Legislative Council GBE A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
George Town Council
GEORGE TOWN COUNCIL Council Office: 16-18 Anne Street, George Town, Tasmania 7253 Postal Address: PO Box 161 George Town, Tasmania 7253 Telephone: (03) 6382 8800 Facsimile: (03) 6382 8899 Email: [email protected] Mayor Bridget Archer invites you to explore opportunities to invest, live and visit George Town:: “George Town and the East Tamar region in Tasmania are uniquely located to offer exciting opportunities to invest, live and visit” – Mayor Bridget Archer George Town and East Tamar Area George Town and the East Tamar region in Tasmania are uniquely located to offer exciting opportunities to invest live and visit. The region has a mild temperate climate and has direct frontage to the Tamar River Estuary and the ocean via Bass Strait. Coastal and river environments are held in high regard by many people across Australia and internationally who are looking for attractive investment and life style options. The George Town municipal area provides this in combination with many other attractive features that are noted below. Climate The George Town and surrounding East Tamar area has a temperate maritime climate with a moderate temperature range (at Low Head, average daily maximum temperature is 21 degrees C in February and 12.5 degrees C in July). Average rainfall is less than 800 mm per year with a distinct seasonal cycle. Other Facts - Location: Northern Tasmania on Bass Straight - Area: 64,900ha/649km² - Roads: 271km - Population George Town (2011 Census): 4,304 - Water Supply: TasWater - Estimated population of the Council area: 6,789 (2011/12) Transport Links – Access to International, National and Regional Markets Port for Domestic and International Bulk Goods as well as Container Services Located at Bell Bay and managed by TasPorts Corporation Pty Ltd, the Port of Bell Bay is conveniently located in the George Town area and is adjacent to the Bell Bay industrial precinct, a major Tasmanian industrial area. -
The Evolution of Tasmania's Energy Sector
Electricity Supply Industry Expert Panel The Evolution of Tasmania’s Energy Sector Discussion Paper April 2011 The Evolution of Tasmania’s Energy Sector Discussion Paper Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au April 2011 © Copyright State of Tasmania, 2011 Table of Contents Glossary ..................................................................................................................................................... 5 Foreword ................................................................................................................................................... 1 1. Highlights ........................................................................................................................................... 3 2. The Tasmanian Electricity Market - Agents of Change ............................................................. 7 3. A New Strategic Direction for Tasmania’s Energy Market – the 1997 Directions Statement ....................................................................................................................................... 12 4. Delivering the Reform Framework .............................................................................................. 14 4.1. Structural Reform of the Hydro-Electric Commission ....................................................... 14 4.2. The Development of Supply Options ................................................................................ -
Rapid Reserve Generation from a Francis Turbine for System Frequency Control
energies Article Rapid Reserve Generation from a Francis Turbine for System Frequency Control Dean R. Giosio 1,*, Alan D. Henderson 2, Jessica M. Walker 1 and Paul A. Brandner 1 1 Australian Maritime College, University of Tasmania, Launceston 7250, Tasmania, Australia; [email protected] (J.M.W.); [email protected] (P.A.B.) 2 School of Engineering & ICT, University of Tasmania, Hobart 7005, Tasmania, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-3-6324-9489 Academic Editor: K.T. Chau Received: 24 February 2017; Accepted: 31 March 2017; Published: 7 April 2017 Abstract: The increase in contributions from non base load renewables, such as wind and solar, can have adverse effects on the stability of an electrical grid. In this study, the possibility of rapidly loading a Francis turbine from a tail water depression (TWD) mode for providing additional system frequency control is investigated. Based on the analysis of full-scale TWD test results and key findings from the transient testing of a micro-hydro scale turbine unit, a detailed description of the TWD transition process is given. The formulation of an improved turbine model for use in one-dimensional hydro-electric plant models is presented with simulation results compared to full-scale data. The analytical model, which calculates output power according to the conservation of angular momentum and identified sources of loss, is used in parallel with full-scale and model scale test observations to elucidate the events and mechanisms occurring during this proposed transition. The output response, in terms of active power, was found to be highly dependent on guide vane opening rate in both full-scale and model tests. -
Water Management in the Anthony–Pieman Hydropower Scheme
Water management in the Anthony–Pieman hydropower scheme Pieman Sustainability Review June 2015 FACT SHEET Background The Anthony–Pieman hydropower scheme provides a highly valued and reliable source of electricity. The total water storage of the hydropower scheme is 512 gigalitres and the average annual generation is 2367 gigawatt hours. Construction of the Anthony–Pieman hydropower scheme has resulted in creation of water storages (lakes) and alterations to the natural flow of existing rivers and streams. The Pieman Sustainability Review is a review of operational, social and environmental aspects of the Anthony–Pieman hydropower scheme that are influenced by Hydro Tasmania. This fact sheet elaborates on water management issues presented in the summary report, available at http://www.hydro.com.au/pieman-sustainability-review Water storage levels in the Anthony–Pieman Water levels have been monitored at these storages since hydropower scheme their creation in stages between 1981 and 1991. The Anthony–Pieman hydropower scheme includes eight Headwater storages: Lake Mackintosh and Lake water storages, classified as headwater storages (Lakes Murchison Mackintosh and Murchison), diversion storages (Lakes Lakes Mackintosh and Murchison are the main headwater Henty and Newton and White Spur Pond) and run-of-river storages for the Anthony–Pieman hydropower scheme. storages (Lakes Rosebery, Plimsoll and Pieman). Lakes The water level fluctuates over the entire operating range Murchison, Henty and Newton and White Spur Pond do not from Normal Minimum Operating Level (NMOL) to Full release water directly to a power station; rather they are Supply Level (FSL) (Figures 1, 2). used to transfer water to other storages within the scheme. -
Declaration of Frequency Control Ancillary Services
DECLARATION OF FREQUENCY CONTROL ANCILLARY SERVICES STATEMENT OF REASONS December 2009 Printed December 2009 Office of the Tasmanian Economic Regulator Level 5, 111 Macquarie Street, Hobart TAS 7000 GPO Box 770, Hobart TAS 7001 Phone: (03) 6233 6323 Fax (03) 6233 5666 ISBN 978-0-7246-7501-2 Copyright © Office of the Tasmanian Economic Regulator TABLE OF CONTENTS 1 OVERVIEW...............................................................................................3 2 DECLARATION CONTEXT......................................................................9 2.1 NATIONAL ENERGY POLICY OBJECTIVES ...............................................................9 2.2 TASMANIAN ENERGY POLICY OBJECTIVES..........................................................10 2.3 FREQUENCY CONTROL ANCILLARY SERVICES IN THE NEM ..........................10 2.4 FREQUENCY CONTROL ANCILLARY SERVICES IN TASMANIA........................11 2.5 SOURCES OF RAISE CONTINGENCY FCAS IN TASMANIA ................................13 2.6 AVAILABILITY OF FAST RAISE FCAS IN TASMANIA .............................................13 2.7 COST OF SUPPLY OF RAISE CONTINGENCY FCAS BY HYDRO TASMANIA.14 2.8 RAISE CONTINGENCY FCAS PRICES ......................................................................16 3 DECLARATION PROCESS ...................................................................19 3.1 DECLARATION OF SERVICES ....................................................................................19 4 INVESTIGATION ....................................................................................21 -
Implications for Tasmanian Electricity System of The
Backroad Connections Pty Ltd ABN: 64 090 245 382 [email protected] (0407) 486-651 www.backroad.com.au Implications for the Tasmanian electricity system of the proposal to restore Lake Pedder July 2019 Overview The paper analyses the implication for the Tasmanian electricity system of the proposal by the Lake Pedder Restoration Committee (LPRC) to restore the original Lake Pedder. It provides information on the current contribution of the Gordon Scheme to Tasmanian electricity generation and energy storage and provides some information and estimates on alternatives to replace this generation if the original Lake Pedder was restored. Background The original Lake Pedder was flooded in 1972 as part of an expansion of the Tasmanian hydro-electric scheme. The flooded area created is still officially known as Lake Pedder although the LPRC prefer the name Huon- Serpentine Impoundment. In this paper we will use the term ‘new Lake Pedder’. The new Lake Pedder at 242 sq km is vastly bigger than the original Lake Pedder at 10 sq km. The new Lake Pedder does not have its own hydro-electric generation. Its purpose is to trap and raise the level of the water that would otherwise flow down the Huon and Serpentine rivers. The water is raised to the level where it flows through a channel created at McPartlan Pass into the Gordon Dam and contributes to the storage and generation of the Gordon Scheme. As a result the level of the new Lake Pedder does not vary more than a few metres. This makes it more visually attractive and more suitable for recreational use than the adjacent Gordon Reservoir. -
Technical Parameters of the Tasmanian Electricity Supply System
Electricity Supply Industry Expert Panel Technical Parameters of the Tasmanian Electricity Supply System Information Paper December 2011 Electricity Industry Panel - Secretariat GPO Box 123 Hobart TAS 7001 Telephone: (03) 6232 7123 Email: [email protected] http://www.electricity.tas.gov.au December 2011 © Copyright State of Tasmania, 2011 Contents 1. Objectives and Structure of this Paper ........................................................................................ 1 2. Principles of an Electricity Supply System ..................................................................................... 2 2.1. Introduction .............................................................................................................................. 2 2.2. Properties of Electricity ........................................................................................................... 3 2.3. Generation ............................................................................................................................... 4 2.4. Delivery Elements .................................................................................................................... 7 3. Technical Issues of Meeting Demand, System Reliability & System Security Requirements 9 3.1. Demand .................................................................................................................................... 9 3.2. Reliability ................................................................................................................................ -
2007 Annual Report
Hydro Tasmania Annual Report 07 Australia’s leading renewable energy business Achievements & Challenges for 2006/07 Achievements Ensuring Utilising Basslink Profit after tax Returns to Sale of Bell Bay Capital Further investment Targeted cost Slight increase in Hydro Tasmania Hydro Tasmania Integration of continuity of helps manage low of $79.4 million; Government of power site and gas expenditure of in Roaring 40s of reduction program staff engagement Consulting office Consulting sustainability electricity supply water storages underlying $57.8 million turbines to Alinta $54.2 million, $10 million as joint realises recurrent with Hydro opened in New achieved national performance to Tasmania in profit of • Dividend including Gordon venture builds savings of Tasmania among Delhi success as part reporting time of drought $19.5 million $21.2 million Power Station wind portfolio in $7.7 million the better of bid to receive better reflects • Income tax redevelopment Australia, China performing an $8.7 million operating result equivalent and Tungatinah and India businesses grant for a major and takes account $28.7 million switchyard nationally water monitoring of impact of low • Loan guarantee upgrade project inflows fee $5.1 million • Rates equivalent $2.8 million Challenges Operational and financial Protection of water Environmental risks Restructuring the Business response to Improving safety Increased greenhouse The direction of national Continuous improvement pressures as a result of storages as levels dipped as a result of low business -
Musselroe Wind Farm, Development Proposal and Environmental Management Plan
This document is a summary of the Development Proposal and Environmental Management Plan (DPEMP) for the proposed Musselroe Wind Farm. The DPEMP is produced in five volumes as shown above. The Project Summary is not part of the DPEMP but provides an 5 abridged version of its contents. The Project Summary includes a brief description of the proposed development, assesses the likely impacts of the Project on environmental and socio- economic factors, and summarises the commitments process made by Hydro Tasmania in relation to the management of potential environmental impacts. 05.02.0066 0 Foreword FFoorreewwoorrdd The project proposed is for the construction of a $270 million wind farm on private land near Little Musselroe Bay at Cape Portland in north-east Tasmania. As a renewable energy project the Musselroe Wind Farm (the Project) will contribute to the Commonwealth Government’s Mandated Renewable Energy Target (MRET). The MRET is based on the recognition that renewable energy is a global key to long-term reduction in greenhouse gas emissions. This Project will generate approximately 400,000 MWh of renewable electricity and displace an estimated 368,000 tonnes CO2-e per year. In addition, the Project will provide considerable revenue to the State of Tasmania, facilitate the generation of temporary and long-term employment opportunities, and create indirect flow-on benefits to a number of service industries in the region. Hydro Tasmania is seeking a planning permit from Dorset Council for the establishment of the wind farm and a corridor of land for the construction of a 110 kV transmission line to connect the wind farm to the Tasmanian electricity grid at the Derby Electricity Substation. -
Derwent Catchment Review
Derwent Catchment Review PART 1 Introduction and Background Prepared for Derwent Catchment Review Steering Committee June, 2011 By Ruth Eriksen, Lois Koehnken, Alistair Brooks and Daniel Ray Table of Contents 1 Introduction ..........................................................................................................................................1 1.1 Project Scope and Need....................................................................................................1 2 Physical setting......................................................................................................................................1 2.1 Catchment description......................................................................................................2 2.2 Geology and Geomorphology ...........................................................................................5 2.3 Rainfall and climate...........................................................................................................9 2.3.1 Current climate ............................................................................................................9 2.3.2 Future climate............................................................................................................10 2.4 Vegetation patterns ........................................................................................................12 2.5 River hydrology ...............................................................................................................12 2.5.1 -
2010 Electricity Statement of Opportunities for the National Electricity Market
ELECTRICITY STATEMENT OF OPPORTUNITIES 2010 Electricity Statement of Opportunities for the National Electricity Market Published by AEMO Australian Energy Market Operator 530 Collins Street Melbourne Victoria 3000 Copyright © 2010 AEMO ISSN: 1836-7593 © AEMO 2010 ELECTRICITY STATEMENT OF OPPORTUNITIES © AEMO 2010 ELECTRICITY STATEMENT OF OPPORTUNITIES Preface I am pleased to introduce AEMO’s 2010 Electricity Statement of Opportunities (ESOO), which presents the outlook for Australia’s National Electricity Market (NEM) supply capacity for years 2013-2020 and demand for years 2010-2020. The supply-demand outlook reflects the extent of growth, and opportunities for growth, in generation and demand-side investment. This year, for the first time, AEMO has separated the 10-year supply-demand outlook into two documents. While the ESOO will cover years 3-10 and focus on investment matters, a separate document titled Power System Adequacy (PSA)–A Two Year Outlook will publish the operational issues and supply-demand outlook for summers 2010/11 and 2011/12. AEMO has released the ESOO and PSA together. The ESOO is one of a collection of AEMO planning publications that provides comprehensive information about energy supply and investment, demand, and network planning. AEMO’s other annual planning documents are the South Australian Supply and Demand Outlook, the Victorian Annual Planning Report and Update, the National Transmission Network Development Plan (NTNDP), and the Gas Statement of Opportunities. AEMO expects that climate change policies will, over time, change the way in which Australia produces and consumes electricity. This is likely to take place through a shift from the current reliance on coal as a source of generation to less carbon-intensive fuel sources. -
A Year in Review 2019
A Year in Review 2019 PHILANTHROPY AT THE UNIVERSITY OF TASMANIA A memorial scholarship helps bring a pioneering new heart procedure to Tasmania – Dr Heath Adams, Dr Vasheya Naidoo and their son Arthur. CONTENTS STUDENTS SPEAK 04 HELP SAVE ICONIC SPECIES FROM THE HEART Endemic animals being brought back from the brink by philanthropy 06 BRAIN RESEARCH BOOST Multi-generational giving kickstarts Janine Chang Fung Martel cutting-edge study Recipient of the Cuthbertson Elite Research Scholarship 08 KIMBERLEY DIAMOND SHINES Ossa Prize the launching pad for Please accept my deepest gratitude for your kind contribution. I hope I can thank singer’s burgeoning career you for your support through the outcomes of my research and show you how, with your help, we are able to assist dairy farmers prepare for future climates and provide 10 MOUNTAINS OF HOPE them with tools to use in the challenging times ahead. A man forced to flee his homeland is given the chance to transform his life 12 STATE OF THE HEART Allison Dooley A memorial scholarship has enabled Recipient of the Whitehead Family West North-West Scholarship alumnus Dr Heath Adams to learn an innovative heart procedure I would like to pass on to you my continued appreciation and assurance of how 14 AN ENDURING LEGACY receiving your generous scholarship continues to make my university journey Betty’s bequest will help secure the less stressful for me and my son. Tasmanian devils’ survival 16 ENGINEERING ASPIRATIONS Scholarship springboards student to success Jarra Lewis 18 GIFT LEADS TO PERFECT SCORE Recipient of the Caterpillar Underground Mining Scholarship in Engineering Family of carers share in young scholar’s achievement It is an honour to be recognised through this scholarship and I did not expect to receive anything like it during my time at university.