Testing for the Markov Property in Time Series
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conditioning and Markov Properties
Conditioning and Markov properties Anders Rønn-Nielsen Ernst Hansen Department of Mathematical Sciences University of Copenhagen Department of Mathematical Sciences University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Copyright 2014 Anders Rønn-Nielsen & Ernst Hansen ISBN 978-87-7078-980-6 Contents Preface v 1 Conditional distributions 1 1.1 Markov kernels . 1 1.2 Integration of Markov kernels . 3 1.3 Properties for the integration measure . 6 1.4 Conditional distributions . 10 1.5 Existence of conditional distributions . 16 1.6 Exercises . 23 2 Conditional distributions: Transformations and moments 27 2.1 Transformations of conditional distributions . 27 2.2 Conditional moments . 35 2.3 Exercises . 41 3 Conditional independence 51 3.1 Conditional probabilities given a σ{algebra . 52 3.2 Conditionally independent events . 53 3.3 Conditionally independent σ-algebras . 55 3.4 Shifting information around . 59 3.5 Conditionally independent random variables . 61 3.6 Exercises . 68 4 Markov chains 71 4.1 The fundamental Markov property . 71 4.2 The strong Markov property . 84 4.3 Homogeneity . 90 4.4 An integration formula for a homogeneous Markov chain . 99 4.5 The Chapmann-Kolmogorov equations . 100 iv CONTENTS 4.6 Stationary distributions . 103 4.7 Exercises . 104 5 Ergodic theory for Markov chains on general state spaces 111 5.1 Convergence of transition probabilities . 113 5.2 Transition probabilities with densities . 115 5.3 Asymptotic stability . 117 5.4 Minorisation . 122 5.5 The drift criterion . 127 5.6 Exercises . 131 6 An introduction to Bayesian networks 141 6.1 Introduction . 141 6.2 Directed graphs . -
A Predictive Model Using the Markov Property
A Predictive Model using the Markov Property Robert A. Murphy, Ph.D. e-mail: [email protected] Abstract: Given a data set of numerical values which are sampled from some unknown probability distribution, we will show how to check if the data set exhibits the Markov property and we will show how to use the Markov property to predict future values from the same distribution, with probability 1. Keywords and phrases: markov property. 1. The Problem 1.1. Problem Statement Given a data set consisting of numerical values which are sampled from some unknown probability distribution, we want to show how to easily check if the data set exhibits the Markov property, which is stated as a sequence of dependent observations from a distribution such that each suc- cessive observation only depends upon the most recent previous one. In doing so, we will present a method for predicting bounds on future values from the same distribution, with probability 1. 1.2. Markov Property Let I R be any subset of the real numbers and let T I consist of times at which a numerical ⊆ ⊆ distribution of data is randomly sampled. Denote the random samples by a sequence of random variables Xt t∈T taking values in R. Fix t T and define T = t T : t>t to be the subset { } 0 ∈ 0 { ∈ 0} of times in T that are greater than t . Let t T . 0 1 ∈ 0 Definition 1 The sequence Xt t∈T is said to exhibit the Markov Property, if there exists a { } measureable function Yt1 such that Xt1 = Yt1 (Xt0 ) (1) for all sequential times t0,t1 T such that t1 T0. -
Local Conditioning in Dawson–Watanabe Superprocesses
The Annals of Probability 2013, Vol. 41, No. 1, 385–443 DOI: 10.1214/11-AOP702 c Institute of Mathematical Statistics, 2013 LOCAL CONDITIONING IN DAWSON–WATANABE SUPERPROCESSES By Olav Kallenberg Auburn University Consider a locally finite Dawson–Watanabe superprocess ξ =(ξt) in Rd with d ≥ 2. Our main results include some recursive formulas for the moment measures of ξ, with connections to the uniform Brown- ian tree, a Brownian snake representation of Palm measures, continu- ity properties of conditional moment densities, leading by duality to strongly continuous versions of the multivariate Palm distributions, and a local approximation of ξt by a stationary clusterη ˜ with nice continuity and scaling properties. This all leads up to an asymptotic description of the conditional distribution of ξt for a fixed t> 0, given d that ξt charges the ε-neighborhoods of some points x1,...,xn ∈ R . In the limit as ε → 0, the restrictions to those sets are conditionally in- dependent and given by the pseudo-random measures ξ˜ orη ˜, whereas the contribution to the exterior is given by the Palm distribution of ξt at x1,...,xn. Our proofs are based on the Cox cluster representa- tions of the historical process and involve some delicate estimates of moment densities. 1. Introduction. This paper may be regarded as a continuation of [19], where we considered some local properties of a Dawson–Watanabe super- process (henceforth referred to as a DW-process) at a fixed time t> 0. Recall that a DW-process ξ = (ξt) is a vaguely continuous, measure-valued diffu- d ξtf µvt sion process in R with Laplace functionals Eµe− = e− for suitable functions f 0, where v = (vt) is the unique solution to the evolution equa- 1 ≥ 2 tion v˙ = 2 ∆v v with initial condition v0 = f. -
A University of Sussex Phd Thesis Available Online Via Sussex
A University of Sussex PhD thesis Available online via Sussex Research Online: http://sro.sussex.ac.uk/ This thesis is protected by copyright which belongs to the author. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Please visit Sussex Research Online for more information and further details NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA Mailan Trinh A thesis submitted for the degree of Doctor of Philosophy University of Sussex March 2018 UNIVERSITY OF SUSSEX MAILAN TRINH A THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY NON-STATIONARY PROCESSES AND THEIR APPLICATION TO FINANCIAL HIGH-FREQUENCY DATA SUMMARY The thesis is devoted to non-stationary point process models as generalizations of the standard homogeneous Poisson process. The work can be divided in two parts. In the first part, we introduce a fractional non-homogeneous Poisson process (FNPP) by applying a random time change to the standard Poisson process. We character- ize the FNPP by deriving its non-local governing equation. We further compute moments and covariance of the process and discuss the distribution of the arrival times. Moreover, we give both finite-dimensional and functional limit theorems for the FNPP and the corresponding fractional non-homogeneous compound Poisson process. The limit theorems are derived by using martingale methods, regular vari- ation properties and Anscombe's theorem. -
STOCHASTIC COMPARISONS and AGING PROPERTIES of an EXTENDED GAMMA PROCESS Zeina Al Masry, Sophie Mercier, Ghislain Verdier
STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS Zeina Al Masry, Sophie Mercier, Ghislain Verdier To cite this version: Zeina Al Masry, Sophie Mercier, Ghislain Verdier. STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS. Journal of Applied Probability, Cambridge University press, 2021, 58 (1), pp.140-163. 10.1017/jpr.2020.74. hal-02894591 HAL Id: hal-02894591 https://hal.archives-ouvertes.fr/hal-02894591 Submitted on 9 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Applied Probability Trust (4 July 2020) STOCHASTIC COMPARISONS AND AGING PROPERTIES OF AN EXTENDED GAMMA PROCESS ZEINA AL MASRY,∗ FEMTO-ST, Univ. Bourgogne Franche-Comt´e,CNRS, ENSMM SOPHIE MERCIER & GHISLAIN VERDIER,∗∗ Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, LMAP, Pau, France Abstract Extended gamma processes have been seen to be a flexible extension of standard gamma processes in the recent reliability literature, for cumulative deterioration modeling purpose. The probabilistic properties of the standard gamma process have been well explored since the 1970's, whereas those of its extension remain largely unexplored. In particular, stochastic comparisons between degradation levels modeled by standard gamma processes and aging properties for the corresponding level-crossing times are nowadays well understood. -
Lecture Notes
Lecture Notes Lars Peter Hansen October 8, 2007 2 Contents 1 Approximation Results 5 1.1 One way to Build a Stochastic Process . 5 1.2 Stationary Stochastic Process . 6 1.3 Invariant Events and the Law of Large Numbers . 6 1.4 Another Way to Build a Stochastic Process . 8 1.4.1 Stationarity . 8 1.4.2 Limiting behavior . 9 1.4.3 Ergodicity . 10 1.5 Building Nonstationary Processes . 10 1.6 Martingale Approximation . 11 3 4 CONTENTS Chapter 1 Approximation Results 1.1 One way to Build a Stochastic Process • Consider a probability space (Ω, F, P r) where Ω is a set of sample points, F is an event collection (sigma algebra) and P r assigns proba- bilities to events . • Introduce a function S :Ω → Ω such that for any event Λ, S−1(Λ) = {ω ∈ Ω: S(ω) ∈ Λ} is an event. • Introduce a (Borel measurable) measurement function x :Ω → Rn. x is a random vector. • Construct a stochastic process {Xt : t = 1, 2, ...} via the formula: t Xt(ω) = X[S (ω)] or t Xt = X ◦ S . Example 1.1.1. Let Ω be a collection of infinite sequences of real numbers. Specifically, ω = (r0, r1, ...), S(ω) = (r1, r2, ...) and x(ω) = r0. Then Xt(ω) = rt. 5 6 CHAPTER 1. APPROXIMATION RESULTS 1.2 Stationary Stochastic Process Definition 1.2.1. The transformation S is measure-preserving if: P r(Λ) = P r{S−1(Λ)} for all Λ ∈ F. Proposition 1.2.2. When S is measure-preserving, the process {Xt : t = 1, 2, ...} has identical distributions for every t. -
Strong Memoryless Times and Rare Events in Markov Renewal Point
The Annals of Probability 2004, Vol. 32, No. 3B, 2446–2462 DOI: 10.1214/009117904000000054 c Institute of Mathematical Statistics, 2004 STRONG MEMORYLESS TIMES AND RARE EVENTS IN MARKOV RENEWAL POINT PROCESSES By Torkel Erhardsson Royal Institute of Technology Let W be the number of points in (0,t] of a stationary finite- state Markov renewal point process. We derive a bound for the total variation distance between the distribution of W and a compound Poisson distribution. For any nonnegative random variable ζ, we con- struct a “strong memoryless time” ζˆ such that ζ − t is exponentially distributed conditional on {ζˆ ≤ t,ζ>t}, for each t. This is used to embed the Markov renewal point process into another such process whose state space contains a frequently observed state which repre- sents loss of memory in the original process. We then write W as the accumulated reward of an embedded renewal reward process, and use a compound Poisson approximation error bound for this quantity by Erhardsson. For a renewal process, the bound depends in a simple way on the first two moments of the interrenewal time distribution, and on two constants obtained from the Radon–Nikodym derivative of the interrenewal time distribution with respect to an exponential distribution. For a Poisson process, the bound is 0. 1. Introduction. In this paper, we are concerned with rare events in stationary finite-state Markov renewal point processes (MRPPs). An MRPP is a marked point process on R or Z (continuous or discrete time). Each point of an MRPP has an associated mark, or state. -
Arbitrage Free Approximations to Candidate Volatility Surface Quotations
Journal of Risk and Financial Management Article Arbitrage Free Approximations to Candidate Volatility Surface Quotations Dilip B. Madan 1,* and Wim Schoutens 2,* 1 Robert H. Smith School of Business, University of Maryland, College Park, MD 20742, USA 2 Department of Mathematics, KU Leuven, 3000 Leuven, Belgium * Correspondence: [email protected] (D.B.M.); [email protected] (W.S.) Received: 19 February 2019; Accepted: 10 April 2019; Published: 21 April 2019 Abstract: It is argued that the growth in the breadth of option strikes traded after the financial crisis of 2008 poses difficulties for the use of Fourier inversion methodologies in volatility surface calibration. Continuous time Markov chain approximations are proposed as an alternative. They are shown to be adequate, competitive, and stable though slow for the moment. Further research can be devoted to speed enhancements. The Markov chain approximation is general and not constrained to processes with independent increments. Calibrations are illustrated for data on 2695 options across 28 maturities for SPY as at 8 February 2018. Keywords: bilateral gamma; fast Fourier transform; sato process; matrix exponentials JEL Classification: G10; G12; G13 1. Introduction A variety of arbitrage free models for approximating quoted option prices have been available for some time. The quotations are typically in terms of (Black and Scholes 1973; Merton 1973) implied volatilities for the traded strikes and maturities. Consequently, the set of such quotations is now popularly referred to as the volatility surface. Some of the models are nonparametric with the Dupire(1994) local volatility model being a popular example. The local volatility model is specified in terms of a deterministic function s(K, T) that expresses the local volatility for the stock if the stock were to be at level K at time T. -
Portfolio Optimization and Option Pricing Under Defaultable Lévy
Universit`adegli Studi di Padova Dipartimento di Matematica Scuola di Dottorato in Scienze Matematiche Indirizzo Matematica Computazionale XXVI◦ ciclo Portfolio optimization and option pricing under defaultable L´evy driven models Direttore della scuola: Ch.mo Prof. Paolo Dai Pra Coordinatore dell’indirizzo: Ch.ma Prof.ssa. Michela Redivo Zaglia Supervisore: Ch.mo Prof. Tiziano Vargiolu Universit`adegli Studi di Padova Corelatori: Ch.mo Prof. Agostino Capponi Ch.mo Prof. Andrea Pascucci Johns Hopkins University Universit`adegli Studi di Bologna Dottorando: Stefano Pagliarani To Carolina and to my family “An old man, who had spent his life looking for a winning formula (martingale), spent the last days of his life putting it into practice, and his last pennies to see it fail. The martingale is as elusive as the soul.” Alexandre Dumas Mille et un fantˆomes, 1849 Acknowledgements First and foremost, I would like to thank my supervisor Prof. Tiziano Vargiolu and my co-advisors Prof. Agostino Capponi and Prof. Andrea Pascucci, for coauthoring with me all the material appearing in this thesis. In particular, thank you to Tiziano Vargiolu for supporting me scientifically and finan- cially throughout my research and all the activities related to it. Thank you to Agostino Capponi for inviting me twice to work with him at Purdue University, and for his hospital- ity and kindness during my double stay in West Lafayette. Thank you to Andrea Pascucci for wisely leading me throughout my research during the last four years, and for giving me the chance to collaborate with him side by side, thus sharing with me his knowledge and his experience. -
Markov Chains on a General State Space
Markov chains on measurable spaces Lecture notes Dimitri Petritis Master STS mention mathématiques Rennes UFR Mathématiques Preliminary draft of April 2012 ©2005–2012 Petritis, Preliminary draft, last updated April 2012 Contents 1 Introduction1 1.1 Motivating example.............................1 1.2 Observations and questions........................3 2 Kernels5 2.1 Notation...................................5 2.2 Transition kernels..............................6 2.3 Examples-exercises.............................7 2.3.1 Integral kernels...........................7 2.3.2 Convolution kernels........................9 2.3.3 Point transformation kernels................... 11 2.4 Markovian kernels............................. 11 2.5 Further exercises.............................. 12 3 Trajectory spaces 15 3.1 Motivation.................................. 15 3.2 Construction of the trajectory space................... 17 3.2.1 Notation............................... 17 3.3 The Ionescu Tulce˘atheorem....................... 18 3.4 Weak Markov property........................... 22 3.5 Strong Markov property.......................... 24 3.6 Examples-exercises............................. 26 4 Markov chains on finite sets 31 i ii 4.1 Basic construction............................. 31 4.2 Some standard results from linear algebra............... 32 4.3 Positive matrices.............................. 36 4.4 Complements on spectral properties.................. 41 4.4.1 Spectral constraints stemming from algebraic properties of the stochastic matrix....................... -
Simulation of Markov Chains
Copyright c 2007 by Karl Sigman 1 Simulating Markov chains Many stochastic processes used for the modeling of financial assets and other systems in engi- neering are Markovian, and this makes it relatively easy to simulate from them. Here we present a brief introduction to the simulation of Markov chains. Our emphasis is on discrete-state chains both in discrete and continuous time, but some examples with a general state space will be discussed too. 1.1 Definition of a Markov chain We shall assume that the state space S of our Markov chain is S = ZZ= f:::; −2; −1; 0; 1; 2;:::g, the integers, or a proper subset of the integers. Typical examples are S = IN = f0; 1; 2 :::g, the non-negative integers, or S = f0; 1; 2 : : : ; ag, or S = {−b; : : : ; 0; 1; 2 : : : ; ag for some integers a; b > 0, in which case the state space is finite. Definition 1.1 A stochastic process fXn : n ≥ 0g is called a Markov chain if for all times n ≥ 0 and all states i0; : : : ; i; j 2 S, P (Xn+1 = jjXn = i; Xn−1 = in−1;:::;X0 = i0) = P (Xn+1 = jjXn = i) (1) = Pij: Pij denotes the probability that the chain, whenever in state i, moves next (one unit of time later) into state j, and is referred to as a one-step transition probability. The square matrix P = (Pij); i; j 2 S; is called the one-step transition matrix, and since when leaving state i the chain must move to one of the states j 2 S, each row sums to one (e.g., forms a probability distribution): For each i X Pij = 1: j2S We are assuming that the transition probabilities do not depend on the time n, and so, in particular, using n = 0 in (1) yields Pij = P (X1 = jjX0 = i): (Formally we are considering only time homogenous MC's meaning that their transition prob- abilities are time-homogenous (time stationary).) The defining property (1) can be described in words as the future is independent of the past given the present state. -
A Representation Free Quantum Stochastic Calculus
JOURNAL OF FUNCTIONAL ANALYSIS 104, 149-197 (1992) A Representation Free Quantum Stochastic Calculus L. ACCARDI Centro Matemarico V. Volterra, Diparfimento di Matematica, Universitci di Roma II, Rome, Italy F. FACNOLA Dipartimento di Matematica, Vniversild di Trento, Povo, Italy AND J. QUAEGEBEUR Department of Mathemarics, Universiteit Leuven, Louvain, Belgium Communicated by L. Gross Received January 2; revised March 1, 1991 We develop a representation free stochastic calculus based on three inequalities (semimartingale inequality, scalar forward derivative inequality, scalar conditional variance inequality). We prove that our scheme includes all the previously developed stochastic calculi and some new examples. The abstract theory is applied to prove a Boson Levy martingale representation theorem in bounded form and a general existence, uniqueness, and unitarity theorem for quantum stochastic differential equations. 0 1992 Academic Press. Inc. 0. INTRODUCTION Stochastic calculus is a powerful tool in classical probability theory. Recently various kinds of stochastic calculi have been introduced in quan- tum probability [18, 12, 10,211. The common features of these calculi are: - One starts from a representation of the canonical commutation (or anticommutation) relations (CCR or CAR) over a space of the form L2(R+, dr; X) (where 3? is a given Hilbert space). - One introduces a family of operator valued measures on R,, related to this representation, e.g., expressed in terms of creation or annihilation or number or field operators. 149 0022-1236192 $3.00 Copyright 0 1992 by Academic Press, Inc. All rights of reproduction in any form reserved. 150 QUANTUM STOCHASTIC CALCULUS -- One shows that it is possible to develop a theory of stochastic integration with respect to these operator valued measures sufficiently rich to allow one to solve some nontrivial stochastic differential equations.