Best Practice Guide - Knights Landing Vali Codreanu, Surfsara Jorge Rodríguez, BSC Ole Widar Saastad (Editor), University of Oslo 31-01-2017

Total Page:16

File Type:pdf, Size:1020Kb

Best Practice Guide - Knights Landing Vali Codreanu, Surfsara Jorge Rodríguez, BSC Ole Widar Saastad (Editor), University of Oslo 31-01-2017 Best Practice Guide - Knights Landing Vali Codreanu, SURFsara Jorge Rodríguez, BSC Ole Widar Saastad (Editor), University of Oslo 31-01-2017 1 Best Practice Guide - Knights Landing Table of Contents 1. Introduction .............................................................................................................................. 5 2. System Architecture / Configuration ............................................................................................. 5 2.1. Processor Architecture / MCM Architecture ......................................................................... 6 2.1.1. Instruction Set Architecture .................................................................................... 7 2.2. Memory Architecture ....................................................................................................... 9 2.2.1. Flat mode .......................................................................................................... 10 2.2.2. Cache mode ....................................................................................................... 10 2.2.3. Hybrid mode ...................................................................................................... 13 2.2.4. Optimal Settings ................................................................................................. 13 2.2.5. Example: Programming with the memkind library ..................................................... 13 2.3. Clustering modes .......................................................................................................... 13 2.3.1. All to all mode ................................................................................................... 14 2.3.2. Quadrant mode ................................................................................................... 14 2.3.3. Sub NUMA mode ............................................................................................... 14 2.3.4. Performance using the different modes ................................................................... 15 2.3.5. Example: Programming with sub-NUMA clusters ..................................................... 15 2.3.6. BIOS settings for clustering, memory etc ................................................................ 15 2.4. (Node) Interconnect ....................................................................................................... 16 2.5. I/O Subsystem Architecture ............................................................................................ 16 3. Programming Environment / Basic Porting ................................................................................... 16 3.1. Default System settings .................................................................................................. 16 3.2. Available Compilers ...................................................................................................... 16 3.2.1. Compiler Flags ................................................................................................... 17 3.3. Available (Vendor Optimized) Numerical Libraries ............................................................. 19 3.3.1. Math Kernel Library, MKL .................................................................................. 19 3.3.2. Intel Performance Primitives, IPP .......................................................................... 21 3.3.3. Math library, libimf ............................................................................................. 22 3.3.4. Short vector math library, libsvml .......................................................................... 22 3.4. Available MPI Implementations ....................................................................................... 23 3.5. OpenMP ...................................................................................................................... 24 3.5.1. Compiler Flags ................................................................................................... 24 4. Benchmark performance ........................................................................................................... 24 4.1. STREAM benchmark ..................................................................................................... 25 4.2. NAS kernel benchmark, NPB .......................................................................................... 26 4.2.1. Scaling and Speedup test ..................................................................................... 27 4.2.2. Performance ....................................................................................................... 28 4.3. HYDRO benchmark ...................................................................................................... 29 4.3.1. Scaling and Speedup test ..................................................................................... 29 4.3.2. Performance ....................................................................................................... 30 5. Application Performance ........................................................................................................... 31 5.1. ALYA ......................................................................................................................... 31 5.1.1. Building and compiling ....................................................................................... 31 5.1.2. Scaling and speedup ............................................................................................ 32 5.1.3. Performance ....................................................................................................... 32 5.2. GROMACS .................................................................................................................. 33 5.2.1. Building and compiling ....................................................................................... 33 5.2.2. Scaling and speedup ............................................................................................ 34 5.2.3. Performance ....................................................................................................... 35 5.3. Bifrost (Stellar atmosphere simulation code) ...................................................................... 35 5.3.1. Building and compiling ....................................................................................... 36 5.3.2. Vectorization and scaling ..................................................................................... 36 5.3.3. Performance ....................................................................................................... 38 5.4. Dalton and LS-Dalton (molecular electronic structure program) ............................................. 38 5.4.1. Building and compiling ....................................................................................... 38 5.4.2. Effect of vectorization ......................................................................................... 39 2 Best Practice Guide - Knights Landing 5.4.3. Scaling and speedup ............................................................................................ 40 5.4.4. Performance ....................................................................................................... 41 6. Performance Analysis ............................................................................................................... 42 6.1. Performance Monitoring in the Knights Landing Tile ........................................................... 42 6.2. Available Performance Analysis Tools .............................................................................. 43 6.2.1. Intel Application Performance Snapshot .................................................................. 43 6.2.2. Allienea Performance Reports ............................................................................... 44 6.2.3. Intel Software Development Emulator .................................................................... 46 6.3. Hints for Interpreting Results .......................................................................................... 47 7. Tuning ................................................................................................................................... 47 7.1. Guidelines for tuning ..................................................................................................... 47 7.1.1. Top down .......................................................................................................... 47 7.1.2. Bottom up ......................................................................................................... 48 7.2. Intel tuning tools ........................................................................................................... 49 7.2.1. Intel compiler .................................................................................................... 49 7.2.2. Intel MPI library ................................................................................................ 52 7.2.3. Intel XE-Advisor ................................................................................................ 54 7.2.4. Intel XE-Inspector .............................................................................................. 55 7.2.5. Intel VTune Amplifier ......................................................................................... 55 7.2.6. Intel Trace Analyzer ...........................................................................................
Recommended publications
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Intel® Software Products Highlights and Best Practices
    Intel® Software Products Highlights and Best Practices Edmund Preiss Business Development Manager Entdecken Sie weitere interessante Artikel und News zum Thema auf all-electronics.de! Hier klicken & informieren! Agenda • Key enhancements and highlights since ISTEP’11 • Industry segments using Intel® Software Development Products • Customer Demo and Best Practices Copyright© 2012, Intel Corporation. All rights reserved. 2 *Other brands and names are the property of their respective owners. Key enhancements & highlights since ISTEP’11 3 All in One -- Intel® Cluster Studio XE 2012 Analysis & Correctness Tools Shared & Distributed Memory Application Development Intel Cluster Studio XE supports: -Shared Memory Processing MPI Libraries & Tools -Distributed Memory Processing Compilers & Libraries Programming Models -Hybrid Processing Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Intel® VTune™ Amplifier XE New VTune Amplifier XE features very well received by Software Developers Key reasons : • More intuitive – Improved GUI points to application inefficiencies • Preconfigured & customizable analysis profiles • Timeline View highlights concurrency issues • New Event/PC counter ratio analysis concept easy to grasp Copyright© 2012, Intel Corporation. All rights reserved. *Other brands and names are the property of their respective owners. Intel® VTune™ Amplifier XE The Old Way versus The New Way The Old Way: To see if there is an issue with branch misprediction, multiply event value (86,400,000) by 14 cycles, then divide by CPU_CLK_UNHALTED.THREAD (5,214,000,000). Then compare the resulting value to a threshold. If it is too high, investigate. The New Way: Look at the Branch Mispredict metric, and see if any cells are pink.
    [Show full text]
  • Future-ALCF-Systems-Parker.Pdf
    Future ALCF Systems Argonne Leadership Computing Facility 2021 Computational Performance Workshop, May 4-6 Scott Parker www.anl.gov Aurora Aurora: A High-level View q Intel-HPE machine arriving at Argonne in 2022 q Sustained Performance ≥ 1Exaflops DP q Compute Nodes q 2 Intel Xeons (Sapphire Rapids) q 6 Intel Xe GPUs (Ponte Vecchio [PVC]) q Node Performance > 130 TFlops q System q HPE Cray XE Platform q Greater than 10 PB of total memory q HPE Slingshot network q Fliesystem q Distributed Asynchronous Object Store (DAOS) q ≥ 230 PB of storage capacity; ≥ 25 TB/s q Lustre q 150PB of storage capacity; ~1 TB/s 3 The Evolution of Intel GPUs 4 The Evolution of Intel GPUs 5 XE Execution Unit qThe EU executes instructions q Register file q Multiple issue ports q Vector pipelines q Float Point q Integer q Extended Math q FP 64 (optional) q Matrix Extension (XMX) (optional) q Thread control q Branch q Send (memory) 6 XE Subslice qA sub-slice contains: q 16 EUs q Thread dispatch q Instruction cache q L1, texture cache, and shared local memory q Load/Store q Fixed Function (optional) q 3D Sampler q Media Sampler q Ray Tracing 7 XE 3D/Compute Slice qA slice contains q Variable number of subslices q 3D Fixed Function (optional) q Geometry q Raster 8 High Level Xe Architecture qXe GPU is composed of q 3D/Compute Slice q Media Slice q Memory Fabric / Cache 9 Aurora Compute Node • 6 Xe Architecture based GPUs PVC PVC (Ponte Vecchio) • All to all connection PVC PVC • Low latency and high bandwidth PVC PVC • 2 Intel Xeon (Sapphire Rapids) processors Slingshot
    [Show full text]
  • Intel(R) Math Kernel Library for Linux* OS User's Guide
    Intel® Math Kernel Library for Linux* OS User's Guide MKL 10.3 - Linux* OS Document Number: 315930-012US Legal Information Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Hardware Developments V E-CAM Deliverable 7.9 Deliverable Type: Report Delivered in July, 2020
    Hardware developments V E-CAM Deliverable 7.9 Deliverable Type: Report Delivered in July, 2020 E-CAM The European Centre of Excellence for Software, Training and Consultancy in Simulation and Modelling Funded by the European Union under grant agreement 676531 E-CAM Deliverable 7.9 Page ii Project and Deliverable Information Project Title E-CAM: An e-infrastructure for software, training and discussion in simulation and modelling Project Ref. Grant Agreement 676531 Project Website https://www.e-cam2020.eu EC Project Officer Juan Pelegrín Deliverable ID D7.9 Deliverable Nature Report Dissemination Level Public Contractual Date of Delivery Project Month 54(31st March, 2020) Actual Date of Delivery 6th July, 2020 Description of Deliverable Update on "Hardware Developments IV" (Deliverable 7.7) which covers: - Report on hardware developments that will affect the scientific areas of inter- est to E-CAM and detailed feedback to the project software developers (STFC); - discussion of project software needs with hardware and software vendors, completion of survey of what is already available for particular hardware plat- forms (FR-IDF); and, - detailed output from direct face-to-face session between the project end- users, developers and hardware vendors (ICHEC). Document Control Information Title: Hardware developments V ID: D7.9 Version: As of July, 2020 Document Status: Accepted by WP leader Available at: https://www.e-cam2020.eu/deliverables Document history: Internal Project Management Link Review Review Status: Reviewed Written by: Alan Ó Cais(JSC) Contributors: Christopher Werner (ICHEC), Simon Wong (ICHEC), Padraig Ó Conbhuí Authorship (ICHEC), Alan Ó Cais (JSC), Jony Castagna (STFC), Godehard Sutmann (JSC) Reviewed by: Luke Drury (NUID UCD) and Jony Castagna (STFC) Approved by: Godehard Sutmann (JSC) Document Keywords Keywords: E-CAM, HPC, Hardware, CECAM, Materials 6th July, 2020 Disclaimer:This deliverable has been prepared by the responsible Work Package of the Project in accordance with the Consortium Agreement and the Grant Agreement.
    [Show full text]
  • Intel® Math Kernel Library for Windows* OS User's Guide
    Intel® Math Kernel Library for Windows* OS User's Guide Intel® MKL - Windows* OS Document Number: 315930-027US Legal Information Contents Contents Legal Information................................................................................7 Introducing the Intel® Math Kernel Library...........................................9 Getting Help and Support...................................................................11 Notational Conventions......................................................................13 Chapter 1: Overview Document Overview.................................................................................15 What's New.............................................................................................15 Related Information.................................................................................15 Chapter 2: Getting Started Checking Your Installation.........................................................................17 Setting Environment Variables ..................................................................17 Compiler Support.....................................................................................19 Using Code Examples...............................................................................19 What You Need to Know Before You Begin Using the Intel® Math Kernel Library...............................................................................................19 Chapter 3: Structure of the Intel® Math Kernel Library Architecture Support................................................................................23
    [Show full text]
  • Marc and Mentat Release Guide
    Marc and Mentat Release Guide Marc® and Mentat® 2020 Release Guide Corporate Europe, Middle East, Africa MSC Software Corporation MSC Software GmbH 4675 MacArthur Court, Suite 900 Am Moosfeld 13 Newport Beach, CA 92660 81829 Munich, Germany Telephone: (714) 540-8900 Telephone: (49) 89 431 98 70 Toll Free Number: 1 855 672 7638 Email: [email protected] Email: [email protected] Japan Asia-Pacific MSC Software Japan Ltd. MSC Software (S) Pte. Ltd. Shinjuku First West 8F 100 Beach Road 23-7 Nishi Shinjuku #16-05 Shaw Tower 1-Chome, Shinjuku-Ku Singapore 189702 Tokyo 160-0023, JAPAN Telephone: 65-6272-0082 Telephone: (81) (3)-6911-1200 Email: [email protected] Email: [email protected] Worldwide Web www.mscsoftware.com Support http://www.mscsoftware.com/Contents/Services/Technical-Support/Contact-Technical-Support.aspx Disclaimer User Documentation: Copyright 2020 MSC Software Corporation. All Rights Reserved. This document, and the software described in it, are furnished under license and may be used or copied only in accordance with the terms of such license. Any reproduction or distribution of this document, in whole or in part, without the prior written authorization of MSC Software Corporation is strictly prohibited. MSC Software Corporation reserves the right to make changes in specifications and other information contained in this document without prior notice. The concepts, methods, and examples presented in this document are for illustrative and educational purposes only and are not intended to be exhaustive or to apply to any particular engineering problem or design. THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS AND ALL EXPRESS AND IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
    [Show full text]
  • Quick-Reference Guide to Optimization with Intel® Compilers
    Quick Reference Guide to Optimization with Intel® C++ and Fortran Compilers v19.1 For IA-32 processors, Intel® 64 processors, Intel® Xeon Phi™ processors and compatible non-Intel processors. Contents Application Performance .............................................................................................................................. 2 General Optimization Options and Reports ** ............................................................................................. 3 Parallel Performance ** ................................................................................................................................ 4 Recommended Processor-Specific Optimization Options ** ....................................................................... 5 Optimizing for the Intel® Xeon Phi™ x200 product family ............................................................................ 6 Interprocedural Optimization (IPO) and Profile-Guided Optimization (PGO) Options ................................ 7 Fine-Tuning (All Processors) ** ..................................................................................................................... 8 Floating-Point Arithmetic Options .............................................................................................................. 10 Processor Code Name With Instruction Set Extension Name Synonym .................................................... 11 Frequently Used Processor Names in Compiler Options ...........................................................................
    [Show full text]
  • Intro to Parallel Computing
    Intro To Parallel Computing John Urbanic Parallel Computing Scientist Pittsburgh Supercomputing Center Copyright 2021 Purpose of this talk ⚫ This is the 50,000 ft. view of the parallel computing landscape. We want to orient you a bit before parachuting you down into the trenches. ⚫ This talk bookends our technical content along with the Outro to Parallel Computing talk. The Intro has a strong emphasis on hardware, as this dictates the reasons that the software has the form and function that it has. Hopefully our programming constraints will seem less arbitrary. ⚫ The Outro talk can discuss alternative software approaches in a meaningful way because you will then have one base of knowledge against which we can compare and contrast. ⚫ The plan is that you walk away with a knowledge of not just MPI, etc. but where it fits into the world of High Performance Computing. FLOPS we need: Climate change analysis Simulations Extreme data • Cloud resolution, quantifying uncertainty, • “Reanalysis” projects need 100 more computing understanding tipping points, etc., will to analyze observations drive climate to exascale platforms • Machine learning and other analytics • New math, models, and systems support are needed today for petabyte data sets will be needed • Combined simulation/observation will empower policy makers and scientists Courtesy Horst Simon, LBNL Exascale combustion simulations ⚫ Goal: 50% improvement in engine efficiency ⚫ Center for Exascale Simulation of Combustion in Turbulence (ExaCT) – Combines simulation and experimentation –
    [Show full text]
  • Intel(R) Fortran Compiler Options
    Intel(R) Fortran Compiler Options Document Number: 307780-005US Disclaimer and Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Intel® Fortran Compiler for Linux* Systems Options Quick Reference Guide
    Intel® Fortran Compiler Options Quick Reference Intel® Fortran Compiler for Linux* Systems Options Quick Reference Guide Legal Information Document Number: 253258-002 Disclaimer and Legal Information Disclaimer and Legal Information Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. This Quick Reference Guide as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms of the license. The information in this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
    [Show full text]
  • Evaluating Performance Portability of Openmp for SNAP on NVIDIA, Intel, and AMD Gpus Using the Roofline Methodology
    Evaluating Performance Portability of OpenMP for SNAP on NVIDIA, Intel, and AMD GPUs using the Roofline Methodology Neil A. Mehta1, Rahulkumar Gayatri1, Yasaman Ghadar2, Christopher Knight2, and Jack Deslippe1 1 NERSC, Lawrence Berkeley National Laboratory 2 Argonne National Laboratory Abstract. In this paper, we show that OpenMP 4.5 based implementa- tion of TestSNAP, a proxy-app for the Spectral Neighbor Analysis Poten- tial (SNAP) in LAMMPS, can be ported across the NVIDIA, Intel, and AMD GPUs. Roofline analysis is employed to assess the performance of TestSNAP on each of the architectures. The main contributions of this paper are two-fold: 1) Provide OpenMP as a viable option for appli- cation portability across multiple GPU architectures, and 2) provide a methodology based on the roofline analysis to determine the performance portability of OpenMP implementations on the target architectures. The GPUs used for this work are Intel Gen9, AMD Radeon Instinct MI60, and NVIDIA Volta V100. Keywords: Roofline analysis · Performance portability · SNAP. 1 Introduction Six out of the top ten supercomputers in the list of Top500 supercomputers rely on GPUs for their compute performance. The next generation of supercom- puters, namely, Perlmutter, Aurora, and Frontier, rely primarily upon NVIDIA, Intel, and AMD GPUs, respectively, to achieve their intended peak compute bandwidths, the latter two of which will be the first exascale machines. The CPU, also referred to as the host and the GPU or device architectures that will be available on these machines are shown in Tab. 1. Table 1. CPUs and GPUs on upcoming supercomputers. System Perlmutter Aurora Frontier Host AMD Milan Intel Xeon Sapphire Rapids AMD EPYC Custom Device NVIDIA A100 Intel Xe Ponte Vecchio AMD Radeon Instinct Custom The diversity in the GPU architectures by multiple vendors has increased the importance of application portability.
    [Show full text]