Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study Protocol and Statistical Analysis Plan
Confidential Clinical study protocol number: J1228 Page 1 Version Date: May 7, 2018 IRB study Number: NA_00067315 A Trial of maintenance Rituximab with mTor inhibition after High-dose Consolidative Therapy in CD20+, B-cell Lymphomas, Gray Zone Lymphoma, and Hodgkin’s Lymphoma Principal Investigator: Douglas E. Gladstone, MD The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins 1650 Orleans Street, CRBI-287 Baltimore, MD 21287 Phone: 410-955-8781 Fax: 410-614-1005 Email: [email protected] IRB Protocol Number: NA_00067315 Study Number: J1228 IND Number: EXEMPT Novartis Protocol Number: CRAD001NUS157T Version: May 7, 2018 Co-Investigators: Jonathan Powell 1650 Orleans Street, CRBI-443 Phone: 410-502-7887 Fax: 443-287-4653 Email: [email protected] Richard Jones 1650 Orleans Street, CRBI-244 Phone: 410-955-2006 Fax: 410-614-7279 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 2 Version Date: May 7, 2018 IRB study Number: NA_00067315 Satish Shanbhag Johns Hopkins Bayview Medical Center 301 Building, Suite 4500 4940 Eastern Ave Phone: 410-550-4061 Fax: 410-550-5445 Email: [email protected] Statisticians: Gary Rosner Phone: 410-955-4884 Email: [email protected] Marianna Zahurak Phone: 410-955-4219 Email: [email protected] Confidential Clinical study protocol number: J1228 Page 3 Version Date: May 7, 2018 IRB study Number: NA_00067315 Table of contents Table of contents ......................................................................................................................... 3 List of abbreviations -
The Effect of the Flavonoids Quercetin and Genistein on The
THE EFFECT OF THE FLAVONOIDS QUERCETIN AND GENISTEIN ON THE ANTIOXIDANT ENZYMES Cu, Zn SUPEROXIDE DISMUTASE, GLUTATHIONE PEROXIDASE, AND GLUTATHIONE REDUCTASE IN MALE SPRAGUE-DAWLEY RATS by ANNETTE CAIRNS GOVERNO (Under the Direction of Joan G. Fischer) ABSTRACT Quercetin (QC) and genistein (GS) are phytochemicals found in fruits and vegetables. These compounds may exert protective effects by altering antioxidant enzyme activities. The objective of the study was to examine the effects of QC and GS supplementation on the activities of the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GSHPx), and Cu, Zn superoxide dismutase (SOD) in liver, and SOD activity in red blood cells (RBC), as well as the Ferric Reducing Antioxidant Potential (FRAP). Male, weanling Sprague-Dawley rats (n=7-8 group) were fed quercetin at 0.3, 0.6 or 0.9g/100g of diet or genistein at 0.008, 0.012, or 0.02g/100g diet for 14d. GS supplementation significantly increased liver GSHPx activity compared to control (p<0.01). GS did not significantly alter activities of liver SOD and GR, or RBC SOD. QC did not significantly alter antioxidant enzyme activities in liver or RBC. Neither QC nor GS increased the antioxidant capacity of serum. In conclusion, low levels of GS significantly increased liver GSHPx activity, which may contribute to this isoflavone’s protective effects. INDEX WORDS: Flavonoids, Quercetin, Genistein, Copper Zinc Superoxide Dismutase, Glutathione Peroxidase, Glutathione Reductase THE EFFECT OF THE FLAVONOIDS QUERCETIN AND GENISTEIN ON THE ANTIOXIDANT ENZYMES Cu, Zn SUPEROXIDE DISMUTASE, GLUTATHIONE PEROXIDASE, AND GLUTATHIONE REDUCTASE IN MALE SPRAGUE-DAWLEY RATS by ANNETTE CAIRNS GOVERNO B., S. -
Daidzein and Genistein Content of Cereals
European Journal of Clinical Nutrition (2002) 56, 961–966 ß 2002 Nature Publishing Group All rights reserved 0954–3007/02 $25.00 www.nature.com/ejcn ORIGINAL COMMUNICATION Daidzein and genistein content of cereals J Liggins1, A Mulligan1,2, S Runswick1 and SA Bingham1,2* 1Medical Research Council Dunn Human Nutrition Unit, Hills Road, Cambridge, UK; and 2European Prospective Investigation of Cancer, University of Cambridge, Cambridge, UK Objective: To analyse 75 cereals and three soy flours commonly eaten in Europe for the phytoestrogens daidzein and genistein. Design: The phytoestrogens daidzein and genistein were extracted from dried foods, and the two isoflavones quantified after hydrolytic removal of any conjugated carbohydrate. Completeness of extraction and any procedural losses of the isoflavones 0 0 were accounted for using synthetic daidzin (7-O-glucosyl-4 -hydroxyisoflavone) and genistin (7-O-glucosyl-4 5-dihydroxyiso- flavone) as internal standards. Setting: Foods from the Cambridge UK area were purchased, prepared for eating, which included cooking if necessary, and freeze dried. Three stock soy flours were also analysed. Results: Eighteen of the foods assayed contained trace or no detectable daidzein or genistein. The soy flours were rich sources, containing 1639 – 2117 mg=kg. The concentration of the two isoflavones in the remaining foods ranged from 33 to 11 873 mg=kg. Conclusion: These analyses will supply useful information to investigators determining the intake of phytoestrogens in cereal products in order to relate intakes to potential biological activities. Sponsorship: This work was supported by the United Kingdom Medical Research Council, Ministry of Agriculture Fisheries and Food (contract FS2034) and the United States of America Army (contract DAMD 17-97-1-7028). -
In Vivo Analysis of Bisphenol
Asian Journal of Pharmacy and Pharmacology 2019; 5(S1): 28-36 28 Research Article In vivo analysis of bisphenol A-induced sub-chronic toxicity on reproductive accessory glands of male mice and its amelioration by quercetin Sanman Samova, Hetal Doctor, Dimple Damore, Ramtej Verma Department of Zoology, BMTC and Human Genetics, School of Sciences, Gujarat University, Ahmedabad, India Received: 20 December 2018 Revised: 1 February 2019 Accepted: 25 February 2019 Abstract Objective: Bisphenol A is an endocrine disrupting chemical, widely used as a material for the production of epoxy resins and polycarbonate plastics. Food is considered as the main source of exposure to BPA as it leaches out from the food containers as well as surface coatings into it. BPA is toxic to vital organs such as liver kidney and brain. Quercetin, the most abundant flavonoid in nature, is present in large amounts in vegetables, fruits and tea. The aim of the present study was to evaluate the toxic effects of BPA in prostate gland and seminal vesicle of mice and its possible amelioration by quercetin. Material and methods: Inbred Swiss strain male albino mice were orally administered with BPA (80, 120 and 240 mg/kg body weight/day) for 45 Days. Oral administration of BPA caused significant, dose-dependent reduction in absolute and relative weights of prostate gland and seminal vesicle. Results and conclusion: Biochemical analysis revealed that protein content reduced significantly, whereas acid phosphatase activity increased significantly in prostate gland and reduction in fructose content was observed in seminal vesicle. Oral administration of quercetin (30, 60 and 90 mg/kg body weight/day) alone with high dose of BPA (240 mg/kg body weight/day) for 45 days caused significant and dose-dependent amelioration in all parameters as compared to BPA along treated group. -
Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. -
The Human Microbial Metabolism of Quercetin in Different Formulations
foods Article The human Microbial Metabolism of Quercetin in Different Formulations: An In Vitro Evaluation Giuseppe Di Pede 1 , Letizia Bresciani 2 , Luca Calani 1, Giovanna Petrangolini 3 , Antonella Riva 3 , Pietro Allegrini 3, Daniele Del Rio 2,* and Pedro Mena 1 1 Department of Food and Drugs, University of Parma, 43124 Parma, Italy; [email protected] (G.D.P.); [email protected] (L.C.); [email protected] (P.M.) 2 Department of Veterinary Science, University of Parma, 43126 Parma, Italy; [email protected] 3 Research and Development Department, Indena S.p.A., Viale Ortles, 12-20139 Milano, Italy; [email protected] (G.P.); [email protected] (A.R.); [email protected] (P.A.) * Correspondence: [email protected]; Tel.: +39-0521-033830 Received: 29 July 2020; Accepted: 10 August 2020; Published: 14 August 2020 Abstract: Quercetin is one of the main dietary flavonols, but its beneficial properties in disease prevention may be limited due to its scarce bioavailability. For this purpose, delivery systems have been designed to enhance both stability and bioavailability of bioactive compounds. This study aimed at investigating the human microbial metabolism of quercetin derived from unformulated and phytosome-formulated quercetin through an in vitro model. Both ingredients were firstly characterized for their profile in native (poly)phenols, and then fermented with human fecal microbiota for 24 h. Quantification of microbial metabolites was performed by ultra-high performance liquid chromatography coupled to mass spectrometry (uHPLC-MSn) analyses. Native quercetin, the main compound in both products, appeared less prone to microbial degradation in the phytosome-formulated version compared to the unformulated one during fecal incubation. -
Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis
separations Article Simultaneous Determination of Daidzein, Genistein and Formononetin in Coffee by Capillary Zone Electrophoresis Feng Luan *, Li Li Tang, Xuan Xuan Chen and Hui Tao Liu College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China; [email protected] (L.L.T.); [email protected] (X.X.C.); [email protected] (H.T.L.) * Correspondence: fl[email protected]; Tel.: +86-535-6902063 Academic Editor: Doo Soo Chung Received: 29 October 2016; Accepted: 20 December 2016; Published: 1 January 2017 Abstract: Coffee is a favorite and beverage in Western countries that is consumed daily. In the present study, capillary zone electrophoresis (CE) was applied for the separation and quantification of three isoflavones including daidzein, genistein and formononetin in coffee. Extraction of isoflavones from the coffee sample was carried out by extraction and purification process using ether after the acid hydrolysis with the antioxidant butylated hydroxy-toluene (BHT). The experimental conditions of the CE separation method were: 20 mmol/L Na2HPO4 buffer solution, 25 kV applied voltage, 3 s hydrodynamic injection at 30 mbar, and UV detection at 254 nm. The results show that the three compounds can be tested within 10 min with a linearity of 0.5–50 µg/mL for all three compounds. The limits of detection were 0.0642, 0.134, and 0.0825 µg/mL for daidzein, formononetin and genistein, respectively. The corresponding average recovery was 99.39% (Relative Standard Detection (RSD) = 1.76%), 98.71% (RSD = 2.11%) and 97.37% (RSD = 3.74%). Keywords: capillary zone electrophoresis (CE); daidzein; genistein; formononetin; acid hydrolysis 1. -
Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: in Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary
nutrients Article Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids 1,2, 2, , 1 1 1 Hiroki Saito y, Yu Toyoda * y , Hiroshi Hirata , Ami Ota-Kontani , Youichi Tsuchiya , Tappei Takada 2 and Hiroshi Suzuki 2 1 Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; [email protected] (H.S.); [email protected] (H.H.); [email protected] (A.O.-K.); [email protected] (Y.T.) 2 Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; [email protected] (T.T.); [email protected] (H.S.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 July 2020; Accepted: 12 August 2020; Published: 14 August 2020 Abstract: Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands—the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S—an ABCC11 substrate). -
During This Time of Great Societal Stress, We Are Here to Contribute Our Knowledge and Experience to Your Health and Wellbeing
During this time of great societal stress, we are here to contribute our knowledge and experience to your health and wellbeing. There is a high level of interest in evidence-based integrative strategies to augment public health measures to prevent COVID-19 virus infection and associated pneumonia. Unfortunately, no integrative measures have been validated in human trials specifically for COVID-19. Notwithstanding, this is an opportune time to be proactive. Using available evidence, we offer the following strategies for you to consider to enhance your immune system to reduce the severity or the duration of a viral infection. Again, we stress that these are supplemental considerations to the current recommendations that emphasize regular hand washing, physical distancing, stopping non-essential travel, and getting tested if you develop symptoms. RISK REDUCTION: • Adequate sleep: Shorter sleep duration increases the risk of infectious illness. Adequate sleep also ensures the secretion of melatonin, a molecule which may play a role in reducing coronavirus virulence (see Melatonin below). • Stress management: Psychological stress disrupts immune regulation. Various mindfulness techniques such as meditation, breathing exercises, and guided imagery reduce stress. • Zinc: Coronaviruses appear to be susceptible to the viral inhibitory actions of zinc. Zinc may prevent coronavirus entry into cells and appears to reduce coronavirus virulence. Typical daily dosing of zinc is 15mg – 30mg daily with lozenges potentially providing direct protective effects in the upper respiratory tract. • Vegetables and Fruits: Vegetables and fruits provide a repository of flavonoids that are considered a cornerstone of an anti-inflammatory diet. At least 5–7 servings of vegetables and 2–3 servings of fruits are recommended daily. -
Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats May Fern Toh, Emma Mendonca, Sharon L
s & H oid orm er o t n S f a l o S l c a Journal of i n e r n u c o e J Toh et al., J Steroids Horm Sci 2014, 5:3 ISSN: 2157-7536 Steroids & Hormonal Science DOI: 10.4172/2157-7536.1000136 Research Article Open Access Kaempferol Exhibits Progestogenic Effects in Ovariectomized Rats May Fern Toh, Emma Mendonca, Sharon L. Eddie, Michael P. Endsley, Daniel D. Lantvit, Pavel A. Petukhov, and Joanna E. Burdette* Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA *Corresponding author: Joanna E. Burdette, 900 S. Ashland Street (M/C 870) Chicago, IL 60607, USA, Tel: 312-996-6153; Fax: 312-996-7107; E-mail: [email protected] Received date: April 15, 2014, Accepted date: June 26, 2014, Published date: July 02, 2014 Copyright: © 2014 Toh MF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Objective: Progesterone (P4) plays a central role in women's health. Synthetic progestins are used clinically in hormone replacement therapy (HRT), oral contraceptives, and for the treatment of endometriosis and infertility. Unfortunately, synthetic progestins are associated with side effects, including cardiovascular disease and breast cancer. Botanical dietary supplements are widely consumed for the alleviation of a variety of gynecological issues, but very few studies have characterized natural compounds in terms of their ability to bind to and activate progesterone receptors (PR). -
Inhibitory Effect of Genistein and Daidzein on Ovarian Cancer Cell Growth
ANTICANCER RESEARCH 24: 795-800 (2004) Inhibitory Effect of Genistein and Daidzein on Ovarian Cancer Cell Growth CICEK GERCEL-TAYLOR, ANNA K. FEITELSON and DOUGLAS D. TAYLOR Department of Obstetrics, Gynecology and Women’s Health, University of Louisville, School of Medicine, Louisville, KY 40202, U.S.A. Abstract. Background: Survival from ovarian cancer has not Genistein, a soy isoflavanoid, has been intensely studied changed significantly in the past twenty years requiring in relation to breast cancer. Interest first arose upon development of additional treatment protocols. We studied the discovery of the vast difference in breast cancer rates in effect of genistein and daidzein on ovarian cancer cell growth. Asia versus Western countries (1). Large dietary differences Materials and Methods: Five ovarian cancer cell lines from Stage exist, especially in genistein consumption, as the average IIIC disease were evaluated. Sulforhodamine B and colony Asian intake is 20-80 mg/day whereas the average US intake formation assays were used to analyze growth inhibitory effects of is only 1-3 mg (2,3) The dietary and disease discrepancy genistein and daidzein alone and with cisplatin, paclitaxel or prompted further study into the chemopreventive and topotecan. Apoptosis induction was studied by determining potentially therapeutic properties of genistein. caspase-3 activity. Results: Inhibition of growth (50-80%), colony Genistein has been found to inhibit cell proliferation, formation and colony size was seen at 144 Ìm of genistein, 0-23% oncogenesis and clonogenic ability in animal and human reduction was demonstrated at 9 Ìm. At 144 Ìm, the colony size cells (3-5). Several studies have been performed to evaluate was inhibited >75%; at 9 Ìm 4/5 cell lines had >50% reduction. -
Biofactors in Food Promote Health by Enhancing Mitochondrial Function
ReVieW aRticle ▼ Biofactors in food promote health by enhancing mitochondrial function by Sonia F. Shenoy, Winyoo Chowanadisai, Edward Sharman, Carl L. Keen, Jiankang Liu and Robert B. Rucker Mitochondrial function has been linked to protection from and symptom reduc- UC Davis M. Steinberg, Francine tion in chronic diseases such as heart dis- ease, diabetes and metabolic syndrome. We review a number of phytochemicals and biofactors that influence mitochon- drial function and oxidative metabolism. These include resveratrol found in grapes; several plant-derived flavonoids (quercetin, epicatechin, catechin and procyanidins); and two tyrosine-derived quinones, hydroxytyrosol in olive oil and pyrroloquinoline quinone, a minor but ubiquitous component of plant and animal tissues. In plants, these biofac- tors serve as pigments, phytoalexins or growth factors. In animals, positive nutritional and physiological attributes Biofactors in food play a role in enhancing mitochondrial function, thereby decreasing the risk of some chronic diseases. Top, a mouse that has been deprived of pyrroloquinoline quinone (PQQ), have been established for each, particu- a ubiquitous bacterial compound found in fermented products, tea, cocoa and legumes. Above, a larly with respect to their ability to affect mouse fed a diet containing PQQ. energy metabolism, cell signaling and mitochondrial function. that our body does not normally produce) attributes has been described and vali- that must be either eliminated or put to dated for each of these compounds. novel uses in the body. Many xenobiotics Biological properties of resveratrol ne of the most promising current ar- in foods can influence specific metabolic Oeas of nutritional research focuses on functions, acting as bioactive factors (bio- Resveratrol is a stilbenoid (a type of plant compounds with positive health ef- factors).