling Corporation have the following characteristics. • Their accompanying documentation indicates that the parts were manufactured by Watson’s, Profiling; however, they did not have FAA approval to manufacture and sell the parts as FAA-approved replacement parts. In addition, the investigation determined that some parts passed through various distributors. The majority, which were sold by Fossco Inc., 1211 Rainbow Avenue, Suite A, Pensacola, FL 32505. Documentation with the parts incorrectly indicated Watson’s Profiling, had -
Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200
Journal of Aviation/Aerospace Education & Research Volume 4 Number 1 JAAER Fall 1993 Article 1 Fall 1993 A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200 Peter B. Coddington Follow this and additional works at: https://commons.erau.edu/jaaer Scholarly Commons Citation Coddington, P. B. (1993). A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus Buying a New Boeing 757-200. Journal of Aviation/Aerospace Education & Research, 4(1). https://doi.org/10.15394/ jaaer.1993.1110 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Aviation/Aerospace Education & Research by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Coddington: A Cost Analysis: Re-Engining a Boeing 727-200 (Advanced) Versus B A COSTANALYSIS: RE-ENGINlNG A BOEING 727-200 (ADVANCED) VERSUS BUYING A NEWBOEING 757-200 Peter B. Coddington The Boeing 727-200 and 757-200 are both narrowbody aircraft designed for short- to medium-range flights carrying 164 to 214 passengers. Until recently, when overtaken by the Boeing 737, the 727-200 program was the most successful aircraft program in history. The 727 airplane has carried 2.3 billion passengers, equivalent to half the world's population (Sterling, 1992). More than half of all 727s sold were advanced 200s and as late as 1990 an incredible 50% of all U.S. passenger traffic had flown on 727-200s since the advanced model was launched in 1971. -
Transatlantic Airline Fuel Efficiency Ranking, 2017
WHITE PAPER SEPTEMBER 2018 TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 Brandon Graver, Ph.D., and Daniel Rutherford, Ph.D. www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank Tim Johnson, Andrew Murphy, Anastasia Kharina, and Amy Smorodin for their review and support. We also acknowledge Airline Data Inc. for providing processed BTS data, and FlightGlobal for Ascend Fleet data. International Council on Clean Transportation 1225 I Street NW Suite 900 Washington, DC 20005 USA [email protected] | www.theicct.org | @TheICCT © 2018 International Council on Clean Transportation TRANSATLANTIC AIRLINE FUEL EFFICIENCY RANKING, 2017 TABLE OF CONTENTS EXECUTIVE SUMMARY ............................................................................................................ iii 1. INTRODUCTION .................................................................................................................... 2 2. METHODOLOGY ................................................................................................................... 3 2.1 Airline selection .................................................................................................................................3 2.2 Fuel burn modeling..........................................................................................................................5 2.3 Fuel efficiency calculation ............................................................................................................6 -
Download This Issue (PDF)
03 Jeppesen Expands Products and Markets 05 Preparing Ramp Operations for the 787-8 15 Fuel Filter Contamination 21 Preventing Engine Ingestion Injuries QTR_03 08 A QUARTERLY PUBLICATION BOEING.COM/COMMERCIAL/ AEROMAGAZINE Cover photo: Next-Generation 737 wing spar. contents 03 Jeppesen Expands Products and Markets Boeing subsidiary Jeppesen is transforming its support to customers with a broad array of technology-driven solutions that go beyond the paper navigational charts for which Jeppesen 03 is so well known. 05 Preparing Ramp Operations for the 787-8 Airlines can ensure a smooth transition to the Boeing 787 Dreamliner by understanding what it has in common with existing airplanes in their fleets, as well as what is unique. 15 Fuel Filter Contamination 05 Dirty fuel is the main cause of engine fuel filter contamination. Although it’s a difficult problem to isolate, airlines can take steps to deal with it. 21 Preventing Engine Ingestion Injuries 15 Observing proper safety precautions, such as good communication and awareness of the hazard areas in the vicinity of an operating jet engine, can prevent serious injury or death. 21 01 WWW.BOEING.COM/COMMERCIAL/AEROMAGAZINE Issue 31_Quarter 03 | 2008 Publisher Design Cover photography Shannon Frew Methodologie Jeff Corwin Editorial director Writer Printer Jill Langer Jeff Fraga ColorGraphics Editor-in-chief Distribution manager Web site design Jim Lombardo Nanci Moultrie Methodologie Editorial Board Gary Bartz, Frank Billand, Richard Breuhaus, Darrell Hokuf, Al John, Doug Lane, Jill Langer,