The Germanium Detector Array for the Search of Neutrinoless Ββ Decays of 76Ge at LNGS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ [email protected] E-mail: ∗ [email protected] Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature. -
The Germanium Detector Array for the Search of Neutrinoless Double Beta Decay of 76Ge
Colloquium on particle physics, astrophysics and cosmology 22 November 2004 GERDA The GERmanium Detector Array for the search of neutrinoless double beta decay of 76Ge Bernhard Schwingenheuer, Max-Planck-Insitut Kernphysik, Heidelberg Outline o Physics Motivation o Nuclear Matrix Elements oPast 76Ge Experiments o The GERDA Approach o Our Friends: the Competition oSummary GERDA Collaboration INFN LNGS, Assergi, Italy INR, Moscow, Russia A.Di Vacri, M. Junker, M. Laubenstein, C. Tomei, L. Pandola I. Barabanov, L. Bezrukov, A. Gangapshev, V. Gurentsov, V. Kusminov, E. Yanovich JINR Dubna, Russia ITEP Physics, Moscow, Russia S. Belogurov,V. Brudanin, V. Egorov, K. Gusev, S. Katulina, V.P. Bolotsky, E. Demidova, I.V. Kirpichnikov, A.A. A. Klimenko, O. Kochetov, I. Nemchenok, V. Vasenko, V.N. Kornoukhov Sandukovsky, A. Smolnikov, J. Yurkowski, S. Vasiliev, Kurchatov Institute, Moscow, Russia MPIK, Heidelberg, Germany A.M. Bakalyarov, S.T. Belyaev, M.V. Chirchenko, G.Y. C. Bauer, O. Chkvorets, W. Hampel, G. Heusser, W. Grigoriev, L.V. Inzhechik, V.I. Lebedev, A.V. Tikhomirov, Hofmann, J. Kiko, K.T. Knöpfle, P. Peiffer, S. S.V. Zhukov Schönert, J. Schreiner, B. Schwingenheuer, H. Simgen, G. Zuzel MPI Physik, München, Germany I. Abt, M. Altmann, C. Bűttner. A. Caldwell, R. Kotthaus, X. Univ. Köln, Germany Liu, H.-G. Moser, R.H. Richter J. Eberth, D. Weisshaar Univ. di Padova e INFN, Padova, Italy Jagiellonian University, Krakow, Poland A. Bettini, E. Farnea, C. Rossi Alvarez, C.A. Ur M.Wojcik Univ. Tübingen, Germany Univ. di Milano Bicocca e INFN, Milano, Italy M. Bauer, H. Clement, J. Jochum, S. Scholl, K. -
GERDA: Germanium Detector Array Searching for 0Νββ Decay Gedet: Germanium Detector R&D
GERDA: GERmanium Detector Array searching for 0νββ decay GeDet: Germanium Detector R&D Director: Allen Caldwell Projector leaders: Béla Majorovits (GERDA), Iris Abt (GeDet) Postdoc: Josef Janicsko, Xiang Liu, Jens Schubert Ph.D.: Manuela Jelen, Kevin Kröninger(graduated 07/07), Daniel Lenz, Jing Liu Group engineer: Franz Stelzer Diplomand: Markus Kästle Werkstudenten/in: Golam Dastagir, Westa Domanova, Maximilian Empl, Daniel Greenwald, Andreas Kaiser Construction: Karlheinz Ackermann, Stefan Mayer, Sven Voggt Many thanks to colleagues from electronic & mechanic departments! Project Review 17/12/2007 Neutrino masses & mixing parameters 2 ν ν3 2 ν1 Mass 2 e Δm 32 μ ν τ 2 2 Δm 21 ν1 ν3 normal (NH) inverted (IH) 0 2 -3 2 atmospheric accelerator Æ Δm 32 = 2.2•10 eV 2 -5 2 solar reactor Æ Δm 21 = 8.1•10 eV absolute mass NH or IH Dirac or Majorana(ν=ν) page 2 0νββ decay Æ effective Majorana neutrino mass mββ np W- (A,Z) Æ (A, Z+2) + 2e- e- νL ΔL ≠0 e- νR happens, if ν=ν& mν>0 W- n p 2 2 −1 2 GT gV F half life []T1/2 = G( Q,Z)⋅ M − 2 M ⋅ mββ gA Phase space nuclear matrix element effective mass mββ 2 2 2 2 i(α2 −α1) i(−α1−2δ) mββ = ∑mjUej = m1 ⋅ Ue1 +m2 ⋅ Ue2 e +m3 ⋅ Ue3 e j page 3 Measure T1/2 of 0νββ decay npnp W- - e- e ν L ν - e- νR e W- ν n p n p 0νββ 2νββ: (A,Z) Æ (A,Z+2) +2e-+2ν search for energy peak at Q value (Ge76: 2039keV) page 4 0νββ experiments 21 Experiment Underground Isotope T1/2 [10 y] <mee> [eV] (selected) Laboratory Elegant VI Oto (Japan) 48Ca > 95 < 7.2 - 44.7 Heidelberg- Gran Sasso 76Ge >19000 < 0.35 - 1.2 Moscow (Italy) -
Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data
Realization of the low background neutrino detector Double Chooz: From the development of a high-purity liquid & gas handling concept to first neutrino data Dissertation of Patrick Pfahler TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Physik Department Lehrstuhl f¨urexperimentelle Astroteilchenphysik / E15 Univ.-Prof. Dr. Lothar Oberauer Realization of the low background neutrino detector Double Chooz: From the development of high-purity liquid- & gas handling concept to first neutrino data Dipl. Phys. (Univ.) Patrick Pfahler Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors des Naturwissenschaften (Dr. rer. nat) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Alejandro Ibarra Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Lothar Oberauer 2. Priv.-Doz. Dr. Andreas Ulrich Die Dissertation wurde am 3.12.2012 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 17.12.2012 angenommen. 2 Contents Contents i Introduction 1 I The Neutrino Disappearance Experiment Double Chooz 5 1 Neutrino Oscillation and Flavor Mixing 6 1.1 PMNS Matrix . 6 1.2 Flavor Mixing and Neutrino Oscillations . 7 1.2.1 Survival Probability of Reactor Neutrinos . 9 1.2.2 Neutrino Masses and Mass Hierarchy . 12 2 Reactor Neutrinos 14 2.1 Neutrino Production in Nuclear Power Cores . 14 2.2 Energy Spectrum of Reactor neutrinos . 15 2.3 Neutrino Flux Approximation . 16 3 The Double Chooz Experiment 19 3.1 The Double Chooz Collaboration . 19 3.2 Experimental Site: Commercial Nuclear Power Plant in Chooz . 20 3.3 Physics Program and Experimental Concept . 21 3.4 Signal . 23 3.4.1 The Inverse Beta Decay (IBD) . -
Cosmogenic Production As a Background in Searching For
Cosmogenic Production as a Background in Searching for Rare Physics Processes D.-M. Mei a , Z.-B. Yin a,b,c,1, S. R. Elliott d aDepartment of Physics, The University of South Dakota, Vermillion, South Dakota 57069 bInstitute of Particle Physics, Huazhong Normal University, Wuhan 430079, China cKey Laboratory of Quark & Lepton Physics (Huazhong Normal University), Ministry of Education, China dLos Alamos National Laboratory, Los Alamos, New Mexico 87545 Abstract We revisit calculations of the cosmogenic production rates for several long-lived iso- topes that are potential sources of background in searching for rare physics processes such as the detection of dark matter and neutrinoless double-beta decay. Using up- dated cosmic-ray neutron flux measurements, we use TALYS 1.0 to investigate the cosmogenic activation of stable isotopes of several detector targets and find that the cosmogenic isotopes produced inside the target materials and cryostat can result in large backgrounds for dark matter searches and neutrinoless double-beta decay. We use previously published low-background HPGe data to constrain the production of 3H on the surface and the upper limit is consistent with our calculation. We note that cosmogenic production of several isotopes in various targets can generate po- arXiv:0903.2273v1 [nucl-ex] 12 Mar 2009 tential backgrounds for dark matter detection and neutrinoless double-beta decay with a massive detector, thus great care should be taken to limit and/or deal with the cosmogenic activation of the targets. Key words: Cosmogenic activation, Dark matter detection, Double-beta decay PACS: 13.85.Tp, 23.40-s, 25.40.Sc, 28.41.Qb, 95.35.+d, 29.40.Wk Email address: [email protected] (D.-M. -
In-Situ Gamma-Ray Background Measurements for Next Generation CDEX Experiment in the China Jinping Underground Laboratory a a a a ∗ a a A,B a H
In-situ gamma-ray background measurements for next generation CDEX experiment in the China Jinping Underground Laboratory a a a a < a a a,b a H. Ma , Z. She , W. H. Zeng , Z. Zeng , , M. K. Jing , Q. Yue , J. P. Cheng , J. L. Li and a H. Zhang aKey Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 bCollege of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 ARTICLEINFO ABSTRACT Keywords: In-situ -ray measurements were performed using a portable high purity germanium spectrometer in In-situ -ray measurements Hall-C at the second phase of the China Jinping Underground Laboratory (CJPL-II) to characterise Environmental radioactivity the environmental radioactivity background below 3 MeV and provide ambient -ray background Underground laboratory parameters for next generation of China Dark Matter Experiment (CDEX). The integral count rate Rare event physics of the spectrum was 46.8 cps in the energy range of 60 to 2700 keV. Detection efficiencies of the CJPL spectrometer corresponding to concrete walls and surrounding air were obtained from numerical calculation and Monte Carlo simulation, respectively. The radioactivity concentrations of the walls 238 232 in the Hall-C were calculated to be 6:8 , 1:5 Bq/kg for U, 5:4 , 0:6 Bq/kg for Th, 81:9 , 14:3 40 Bq/kg for K. Based on the measurement results, the expected background rates from these primordial radionuclides of future CDEX experiment were simulated in unit of counts per keV per ton per year (cpkty) for the energy ranges of 2 to 4 keV and around 2 MeV. -
Oxidation-Reduction Alternating Copolymerization of Germylene and N-Phenyl-P-Quinoneimine
Polymer Journal (2015) 47, 31–36 & 2015 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/15 www.nature.com/pj ORIGINAL ARTICLE Oxidation-reduction alternating copolymerization of germylene and N-phenyl-p-quinoneimine Satoru Iwata1, Mitsunori Abe1, Shin-ichiro Shoda1 and Shiro Kobayashi1,2 The germylenes bis[bis(trimethylsilyl)amido]germanium (1a) and bis[t-butyl-trimethylsilyl]amido]germanium (1b) were reacted with N-phenyl-p-quinoneimine (2) to give copolymers (3a and 3b) with alternating tetravalent germanium and p-aminophenol units. The copolymerization took place smoothly at 0 °C without added catalyst or initiator. 1 acted as a reductant monomer, and 2 acted as an oxidant monomer (oxidation-reduction alternating copolymerization). Product copolymers were obtained in very high yields and had high molecular weights. The copolymers were soluble in toluene, benzene, n-hexane and chloroform, whereas they were insoluble in acetonitrile and acetone. Additionally, they were stable toward hydrolytic degradation. Electron spin resonance (ESR) spectroscopic studies of the reaction suggested a structure of a stable germyl radical and a plausible mechanism of biradical copolymerization. Polymer Journal (2015) 47, 31–36; doi:10.1038/pj.2014.84; published online 8 October 2014 INTRODUCTION investigations.10 Five- and six-membered cyclic germylenes, conver- Divalent germanium compounds (germylenes) and their tin analogs sely, were copolymerized with p-benzoquinone derivatives in similar (stannylenes) continue to attract -
Neutrinoless Double Beta Decay Searches
FLASY2019: 8th Workshop on Flavor Symmetries and Consequences in 2016 Symmetry Magazine Accelerators and Cosmology Neutrinoless Double Beta Decay Ke Han (韩柯) Shanghai Jiao Tong University Searches: Status and Prospects 07/18, 2019 Outline .General considerations for NLDBD experiments .Current status and plans for NLDBD searches worldwide .Opportunities at CJPL-II NLDBD proposals in China PandaX series experiments for NLDBD of 136Xe 07/22/19 KE HAN (SJTU), FLASY2019 2 Majorana neutrino and NLDBD From Physics World 1935, Goeppert-Mayer 1937, Majorana 1939, Furry Two-Neutrino double beta decay Majorana Neutrino Neutrinoless double beta decay NLDBD 1930, Pauli 1933, Fermi + 2 + (2 ) Idea of neutrino Beta decay theory 136 136 − 07/22/19 54 → KE56 HAN (SJTU), FLASY2019 3 ̅ NLDBD probes the nature of neutrinos . Majorana or Dirac . Lepton number violation . Measures effective Majorana mass: relate 0νββ to the neutrino oscillation physics Normal Inverted Phase space factor Current Experiments Nuclear matrix element Effective Majorana neutrino mass: 07/22/19 KE HAN (SJTU), FLASY2019 4 Detection of double beta decay . Examples: . Measure energies of emitted electrons + 2 + (2 ) . Electron tracks are a huge plus 136 136 − 54 → 56 + 2 + (2)̅ . Daughter nuclei identification 130 130 − 52 → 54 ̅ 2νββ 0νββ T-REX: arXiv:1512.07926 Sum of two electrons energy Simulated track of 0νββ in high pressure Xe 07/22/19 KE HAN (SJTU), FLASY2019 5 Impressive experimental progress . ~100 kg of isotopes . ~100-person collaborations . Deep underground . Shielding + clean detector 1E+27 1E+25 1E+23 1E+21 life limit (year) life - 1E+19 half 1E+17 Sn Ca νββ Ge Te 0 1E+15 Xe 1E+13 1940 1950 1960 1970 1980 1990 2000 2010 2020 Year . -
Direct Measurement of the Neutron
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 1-9-2020 Stellar Nucleosynthesis: Direct Measurement of the Neutron- Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission Alexander Laminack Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Instrumentation Commons, Nuclear Commons, Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Laminack, Alexander, "Stellar Nucleosynthesis: Direct Measurement of the Neutron-Capture Cross Sections of Stable Germanium Isotopes and Design of a Next Generation Ion Trap for the Study of Beta- Delayed Neutron Emission" (2020). LSU Doctoral Dissertations. 5131. https://digitalcommons.lsu.edu/gradschool_dissertations/5131 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. STELLAR NUCLEOSYNTHESIS: DIRECT MEASUREMENT OF THE NEUTRON-CAPTURE CROSS SECTIONS OF STABLE GERMANIUM ISOTOPES AND DESIGN OF A NEXT GENERATION ION TRAP FOR THE STUDY OF β-DELAYED NEUTRON EMISSION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics and Astronomy by Alexander Laminack B. S., The Unviersity of Alabama, 2015 May 2020 To my wife and son: Kristy Allen Alexander Laminack and Daniel Allen Laminack. -
Current and Future Neutrino Experiments
Current and future neutrino experiments Justyna Łagoda XXIV Cracow EPIPHANY Conference on Advances in Heavy Flavour Physics Plan ● short introduction ● non-oscillation experiments – neutrino mass measurements – search for neutrinoless double beta decay ● oscillation experiments – reactor neutrinos – solar neutrinos – atmospheric neutrinos – long baseline experiments – search for sterile neutrinos ● summary 2 Neutrino mixing ● mixing matrix for 3 active flavours −i δ c 0 s e CP 2 additional 1 0 0 13 13 c12 s12 0 phases if νe ν1 ν = 0 c s ⋅ 0 1 0 ⋅ −s c 0 ⋅ ν neutrinos are μ 23 23 12 12 2 Majorana i δ (ντ) CP ν ( 3) particles 0 −s23 c23 −s e 0 c ( 0 0 1) ( )( 13 13 ) ● 3 mixing angles θ12, θ13, θ23, CP violation phase δCP L L P =δ −4 ℜ(U * U U U * )sin2 Δm2 ±2 ℑ(U * U U U * )sin2 Δm2 να →νβ αβ ∑ αi βi α j β j ij ∑ αi βi α j β j ij i>j 4 E i>j 4 E ● 2 2 2 2 2 2 2 independent mass splittings: Δm 21= m 2–m 1, Δm 32 = m 3–m 2, ● 2 “controlled” parameters: baseline L and neutrino energy E ● the presence of matter (electrons) modifies the mixing – energy levels of propagating eigenstates are altered for νe component (different interaction potentials in kinetic part of the hamiltonian) – matter effects are sensitive to ordering of mass eigenstates 3 Known and unknown ● neutrino properties are measured using neutrinos from various sources in various processes and detection techniques −i δ i α /2 c 0 s e CP 1 mixing 1 0 0 13 13 c12 s12 0 e 0 0 i α 2/ 2 parameters: 0 c23 s23 0 1 0 −s12 c12 0 0 e 0 i δCP oscillation 0 −s23 c23 −s e 0 c ( 0 0 1)( 0 -
Arxiv:1509.08702V2 [Physics.Ins-Det] 4 Apr 2016 Be Neutron-Quiet and Suitable for Deployment of the COHERENT Detector Suite
The COHERENT Experiment at the Spallation Neutron Source D. Akimov,1, 2 P. An,3 C. Awe,4, 3 P.S. Barbeau,4, 3 P. Barton,5 B. Becker,6 V. Belov,1, 2 A. Bolozdynya,2 A. Burenkov,1, 2 B. Cabrera-Palmer,7 J.I. Collar,8 R.J. Cooper,5 R.L. Cooper,9 C. Cuesta,10 D. Dean,11 J. Detwiler,10 A.G. Dolgolenko,1 Y. Efremenko,2, 6 S.R. Elliott,12 A. Etenko,13, 2 N. Fields,8 W. Fox,14 A. Galindo-Uribarri,11, 6 M. Green,15 M. Heath,14 S. Hedges,4, 3 D. Hornback,11 E.B. Iverson,11 L. Kaufman,14 S.R. Klein,5 A. Khromov,2 A. Konovalov,1, 2 A. Kovalenko,1, 2 A. Kumpan,2 C. Leadbetter,3 L. Li,4, 3 W. Lu,11 Y. Melikyan,2 D. Markoff,16, 3 K. Miller,4, 3 M. Middlebrook,11 P. Mueller,11 P. Naumov,2 J. Newby,11 D. Parno,10 S. Penttila,11 G. Perumpilly,8 D. Radford,11 H. Ray,17 J. Raybern,4, 3 D. Reyna,7 G.C. Rich∗,3 D. Rimal,17 D. Rudik,1, 2 K. Scholbergy,4, z B. Scholz,8 W.M. Snow,14 V. Sosnovtsev,2 A. Shakirov,2 S. Suchyta,18 B. Suh,4, 3 R. Tayloe,14 R.T. Thornton,14 I. Tolstukhin,2 K. Vetter,18, 5 and C.H. Yu11 1SSC RF Institute for Theoretical and Experimental Physics of National Research Centre \Kurchatov Institute", Moscow, 117218, Russian Federation 2National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 115409, Russian Federation 3Triangle Universities Nuclear Laboratory, Durham, North Carolina, 27708, USA 4Department of Physics, Duke University, Durham, NC 27708, USA 5Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA 7Sandia -
The New Nuclear Forensics: Analysis of Nuclear Material for Security
THE NEW NUCLEAR FORENSICS Analysis of Nuclear Materials for Security Purposes edited by vitaly fedchenko The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Sven-Olof Petersson, Chairman (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Jayantha Dhanapala (Sri Lanka) Ambassador Wolfgang Ischinger (Germany) Professor Mary Kaldor (United Kingdom) The Director DIRECTOR Dr Ian Anthony (United Kingdom) Signalistgatan 9 SE-169 70 Solna, Sweden Telephone: +46 8 655 97 00 Fax: +46 8 655 97 33 Email: [email protected] Internet: www.sipri.org The New Nuclear Forensics Analysis of Nuclear Materials for Security Purposes EDITED BY VITALY FEDCHENKO OXFORD UNIVERSITY PRESS 2015 1 Great Clarendon Street, Oxford OX2 6DP, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © SIPRI 2015 The moral rights of the authors have been asserted All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of SIPRI, or as expressly permitted by law, or under terms agreed with the appropriate reprographics rights organizations.