Glycerol Fermentation of Starch Paul Holland Figard Iowa State College

Total Page:16

File Type:pdf, Size:1020Kb

Glycerol Fermentation of Starch Paul Holland Figard Iowa State College Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1949 Glycerol fermentation of starch Paul Holland Figard Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Figard, Paul Holland, "Glycerol fermentation of starch " (1949). Retrospective Theses and Dissertations. 13345. https://lib.dr.iastate.edu/rtd/13345 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI |-nt> GLYCEROL PERWTATION OP STARCH by Paul H, Pigard A Thesis Submitted to the Gradmte Faculty In Partial Pulfillaent of The RequlreiMinta foi* the Degree of DOCTOR OP PHILOSOPHI Major Subject j Biophysical Ohemist-pj Approved! Signature was redacted for privacy. Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean of Graduate College Iowa State College 1949 UMI Number: DP12463 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. UMI UMI Microform DP12463 Copyright 2005 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 3 a.1 ACKNOWLEDGMENTS fh« author acknowledges his Indebtedness to Dr, Lm k, Ond«rkofler for the suggestion of the problem and for the helpful advice during the course of Its study. V T9/^^ ill TABIE OP COITEMIS AGKIOILEDGMIIIS. ii I,. IimODUCTIOl 1 II. HISfORICAI... ................... 5 III, EXPERIMENTAL. ................. 26 A. Materials. 26 !• Cornstarch. ...... 26 2. Steep water 26- 3. Yeasts, 26 4. Bacterium 27 5. Sulfites. ............... 28 B. Analytical Methods 28 1, Determination of alcohol. ....... 28 2, Determination of sugar. ........ 29' 3, Determination of sulfite. ....... S9 4m Determination of acetaldehyd# ..... 30 5, Determination of glycerol ....... 30 C. An Investigation of Yarlous Aldehyde- fixing Agents To Induce the Glycerol Fermentation of Aeid-hydrolyzed Starch ... 31 D. The Fermentation of Acid-hydrolyzed Cornstarch by Saccharoiaycea cerevisiae in the Presence of Sulfite 33 1. Acid-hydrolysis of cornstarch ..... 33 2. Effect of addition of nutrients to glycerol fermentations ....... 40 3. Studies on the glycerol fermentation of cornstarch with various sulfites . 44 iv Esse 4. Effect of pH on the glycerol yields obtained from acld- hjdrolyzed starch with various sulfites, ............ 55 5, Effect on glycerol yields of the addition of sulfiir dioxide to magnesium sulfite fermentations • 58 6# Effect of varying the mash con­ centration and temperature on the glycerol yields obtained from acld-hydroiyzed starch •mashes. 62 7, Effect on glycerol yield of de­ laying the addition of sulfite to the fermentation 64 8, Effect on glycerol yields of accliiaatlzatlon of yeast to magnesium sulfite 66 9, Effect on glycerol yields of activating the yeast before inoculation 67 1, The Permentation of Acld-hydrolyzed Cornstarch by Bacillus 3ubtllis« » • . 69 1, Effect of mash concentration and nutrients on the yields of glycerol obtained from acid- hydrolyzed starch by Bacillus subtllls fermentations. * . « 69 2, Effect on glycerol yields of adding sulfite to Bacillus aubtilis fermentations. • • • . 70 3«, Effect of pH and stirring on the glycerol yields from Bacillus subtllla fermentations of hydro- lyzed starch, 72 P. The Peraentatlon of Acld-hydrolyzed Cornstarch by ZyKOsaccharomyces acldifaclens . .1 . .• . 73 V Imi 1» Effect of nutrients and sulfite on ZjgoaaGcharomyces fementations. • , ». 73 2. Effect on glycerol yield of pH and the use of msslve inoculations In ZjROB&ccfaaromyces fermentations • , 75 I¥. DISCUSSIOl. 77 V, SUMIttRY AMD CONCLUSIONS 80 ¥1, LITEMTURE CITED, 83 -1- I, iMHiODlJCTIOIf Gljcerolj or glycerine as it is eomraonlj called# has become a r@Tj Importwit Industrial chemioal.. In addi­ tion to the tisss for which it is essential there ar© a wide variety of applications which would lead to expanded eonsuiaption of th© commodity if it were availabl® in larger qtiantltles at a reasonable cost.. At present it is uaad most extensively in textiles^ resins, and ©Kplosives, Th© laat -use was brought to our attention by the household fat salvage project during th© recent war* Tliis conserv­ ing of fats also ©niphaslzed the fact that our principal source of glycerol was the fat-splitting proc#ss» A new synthetic plant which went into operation in 1948 is ex­ pected to assure a more adeqmte supply of pure glycerol. Th© feraentation processes for producing glycerol have been restricted mostly to war-time use when the ne­ cessity for having it for explosive imnufacture overcam© considerations of cost# Germany msde considerable glycerol by fermontation during the World War of 1914-1918., fhelr process mm developed by Conns teln and Iiiidock© and con­ sisted of the ferraentatlon of beet sugar in th© presence of sodium sulfite as a fixing agent for acetftldehyde. By a ratter inefficient method Germany usad the process in -2- 24 faeturlea with the smaller ones shipping the feraentdd slop to th© larger ones for th® recovery of th© glycerol# According to th© description given by Lawrl® (1928) th© output amounted to approximately 1000 tons each month after the factories got into operation on a large seal©# A littl® glycerol was laade by feraentation in ths United Statas aifter th© Genaan proceas had been developed, but h@r« an alkalins method using sodium carbonate was worked out by loff# England nade glycerol by a fermentation process of Cocking and Lilly which waa reported to give very good yields approaching th©;theoretical value* Ihis method was similar to that of Connstein and Liidecke but used sodium bisulflt© in addition to the sodium sulfit# in order to obtain Increased yields of glycerol. In recent years no very drastic changes have been developed in the proceases for producing glycerol by fer­ mentation* Most of the later patents in the field are based on only slight modifications of the proceases men­ tioned above. Much work has been done on the problem of recovering th© glycerol from fermentation residues# Thar© have b©en a number of extraction methods worked out which are claimed to be more efficient than th© older distilla­ tion methods, lacperlenc® has shown that much of th® difficulty and expense involved in the fermentation procaaaea srisea from -3- the TQQoverj of the glycerol. The most troublesome factor is the high concentrations of soluble salts present in tha f©rra@ntod beers. For this reason Hickej (1941) investigated the use of leas soluble sulfites. He employed magnegium or calelum siilflta instead of the sodiua salt». Unfortun­ ately th® yields were not as hlghj however, th© recovei^ of the glycerol should b© aingsler sine© the cftlcima and m&gnmimi salts can b© removed by filtration. Sodium ions cannot b© gotten rid of so ©asily^ for no coistton aodiuia salts are insolublo. Most of th© feraentation procedures for glycerol that are described in th© literature use sugar as the raw ma- terial# but it would b© desirable from th© standpoint of initial cost to use starch* There are very few references to the use of starch for this f©mentation although it is suggested in a few instancea, Connstein and Ludeck© men­ tion the use of a saccharified starch mash in one of their patents, but they give no data on its use,. The theoretical yield of glycerol is approxlma'toly 51 par cent, and thor© are some claims of very nearly this value* However, th® majority of th® yields reported for large-scale fermentations of commercial slse are in th© region between 20 and 30 per cent. If the yields are given for glycerol recovered, they are even lower. There is correlation between the size of th© Inocula and the yields obtained. -4- Ih© purpose of tlie Investigation on which this thesis is based was to determine the best conditions for a glycerol fementation process using starch as the fermentation sub- strat®. It was hoped that a process could bo developed which might ha^e practical application for coiamerclal gljcerol production* ?o this end most of the work was don© with th® use of those sulfites which would not increase the concentration of soluble salts enough to make the glycerol reeovsrj too difficult* 5- II. HISTORICM. ©le history of glycerol from its preparation by Scheele in, 1779 -until 19S8 is very well covered in the monograph ^ Lawi® (1928)« For that reason it will b© necessary to deal here with only those phases of the subject directly concerned with th© present investigation. The principal points of interest will be th© fermentation laethods for the formation of glycerol# Ih© literattare mentions various synthstio methods for preparing glycerol. Wurtz (1857) made it hj reacting l»2#3,-trlbromopropa»e with silver acetate and hydrolyzing the product, triacetln, with alkali* When it was discover­ ed that propylene could b© chlorinated to allyl chloride, it waa realized that this reaction could b« used as an ia- portan.t starting atop for the synthesis of glycerol. The industrial prospects of this method war© discussed by Ii©vey (1938), and he concluded that It was ©eonomically sound# Williams (1941) also evaluated th© economic factors and presented the process as a desirable method for glycerol production.
Recommended publications
  • Enhanced Conversion Oflactose to Glycerol by Kluyveromyces Fragilis
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1989, p. 573-578 Vol. 55, No. 3 0099-2240/89/030573-06$02.00/0 Copyright C) 1989, American Society for Microbiology Enhanced Conversion of Lactose to Glycerol by Kluyveromyces fragilis Utilizing Whey Permeate as a Substrate WHEAMEI JENQ,1 RAY A. SPECKMAN,' RICHARD E. CRANG,2* AND MARVIN P. STEINBERG1 Department of Food Science, 1304 West Pennsylvania Avenue,' and School of Life Sciences, 505 South Goodwin Avenue,2 University ofIllinois, Urbana, Illinois 61801 Received 6 June 1988/Accepted 12 December 1988 Kluyveromycesfragilis (CBS 397) is a nonhalophilic yeast which is capable of lactose utilization from whey permeate and high glycerol production under anaerobic growth conditions. However, the optimum yields of glycerol (11.6 mg/ml of whey permeate medium) obtained in this study occurred only in the presence of 1% Na2SO3 as a steering agent. The use of other concentrations of Na2SO3, as well as 5% NaCl and 1% ascorbic acid, had no or detrimental effects on cell growth, lactose utilization, and glycerol production. Glycerol yields were greater in cultures grown from a light inoculum of K. fragilis than in cultures in which a resuspended mass of cells was introduced into the medium. The results of this study suggest that this strain of K. fragilis may be useful commercially in the utilization of cheese whey lactose and the concomitant production of glycerol. Cheese whey represents a commercial by-product gener- troleum derivatives, which is less expensive than processing ated in such massive quantities that its safe disposal is a by sugar fermentation. major problem for many municipal sewage treatment plants.
    [Show full text]
  • Sodium Chlorite Neutralization
    ® Basic Chemicals Sodium Chlorite Neutralization Introduction that this reaction is exothermic and liberates a If sodium chlorite is spilled or becomes a waste, significant amount of heat (H). it must be disposed of in accordance with local, state, and Federal regulations by a NPDES NaClO2 + 2Na2SO3 2Na2SO4 + NaCl permitted out-fall or in a permitted hazardous 90.45g + 2(126.04g) 2(142.04g) + 58.44g waste treatment, storage, and disposal facility. H = -168 kcal/mole NaClO2 Due to the reactivity of sodium chlorite, neutralization for disposal purposes should be For example, when starting with a 5% NaClO2 avoided whenever possible. Where permitted, solution, the heat generated from this reaction the preferred method for handling sodium could theoretically raise the temperature of the chlorite spills and waste is by dilution, as solution by 81C (146F). Adequate dilution, discussed in the OxyChem Safety Data Sheet thorough mixing and a slow rate of reaction are (SDS) for sodium chlorite in Section 6, important factors in controlling the temperature (Accidental Release Measures). Sodium chlorite increase (T). neutralization procedures must be carried out only by properly trained personnel wearing Procedure appropriate protective equipment. The complete neutralization procedure involves three sequential steps: dilution, chlorite Reaction Considerations reduction, and alkali neutralization. The dilution If a specific situation requires sodium chlorite to step lowers the strength of the sodium chlorite be neutralized, the chlorite must first be reduced solution to 5% or less; the reduction step reacts by a reaction with sodium sulfite. The use of the diluted chlorite solution with sodium sulfite to sodium sulfite is recommended over other produce a sulfate solution, and the neutralization reducing agents such as sodium thiosulfate step reduces the pH of the alkaline sulfate (Na2S2O3), sodium bisulfite (NaHSO3), and solution from approximately 12 to 4-5.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI DATE: July 5, 2002 I, Dinesh Kumar Palaniswamy , hereby submit this as part of the requirements for the degree of: Master of Science in: Environmental Engineering It is entitled: Electrochemical Reduction of 2,4,6-Trinitrotoluene Approved by: Dr.George Sorial Dr.Dionysios Dionysiou Dr.Makram Suidan ELECTROCHEMICAL REDUCTION OF 2,4,6 -TRINITROTOLUENE A thesis submitted to the Division of Research and Advanced Studies of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in the Department of Civil and Environmental Engineering of the college of Engineering 2002 by Dinesh Kumar Palaniswamy B.E., Civil Engineering, P.S.G College of Technology, Coimbatore, 1998 Committee Chair: Dr. George Sorial ABSTRACT 2,4,6-trinitrotoluene (TNT) is a major constituent of munitions contaminated wastewater. This research aims at studying the efficiency of electrochemical processes in reducing TNT. A laboratory scale reactor was designed and developed to electrochemically reduce TNT in simulated munition wastewater. Experiments simulating batch conditions were first conducted on the laboratory scale reactor to study the effect of various parameters including applied current, type of electrolyte and the molar concentration of the electrolyte in the feed solution on the reduction kinetics of TNT. The results showed that the reduction rates of TNT increased with an increase in applied current and molar concentration of electrolyte in feed. The rates of reduction leveled off at higher currents (250 & 300 mA). Mass transfer limitations were speculated for this flattening of rate constants at higher currents. Experimental studies were conducted with two types of electrolyte in the feed- sodium sulfate (Na2SO4) and lithium sulfate (Li2SO4), and the results indicated that there was no significant difference in the reduction rates for TNT.
    [Show full text]
  • Sulfur Dioxide and Some Sulfites, Bisulfites and Metabisulfites
    SULFUR DIOXIDE AND SOME SULFITES, BISULFITES AND METABISULFITES 1. Exposure Data 1.1 Chemical and physical data 1.1.1 Synonyms and structural and molecular data Sulfr dioxi Chem. Abstr. Serv Reg. No.: 7446-09-5 Replaced CAS Nos.: 8014-94-6; 12396-99-5; 83008-56-4; 89125-89-3 Chem. Abstr. Name; Sulfur dioxide IUPAC Systematic Name: Sulfur dioxide Synonyms: Sulfurous acid anhydride; sulfurous anhydride; sulfurous oxide; sulfur oxide (S02); sulfur superoxide; sulphur dioxide 0=8=0 S02 MoL. wt: 64.07 Sodium sulfte Chem. Abstr. Serv Reg. No.: 7757-83-7 Altemate CAS No.: 10579-83-6 Replaced CAS No.: 68135-69-3 Chem. Abstr. Name: Sulfurous acid, di sodium salt IUPAC Systematic Name: Sulfurous acid, disodium salt Synonyms: Anhydrous sodium sulfite; disodium sulfite; sodium sulphite o 1/ Na · 0 - 8 - 0 · Na Na2S0J MoL. wt: 126.04 Sodium bisulfe Chem. Abstr. Serv Reg. No.: 7631-90-5 Replaced CAS Nos.: 57414-01-4; 69098-86-8; 89830-27-3; 91829-63-9 Chem. Abstr. Name: Sulfurous acid, monosodium salt IUPAC Systematic Name: Sulfurous acid, monosodium salt -131- 132 lARe MONOGRAPHS VOLUME 54 Synonyms: Hydrogen sulfite sodium; monosodium sulfite; sodium acid sulfite; sodium bisulphite; sodium hydrogen sulfite; sodium sulfite (NaHS03) o Il HO - S - a · Na NaHS03 MoL. wt: 104.06 Sodium metabisulfte Chem. Abstr. Serv Reg. No.: 7681-57-4 Altemate CAS No.: 7757-74-6 Replaced CAS No.: 15771-29-6 Chem. Abstr. Name: Disulfurous acid, disodium salt IUPAC Systematic Name: Pyrosulfurous acid, disodium salt Synonyms: Disodium disulfite; disodium metabisulfite; disodium pyrosulfite; sodium disulfite; sodium metabisulphite; sodium pyrosulfite oIl Il0 Na · 0- S - a - S - a · Na .Na2S20S MoL.
    [Show full text]
  • Synthesis of New Betaine-Type Amphoteric Surfactants from Tall Oil Fatty Acid
    J Wood Sci (2002) 48:419424 The Japan Wood Research Society 2002 Shi-Fa Wang Takeshi Furuno Zhi Cheng Synthesis of new betaine-type amphoteric surfactants from tall oil fatty acid Received: August 13, 2001 / Accepted: November 14, 2001 Abstract Two new betaine-type amphoteric surfactants moistening and foaming abilities. It can be widely used - betaine N,N-dihydroxyethyl-N-ethyl fatty acid ester in many fields, such as the chemical, textile, dye, pigment, and ammonium N-(fatty acid ester) ethyl-N,N-bis (2- food, pharmaceutical, machining, metallurgy, washing, and hydroxyethyl)-3-(2-hydroxypropyl) sulfonate - were syn- petroleum industries. It has been used as a detergent, moist- thesized using tall oil fatty acids as the raw materials. ening and foaming agent, corrosion inhibitor, dispersion Processing conditions suitable for synthesizing the inter- agent, germicide (bactericide), emulsifying agent, antistatic mediates and final products were probed. In addition, the and softening agent of fibers, a dye, a chelating agent, and a chemical structures of the intermediates and the final prod- cleaning agentY ucts were identified by infrared spectroscopy, hydrogen A betaine-type surfactant usually means that quaternary nuclear magnetic resonance spectroscopy, and elemental ammonium cationic groups and anionic groups such as analysis. --COO-, --SO3, --OSO3, and --PO2 coexist in the same molecule. It has excellent solubility over a wide range of pH Key words Tall oil fatty acid Amphoteric surfactant values. Its solubility does not obviously decrease even in an Betaine type isoelectric zone. In addition, unlike the external quaternary ammonium salt, the betaine-type surfactant is compatible with ionic surfactants. Among the betaine-type surfactants, Introduction the most important contain sulfonic and carboxylic groups because they have important commercial value and a wide application field.
    [Show full text]
  • Azobenzene-P-Phenylhydrazine Sulfonic Acid and Its Reactions
    AZOBENZENE-p -PHENYLHYDRAZINE SULFONIC ACID AND ITS REACTIONS BY WALTER FRED STRAUB THESIS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY COLLEGE OF LIBERAL ARTS AND SCIENCES UNIVERSITY OF ILLINOIS 1918 UNIVERSITY OF ILLINOIS *3 June 1 8 THIS IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Walter.. .Zred...S.traub..... ENTITLED....Aj5Sfo.8tt3.e^^ actions IS APPROVED BY ME AS FULFILLING THIS P ART OF THE REQUIREMENTS FOR THE „.S ie , C h i t ry, DEGREE OF £a or .. of c n c e ... in em s Instructor in Charge HEAD OF DEPARTMENT OF TABLE OF COUNTS Page PART I. I Introduction 1 II Historical Part 3 III Theoretical Part 7 (A) The Reaction of the Formation of Azobenzene- p-phenylhydrazine Sulfonic Acid 8 (B) Condensations of the Red Acid 1. With aromatic aldehydes and ketones. 9 2. With aliphatic aldehydes and ketones. 10 3. With sugars to form osazones, 11 4. With acetoacetic ester. 12 5. With dihydroxytartarie acid. 13 IV Experimental Part 14 (A) Preparation of Azobenzene-p-phenylhydrazine Sulfonic Acid 14 (B) Identification of the Acid. 15 (G) Preparation and Analysis of: G H 01 18 18 22W H 1I 18 °30 30 8 4 -' G H 1J ^ ma:1 tose condensation) 19 36 40 8°9 ( lac1;ose condensation) 20 G 36H40%°9 21 C 1SH20H4°2 21 C18HS0°2H4HC1 (D) Condensation with Dihydroxytartarie Acid 22 1. Preparation of dihydroxytartarie acid 22 2. Condensation in glacial acetic acid solution 23 Y Summary 24 PART II. Some Rosin Compounds 26 Rosin derivatives prepared "by: 1.
    [Show full text]
  • Kinetic and Structural Studies Reveal a Unique Binding Mode of Sulfite to The
    Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease Luca Mazzei1, Michele Cianci2, Stefano Benini3, Leonardo Bertini1, Francesco Musiani1, Stefano Ciurli1* 1 Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Via Giuseppe Fanin 40, I-40138, Bologna (Italy) 2 European Molecular Biology Laboratory c/o DESY, Notkestraße 85, 22607 Hamburg, Germany 3 Bio-Organic Chemistry and Bio-Crystallography Laboratory, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy * Corresponding author: [email protected]; phone: (+39)-051-209-6204; fax: (+39)-051-209-6203 1 ABSTRACT Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19 mM at pH 7. The structure of the urease-sulfite complex, determined at 1.65 Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics.
    [Show full text]
  • Sodium Sulfite
    16 Sodium Sulfite COMPONENTS: ORIGINAL MEASUREMENTS: 1. SodIum sulfite; Na2S03; [7757-83-7] Durymanova, M.A.; Telepneva, A.E. 2. SodIum sulfate; Na2S04; [7757-82-6] Zh. Prlklad. Khim. 1972, 45, 1610-12; J. Appl. Chem. USSR (Eng. Transl.) 1972, 45, 3. Water; H20; [7732-18-5] 1680-2. VARIABLES: PREPARED BY: Concentrations of the components Mary R. Masson One temperature: 373 K EXPERIMENTAL VALUES: Composition of equilibrIum solutions at 100°C b Na2S03 Na2S04 Na2S03a Na2S04a Solid mass % mass % mol/kg mol/kg phase 20.8 - 2.084 0. A 19.4 3.4 1.994 0.310 B 19.4 3.7 2.002 0.339 B 19.2 4.2 1.989 0.386 B 18.4 6.4 1.941 0.599 B 18.0 6.5 1.892 0.606 B 17.5 8.6 1.879 0.819 B 16.9 8.4 1.795 0.792 B 15.9 11.0 1.726 1.059 B 15.5 12.5 1.708 1.222 B 15.5 11.3 1.680 1.087 B 15.3 12.0 1.670 1.162 B 15.2 12.9 1.677 1.263 B 14.8 13.5 1.638 1.326 B 14.7 13.5 1.624 1.324 B 14.5 14.7 1.625 1.462 B + C 14.3 14.8 1.600 1.470 B + C 13.1 16.6 1.478 1.662 C 12.4 17.1 1.395 1.708 C 11.0 19.3 1.252 1.949 C 10.4 19.3 1.174 1.933 C 10.3 19.5 1.164 1.956 C 9.5 20.5 1.077 2.062 C 8.5 22.6 0.979 2.309 C (continued on next page) AUXILIARY INFORHATION METHOD M'PARATUS/PROCEDURE: SOURCl AND PURl TY OF HAH.RI ilLS: The systems were studied under isothermal Sodium sulfate was of c.p.
    [Show full text]
  • Oxidation and Degradation Products of Common Oxygen Scavengers
    2002 Fall Oxidation And Degradation Products Of Common Oxygen Scavengers By John D. Zupanovich, ChemTreat, Inc. For many years, sulfite and hydrazine were the principal materials used to protect boiler systems from oxygen attack. When hydrazine became listed as a suspected carcinogen, a search began for a replacement. During the search it became apparent that strong reducing agents (oxygen scavengers) should do more than react with and remove dissolved oxygen. They should also form protective oxide films on the metal surfaces of the steam/water system. Thus, the reaction with metal oxides is equally as important as the reaction with dissolved oxygen. During the past decade, a number of materials have been proposed for use as oxygen scavengers and metal passivators. The reactions are frequently very complex. This article is an attempt to explain the oxidation and degradation reactions of the more common oxygen scavengers in current use. In each case, the material will react with oxygen, and with metal oxides. The efficiency of the reaction is dependent on time, temperature, concentration and system pH. In general, as the pH, time, and temperature increase, the reaction becomes more complete. Since time is usually of the essence, many materials are catalyzed to decrease the reaction time. As a rule, multi-valent metal ions such as copper and iron will increase the reaction rate. Certain organic compounds such as hydroquinone and its derivatives have also been found to be effective catalysts. Sulfite Sulfite reacts with and consumes dissolved oxygen in aqueous solutions: 2- 2- 2SO3 + O2 2SO4 (1) At temperatures of 430°F and above, sulfite will react with iron oxide: 2- 2- 3Fe2O3 + SO3 2Fe3O4 + SO4 (2) However, because sulfite begins to decompose at 250°F, this reaction is rarely encountered in boiler systems.
    [Show full text]
  • SDS Safety Data Sheet
    SDS Safety Data Sheet 1. IDENTIFICATION Product Identifier: Sodium Sulfite, Anhydrous Product Code(s): S1037 Synonyms: Disodium Sulfite. Recommended Use: For manufacturing, industrial, and laboratory use only. Use as a catalyst or as a laboratory solute. Uses Advised Against: Not for food, drug, or household use. Supplier: Rocky Mountain Reagents, Inc. 4621 Technology Drive, Golden, CO 80403 Phone: (303) 762-0800 Fax: (303) 762-1240 Emergency Phone Number: For health emergency, call Poison Control: (800) 222-1222. 2. HAZARDS IDENTIFICATION Hazard Classifications: This product is classified as not hazardous under OSHA's Hazard Communication Standard, 29 CFR 1910.1200 (HCS) and the United Nations’ Globally Harmonized System of Classification and Labeling of Chemicals (GHS). However, all chemicals handled and used in the workplace should be treated with caution. Signal Word: Not applicable. Hazard Statements: Not applicable. Pictograms: Not applicable. Precautionary Statements: Prevention: Not applicable. Response: Not applicable. Storage: Not applicable. Disposal: Not applicable. Hazards Not Otherwise May be mutagenic based on human and microorganism data. Classified: Product: Sodium Sulfite, Anhydrous Revision Date: 04/14/2015 1/7 Toxicity Statement: This product consists of 100% ingredients whose acute toxicities are unknown. 3. COMPOSITION AND INFORMATION ON INGREDIENTS Component Common Name / Synonyms CAS# Chemical Formula % by Weight Sodium Sulfite Disodium Sulfite 7757-83-7 Na2SO3 ≥ 98.0 Trade Secret Statement: Not applicable. 4. FIRST AID MEASURES First Aid Procedures: Inhalation: Move to fresh air. If breathing is difficult, give oxygen. If not breathing, give artificial respiration. Call a physician if symptoms occur. Ingestion: Do not induce vomiting unless directed to do so by medical personnel.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns NATIONAL BUREAU of STANDARDS
    NBS MONOGRAPH 25—SECTION 1 9 CO Q U.S. DEPARTMENT OF COMMERCE/National Bureau of Standards Standard X-ray Diffraction Powder Patterns NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essentia! services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration
    [Show full text]
  • The Institute of Paper Chemistry
    The Institute of Paper Chemistry Appleton, Wisconsin Doctor's Dissertation An Investigation of the Reactions Leading to Volatilization of Inorganic Sulfur During Pyrolysis with Vanillic Acid and Sodium Gluconate David T. Strohbeen June, 1981 TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 3 LITERATURE REVIEW 5 Pyrolysis 5 Thermodynamics and Kinetics 6 Kraft Black Liquor Pyrolysis 8 Black Liquor Composition 8 Cellulose Pyrolysis 11 Hemicellulose Pyrolysis 16 Hydroxy Acid Pyrolysis 17 Lignin Pyrolysis 17 Wood Pyrolysis 19 Coal Pyrolysis 24 Implications of Wood, Wood Component, and Coal Pyrolysis Studies for Black Liquor Pyrolysis 26 Black Liquor Pyrolysis 26 Black Liquor Pyrolysis Sulfur Distribution 31 Thermodynamics 38 Comparison of Black Liquor Pyrolysis Results with Thermodynamic Predictions - An Analysis 41 Sulfur Volatilization Reactions and Kinetics 43 Analysis . 46 THESIS OBJECTIVES 50 EXPERIMENTAL 51 Materials 51 Pyrolysis 51 RESULTS AND DISCUSSION 54 Sulfur Balance Closure 54 Reproducibility 54 Thermal Characterization of Pyrolysis Materials 56 Sulfur Volatilization 58 Sodium Sulfide Pyrolysis 58 Sodium Sulfate Pyrolysis 61 Sodium Sulfite Pyrolysis 62 Sodium Thiosulfate Pyrolysis 63 Effect of Heating Rate 72 Effect of Particle Size 74 Effect of Purge Rate 74 SUMMARY AND CONCLUSIONS 76 ACKNOWLEDGMENTS 79 LITERATURE CITED 80 APPENDIX I. ANALYTICAL METHODS 84 APPENDIX II. EXPERIMENTAL RESULTS - TABULATED 94 APPENDIX III. STATISTICAL ANALYSIS OF DATA 104 APPENDIX IV. THIOSULFATE PYROLYSIS SULFUR-GAS TIME SEQUENCE 107 ABSTRACT The formation of volatile sulfur compounds from sodium sulfide, sodium thiosulfate, sodium sulfite, and sodium sulfate was studied during slow pyrolyses with sodium gluconate or vanillic acid. Pyrolyses were carried out at constant heating rates between ambient temperature and 550°C in a batch reactor with a nitro- gen purge to continuously dilute, remove, and cool the pyrolysis product gases.
    [Show full text]