A New Species of Ryukyu Spiny Rat, Tokudaia (Muridae: Rodentia), from Tokunoshima Island, Kagoshima Prefecture, Japan

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Ryukyu Spiny Rat, Tokudaia (Muridae: Rodentia), from Tokunoshima Island, Kagoshima Prefecture, Japan Mammal Study 31: 47–57 (2006) © the Mammalogical Society of Japan A new species of Ryukyu spiny rat, Tokudaia (Muridae: Rodentia), from Tokunoshima Island, Kagoshima Prefecture, Japan Hideki Endo1,* and Kimiyuki Tsuchiya2,** 1 Section of Morphology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan 2 Laboratory of Wild Animals, Department of Animal Sciences, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Kanagawa 243-0034, Japan Abstract. A new species of Ryukyu spiny rat, Tokudaia tokunoshimensis was described in the specimens originating from Tokunoshima Island in the southernmost region of Japan. The populations of Tokudaia are separately distributed only in Amami-Oshima, Tokunoshima, and Okinawa-jima Islands. We have described the osteological and external morphological characteristics and clarified the osteometrical distinctions among the three populations using the skull and skin collections. All external dimensions of head and body length, tail length, hindfoot length and ear length were larger in the Tokunoshima population than in the other two in mean value. The raw osteometrical data separated the Tokunoshima Island population from the other two in all measurements except for the length of molar row in the Okinawa-jima Island population. The principal component analysis also demonstrated that the skulls from the Tokunoshima Island population were morphologically distinct from those of the other populations. Here, from these findings, we point out that the Tokunoshima population of Tokudaia should be regarded as an independent species from the two other populations. Key words: osteology, Ryukyu spiny rat, Tokudaia muenninki, Tokudaia osimensis, Tokunoshima. The Ryukyu spiny rats (genus Tokudaia) are distributed mal DNA (Tsuchiya et al. 1989), the mitochondrial DNA only in the three Islands of Amami-Oshima, Tokuno- sequence data also suggested that the population in shima and Okinawa-jima in the Ryukyu Islands of Japan. Tokunoshima Island were taxonomically separated from The first taxonomical record of the Ryukyu spiny rat was the population in Amami-Oshima Island (Suzuki et al. from the population in Amami-Oshima (Abe 1933), and 1999). All the other genetic data including blood serum the new genus Tokudaia was described for the popula- polymorphisms have consistently indicated the differen- tions (Kuroda 1943). Since the body size is larger in the tiations at a species level of the genus Tokudaia among Okinawa-jima Island population than in the Amami- the three populations. Oshima Island one, the population of Ryukyu spiny rat The detailed osteometrical comparisons (Kaneko from Okinawa-jima Island had been considered as a sub- 2001) demonstrated that the skulls of the Okinawa-jima species of Ryukyu spiny rat from Amami-Oshima Island population had a longer row of upper teeth from the inci- (Johnson 1964), and after that it had been generally sor to the third molar and possessed a wider first upper named as T. osimensis muenninki as shown in the species molar than those of the Amami-Oshima population, lists of the Asian mammals (Ellerman and Morrison- while the palatine foramen was situated more posteriorly Scott 1951; Corbet and Hill 1992). in the skulls of the Okinawa-jima population than those The variations of karyotype were obviously revealed of the Amami-Oshima population. These skull charac- among the three island populations of Tokudaia (Honda teristics supported the theory that the two populations et al. 1977, 1978; Tsuchiya 1979, 1981; Tsuchiya et al. should belong to the valid species T. muenninki and T. 1989). In addition to the restriction fragments length osimensis, respectively, unlike the original work on the polymorphisms of the mitochondrial DNA and riboso- Okinawa-jima population (Johnson 1964). However, no *To whom correspondence should be addressed. E-mail: [email protected] **Present address: Ooyo-Seibutsu Co. Ltd., 4-12-3 Minami- Aoyama, Minato-ku, Tokyo 107-0062, Japan 48 Mammal Study 31 (2006) morphological comparison using the Tokudaia speci- Table 1. Locality and sex composition of the skull specimens. mens from Tokunoshima Island has been carried out. Origin of Specimens Symbols Male Female Tokunoshima T 1 2 Materials and methods Amami-Oshima A 11 5 Okinawa-jima O 7 3 We examined 29 skulls of the Ryukyu spiny rats 19 10 (genus Tokudaia) that had been stored in the Department of Zoology, National Science Museum, Tokyo (Tokyo, Japan), and the Mammal Division, the National Museum Table 2. List of measurements and their abbreviations. of Natural History in the Smithsonian Institution (Wash- Cranium ington DC, U.S.A.) (Appendix 1). Sex determination Profile length PL was dependent on the biological data for each speci- Maximum length ML men. Only specimens of adults with fully erupted molars Basal length BL were examined. The composition of origin and sex, and Short lateral facial length SL locality symbols are shown in Table 1. The skulls were Length from Prosthion to Bregma LPB Oral zygomatic breadth OZB measured with vernier calipers to the nearest 0.05 mm Zygomatic breadth ZB based on the examples of lagomorphs, artiodactyls and Maximum width of the nasal bone MWN carnivores in the textbook by Driesch (1976) (Table 2, Least breadth between the orbits LBO Fig. 1). The external measurements from the original Greatest neurocranium breadth GNB data of the specimens are also arranged in Table 2. The Greatest breadth of the occiputal condyles GBO head and body length and tail length were measured to Median palatal length MPL the nearest 0.5 mm, the hindfoot and ear lengths, to the Dental length DL nearest 1 mm. In the skull measurements the statistical Length of molar row LMR1 differences in mean values among the three populations Greatest palatal breadth GPB were examined by Student’s t-test. The proportion Length from Basion to Staphylion LBS indices were the quotients of each measurement value Length from Basion to the most rostral point of LBR zygomatic arch divided by the geometric mean of all measurement Length from Basion to the most medial point of orbit LBM values. The significant differences in proportion indices Length from Basion to Bregma LBB were examined among localities by non-parametric U- Height from Akrokranion to Basion HAB test using software Statistica (Statsoft Inc., Tokyo, Japan). Mandible The principal component analysis was also carried out Length from the condyle LC with all skull measurement data to clarify the variations Length from the angular process LA among the three geographical localities. The 16 skin Length of molar row LMR2 specimens were examined to confirm the external char- Aboral height of the vertical ramus AHR acteristics of the Tokunoshima population (Appendix 1). External measurements Head and body length HBL Tail length TL Results Hindfoot length HFL Ear length EL Taxonomic description: The measurement items of the skull were based on Driesch (1976). Tokudaia tokunoshimensis sp. nov. [Japanese name: Tokunoshima Toge-nezumi, new] M33903, adult female. These were collected in the same locality, on 17 December 1988 and 2 March 1987, Holotype: NSMT-M33901, adult female, skin and respectively, also by Kimiyuki Tsuchiya. Both are skull collected in a forest of Mikyo Area of Amagi-cho stored in the National Science Museum, Tokyo. Town in Tokunoshima Island on 14 May 1987 by Type locality: Mikyo Area, Amagi-cho Town, Tokuno- Kimiyuki Tsuchiya. The holotype is preserved in the shima Island, Kagoshima Prefecture, Japan. National Science Museum, Tokyo. Diagnosis: A middle-sized rat which is dark-brown Paratype: NSMT-M33902, adult male and NSMT- above, light gray and buff beneath. The ventral side of Endo and Tsuchiya, New species of spiny rat from Tokunoshima 49 Fig. 1. Measurements used in this study. Abbreviations are also explained in Table 2. Table 3. Skull and external dimensions (mm) in the holotype and paratype specimens. PL ML CBL SL LPB OZB ZB MWN LBO GNB GBO MPL DL LMR1 NSMT-M33901 39.60 39.45 35.40 17.25 29.45 17.75 18.40 4.55 8.05 15.45 9.25 21.25 20.40 6.15 NSMT-M33902 39.20 39.25 35.95 17.10 29.55 18.25 18.80 4.70 8.05 15.85 9.25 20.90 19.90 5.95 NSMT-M33903 38.60 38.45 35.30 17.00 28.65 18.60 18.45 4.10 7.90 15.80 9.55 20.65 19.60 6.05 Position of GPB LBS LBR LBM LBB HAB LC LA LMR2 AHR HBL TL HFL EL palatine foramen* Left Right 7.60 14.45 25.45 22.50 14.90 9.50 21.85 19.85 6.50 6.85 141.0 – 38 35 m p 7.95 14.80 26.75 22.00 15.05 9.60 21.75 20.15 6.00 6.95 170.0 – 37 34 m p 7.80 14.65 26.45 22.90 15.50 9.55 21.65 19.95 6.20 6.85 153.5 117.5 38 33 m p *Position of the palatine foramen in comparison to the postrior end line of the anterostyle of the second molar: p, postrior; m, middle position. the head and throat regions is also grayish. The tail is not is not particularly elongated. The positions of the so long, blackish on the upper and whitish on the lower palatine foramen of the skulls are arranged in Table 3. side. Its tip seems black also on the ventral side. The The auditory bulla is rounded but flat dorso-ventrally. spine is dark-brown and black, but its base is light gray. The coronoid process is not dorsally extended in the The spine is hard, and reaches 15–25 mm in length, and mandible. The photographs of the specimens are shown it cannot be seen around the mouth, ear, and extremities.
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Sexual Dimorphism in Brain Transcriptomes of Amami Spiny Rats (Tokudaia Osimensis): a Rodent Species Where Males Lack the Y Chromosome Madison T
    Ortega et al. BMC Genomics (2019) 20:87 https://doi.org/10.1186/s12864-019-5426-6 RESEARCHARTICLE Open Access Sexual dimorphism in brain transcriptomes of Amami spiny rats (Tokudaia osimensis): a rodent species where males lack the Y chromosome Madison T. Ortega1,2, Nathan J. Bivens3, Takamichi Jogahara4, Asato Kuroiwa5, Scott A. Givan1,6,7,8 and Cheryl S. Rosenfeld1,2,8,9* Abstract Background: Brain sexual differentiation is sculpted by precise coordination of steroid hormones during development. Programming of several brain regions in males depends upon aromatase conversion of testosterone to estrogen. However, it is not clear the direct contribution that Y chromosome associated genes, especially sex- determining region Y (Sry), might exert on brain sexual differentiation in therian mammals. Two species of spiny rats: Amami spiny rat (Tokudaia osimensis) and Tokunoshima spiny rat (T. tokunoshimensis) lack a Y chromosome/Sry, and these individuals possess an XO chromosome system in both sexes. Both Tokudaia species are highly endangered. To assess the neural transcriptome profile in male and female Amami spiny rats, RNA was isolated from brain samples of adult male and female spiny rats that had died accidentally and used for RNAseq analyses. Results: RNAseq analyses confirmed that several genes and individual transcripts were differentially expressed between males and females. In males, seminal vesicle secretory protein 5 (Svs5) and cytochrome P450 1B1 (Cyp1b1) genes were significantly elevated compared to females, whereas serine (or cysteine) peptidase inhibitor, clade A, member 3 N (Serpina3n) was upregulated in females. Many individual transcripts elevated in males included those encoding for zinc finger proteins, e.g.
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]
  • Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits
    RESEARCH ARTICLE Extensive Chromosomal Reorganization in the Evolution of New World Muroid Rodents (Cricetidae, Sigmodontinae): Searching for Ancestral Phylogenetic Traits Adenilson Leão Pereira1, Stella Miranda Malcher1, Cleusa Yoshiko Nagamachi1,2, Patricia Caroline Mary O’Brien3, Malcolm Andrew Ferguson-Smith3, Ana Cristina Mendes- Oliveira4, Julio Cesar Pieczarka1,2* 1 Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, ICB, Universidade Federal do Pará, Belém, Pará, Brasil, 2 CNPq Researcher, Brasília, Brasil, 3 Cambridge Resource Center for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 4 Laboratório de Zoologia e Ecologia de Vertebrados, ICB, Universidade Federal do Pará, Belém, Pará, Brasil * [email protected] OPEN ACCESS Citation: Pereira AL, Malcher SM, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Mendes-Oliveira Abstract AC, et al. (2016) Extensive Chromosomal Reorganization in the Evolution of New World Muroid Sigmodontinae rodents show great diversity and complexity in morphology and ecology. Rodents (Cricetidae, Sigmodontinae): Searching for This diversity is accompanied by extensive chromosome variation challenging attempts to Ancestral Phylogenetic Traits. PLoS ONE 11(1): reconstruct their ancestral genome. The species Hylaeamys megacephalus–HME (Oryzo- e0146179. doi:10.1371/journal.pone.0146179 myini, 2n = 54), Necromys lasiurus—NLA (Akodontini, 2n = 34) and Akodon sp.–ASP (Ako- Editor: Riccardo Castiglia, Universita degli Studi di dontini, 2n = 10) have extreme diploid numbers that make it difficult to understand the Roma La Sapienza, ITALY rearrangements that are responsible for such differences. In this study we analyzed these Received: June 5, 2015 changes using whole chromosome probes of HME in cross-species painting of NLA and Accepted: December 13, 2015 ASP to construct chromosome homology maps that reveal the rearrangements between Published: January 22, 2016 species.
    [Show full text]
  • Èíòåãðàöèîííûå Ïðîåêòû Ñî Ðàí Âûï. 7 Sb Ras Integrate
    Перейти на страницу с полной версией» Âûï. 7 SB RAS INTEGRATE PROJECTS INTEGRATE RAS SB ÈÍÒÅÃÐÀÖÈÎÍÍÛÅ ÏÐÎÅÊÒÛ ÑÎ ÐÀÍ ÑÎ ÏÐÎÅÊÒÛ ÈÍÒÅÃÐÀÖÈÎÍÍÛÅ Issue 7 Перейти на страницу с полной версией» Перейти на страницу с полной версией» RUSSIAN ÀCÀDEMY O SCIENCES SIBERIAN BRANCH BIODIVERSITY and Dinamic of Ecosystems: Computationl Approaches and Modelling Executive editors: Academician of RAS V.K. Shumny, Yu.I. Shokin Corresponding member of RAS N.A. Kolchanov, A.M. edotov NOVOSIBIRSK PUBLISHING HAUSE O THE SIBERIAN BRANCH O THE RUSSIAN ACADEMY O SCIENCES 2006 Перейти на страницу с полной версией» Перейти на страницу с полной версией» ÐÎÑÑÈÉÑÊÀß ÀÊÀÄÅÌÈß ÍÀÓÊ ÑÈÁÈÐÑÊÎÅ ÎÒÄÅËÅÍÈÅ ÈÍÑÒÈÒÓÒ ÖÈÒÎËÎÃÈÈ È ÃÅÍÅÒÈÊÈ ÈÍÑÒÈÒÓÒ ÂÛ×ÈÑËÈÒÅËÜÍÛÕ ÒÅÕÍÎËÎÃÈÉ ÈÍÑÒÈÒÓÒ ËÅÑÀ èì. Â.Í. ÑÓÊÀ×ÅÂÀ ÈÍÑÒÈÒÓÒ ÑÈÑÒÅÌÀÒÈÊÈ È ÝÊÎËÎÃÈÈ ÆÈÂÎÒÍÛÕ ÖÅÍÒÐÀËÜÍÛÉ ÑÈÁÈÐÑÊÈÉ ÁÎÒÀÍÈ×ÅÑÊÈÉ ÑÀÄ ÍÎÂÎÑÈÁÈÐÑÊÈÉ ÃÎÑÓÄÀÐÑÒÂÅÍÍÛÉ ÓÍÈÂÅÐÑÈÒÅÒ ÁÈÎÐÀÇÍÎÎÁÐÀÇÈÅ È ÄÈÍÀÌÈÊÀ ÝÊÎÑÈÑÒÅÌ: ÈÍÔÎÐÌÀÖÈÎÍÍÛÅ ÒÅÕÍÎËÎÃÈÈ È ÌÎÄÅËÈÐÎÂÀÍÈÅ Îòâåòñòâåííûå ðåäàêòîðû: àêàäåìèêè ÐÀÍ Â.Ê. Øóìíûé, Þ.È. Øîêèí ÷ëåíû-êîððåñïîíäåíòû ÐÀÍ Í.À. Êîë÷àíîâ, À.Ì. Ôåäîòîâ ÍÎÂÎÑÈÁÈÐÑÊ ÈÇÄÀÒÅËÜÑÒÂÎ ÑÈÁÈÐÑÊÎÃÎ ÎÒÄÅËÅÍÈß ÐÎÑÑÈÉÑÊÎÉ ÀÊÀÄÅÌÈÈ ÍÀÓÊ 2006 Перейти на страницу с полной версией» Перейти на страницу с полной версией» ÓÄÊ 574:004.9 ÁÁÊ 28.0+32.97 Á63 Ðåäàêöèîííàÿ êîëëåãèÿ ñåðèè: àêàäåìèê Â.Ì. Òèòîâ (ãëàâíûé ðåäàêòîð), àêàäåìèê Þ.È. Øîêèí, ÷ëåí-êîððåñïîíäåíò ÐÀÍ Â.È. Åâñèêîâ, ÷ëåí-êîððåñïîíäåíò ÐÀÍ Â.Í. Îïàðèí, ÷ëåí-êîððåñïîíäåíò ÐÀÍ Â.À. Ëàìèí, êàíä. ãåîë.-ìèí. íàóê Â.Ä. Åðìèêîâ (îòâåòñòâåííûé ñåêðåòàðü) Ñåðèÿ îñíîâàíà â 2003 ã. Áèîðàçíîîáðàçèå è äèíàìèêà ýêîñèñòåì: èíôîðìàöèîííûå òåõíîëî- Á63 ãèè è ìîäåëèðîâàíèå / îòâ. ðåä. Â.Ê. Øóìíûé, Þ.È. Øîêèí, Í.À. Êîë- ÷àíîâ, À.Ì. Ôåäîòîâ; Ðîñ.
    [Show full text]
  • Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale.
    [Show full text]
  • Molecular Identification of Three Sympatric Species of Wood Mice (Apodemus Sylvaticus, A
    Molecular Ecology Notes (2001) 1, 260–263 PRIMERBlackwell Science, Ltd NOTE Molecular identification of three sympatric species of wood mice (Apodemus sylvaticus, A. flavicollis, A. alpicola) in western Europe (Muridae: Rodentia) J. R. MICHAUX,*† S. KINET,† M.-G. FILIPPUCCI,‡ R. LIBOIS,§ A. BESNARD† and F. CATZEFLIS† *Unité de recherches zoogéographiques, ULg, Quai Van Beneden, 22; 4020 Liège, Belgique, †Labo. Paléontologie, cc064, ISEM, 34095 Montpellier cedex 05, France, ‡Dipartimento di Biologia, Universita di Roma ‘Tor Vergata’, Rome 00173, Italy, §Museu Nacional de Historial Natural, rua da Escola politecnica, 58, 1269–102 Lisboa, Portugal Abstract The woodmouse (Apodemus sylvaticus) and yellow-necked fieldmouse (Apodemus flavicollis) are sympatric and even syntopic in many regions throughout their European range. Their field discrimination on the basis of external characters is a real challenge for many fields of research. The problem is even more complicated in the Alpine chain where they live sympatrically with a third similar species: A. alpicola. A rapid and simple method is proposed to discriminate the three species in processing field-collected biopsies as well as ethanol-preserved museum samples. Keywords: Apodemus, cytochrome b, molecular typing, species-specific primers Received 21 May 2001; revision accepted 21 May 2001 The woodmouse (Apodemus sylvaticus) and yellow-necked Alpine mouse. A. alpicola resembles A. flavicollis to such a fieldmouse (Apodemus flavicollis) are very common mammals high degree that it was previously considered to be a in Europe. They are widespread in many western and subspecies of the latter (Musser et al. 1996). central European countries although A. flavicollis is not Although the three Apodemus species can be distin- found in the southern Iberian peninsula, western France, guished by skull morphometry (Niethammer 1978; Storch northern Belgium and the Netherlands (Montgomery 1999).
    [Show full text]
  • Phylogeographic History of the Yellow-Necked Fieldmouse
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 32 (2004) 788–798 www.elsevier.com/locate/ympev Phylogeographic history of the yellow-necked fieldmouse (Apodemus flavicollis) in Europe and in the Near and Middle East J.R. Michaux,a,b,* R. Libois,a E. Paradis,b and M.-G. Filippuccic a Unite de Recherches Zoogeographiques, Institut de Zoologie, Quai Van Beneden, 22, 4020 Liege, Belgium b Laboratoire de Paleontologie-cc064, Institut des Sciences de l’Evolution (UMR 5554-CNRS), Universite Montpellier II, Place E. Bataillon, 34095, Montpellier Cedex 05, France c Dipartimento di Biologia, Universita di Roma ‘‘Tor Vergata’’ Via della Ricerca Scientifica, 00133 Rome, Italy Received 25 July 2003; revised 3 February 2004 Available online 15 April 2004 Abstract The exact location of glacial refugia and the patterns of postglacial range expansion of European mammals are not yet com- pletely elucidated. Therefore, further detailed studies covering a large part of the Western Palearctic region are still needed. In this order, we sequenced 972 bp of the mitochondrial DNA cytochrome b (mtDNA cyt b) from 124 yellow-necked fieldmice (Apodemus flavicollis) collected from 53 European localities. The aims of the study were to answer the following questions: • Did the Mediterranean peninsulas act as the main refuge for yellow-necked fieldmouse or did the species also survive in more easterly refugia (the Caucasus or the southern Ural) and in Central Europe? • What is the role of Turkey and Near East regions as Quaternary glacial refuges for this species and as a source for postglacial recolonisers of the Western Palearctic region? The results provide a clear picture of the impact of the quaternary glaciations on the genetic and geographic structure of the fieldmouse.
    [Show full text]
  • Ratón Leonado – Apodemus Flavicollis (Melchior, 1834)
    Hernández, M. C. (2019). Ratón leonado – Apodemus flavicollis. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., Barja, I. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Ratón leonado – Apodemus flavicollis (Melchior, 1834) Mª. Carmen Hernández Unidad de Zoología, Departamento de Biología, Universidad Autónoma de Madrid Fecha de publicación: 10-04-2019 (©) D. Hobern ENCICLOPEDIA VIRTUAL DE LOS VERTEBRADOS ESPAÑOLES Sociedad de Amigos del MNCN – MNCN - CSIC Hernández, M. C. (2019). Ratón leonado – Apodemus flavicollis. En: Enciclopedia Virtual de los Vertebrados Españoles. López, P., Martín, J., Barja, I. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/ Origen y evolución El ratón leonado es un micromamífero perteneciente al orden Rodentia, familia Muridae, subfamlia Murinae y género Apodemus Kaup, 1829. El género Apodemus parece estar más próximo al género Tokudaia que a los géneros Mus, Rattus o Micromys (Michaux et al., 2002), y consta de 15 especies (Liu et al. 2004) ampliamente distribuidas por el mundo. Las especies del género Apodemus pueden clasificarse en dos subgrupos: el Apodemus, que incluiría a A. agrarius, A. semotus y A. peninsulae y el subgrupo Sylvaemus que englobaría A. uralensis, A. flavicollis, A. alpicola, A. sylvaticus y A. hermonensis. Siendo la posición de A. mystacinus ambigua, ya que podría incluirse en Sylvaemus o en un subgénero diferente, Karstomys (Michaux et al., 2002). La separación entre estos grupos taxonómicos (Apodemus y Sylvaemus) parece que ocurrió hace 7 u 8 millones de años, y dentro de cada subgénero alrededor de 5.4-6 m.a. en el caso de Apodemus y 2.2-3.5 en las especies del subgénero Sylvaemus (Michaux et al., 2002).
    [Show full text]
  • Sex Determination and Genetic Management in Nile Tilapia Using Genomic Techniques
    Sex Determination and Genetic Management in Nile Tilapia using Genomic Techniques A Thesis Submitted for the Degree of Doctor of Philosophy By Taslima Khanam Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK January 2017 Acknowledgements My PhD has been an amazing experience and it would have never been achievable without the generous support and guidance that I received from very important and special persons. The first person I would like to express my heartfelt gratitude to my Principal supervisor Prof. Brendan J. McAndrew for accepting me as a PhD student under his scholastic supervision. I would like to say a very big thank you for all the supports and encouragements during the study period. Thank you very much for being there always and quickly sorted when I needed any support, which made my PhD a wonderful experience. I sincerely appreciate your active participation during thesis/manuscript write up and for valuable suggestions. I would like to express my indebtness to my supervisor Dr. David J. Penman wholeheartedly; you have been a tremendous mentor for me. Your kind support, intellectual stimulation, constant valued guidance, judicious constructive criticism and encouragement made my PhD a pleasing experience and enabled me to grow as a researcher. Thank you very much Dave for all the time invested in me to improve my research thinking and keeping your door always open to talk to you, and active participation while I was doing experiments and writing up articles/thesis. Your willingness to introduce me with the renowned scientists has been priceless. I am very pleased that I did my PhD research under both of your supervisions.
    [Show full text]
  • Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2009 Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils Ryan Norris University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Recommended Citation Norris, Ryan, "Phylogenetic Relationships and Divergence Times in Rodents Based on Both Genes and Fossils" (2009). Graduate College Dissertations and Theses. 164. https://scholarworks.uvm.edu/graddis/164 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. PHYLOGENETIC RELATIONSHIPS AND DIVERGENCE TIMES IN RODENTS BASED ON BOTH GENES AND FOSSILS A Dissertation Presented by Ryan W. Norris to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology February, 2009 Accepted by the Faculty of the Graduate College, The University of Vermont, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, specializing in Biology. Dissertation ~xaminationCommittee: w %amB( Advisor 6.William ~il~atrickph.~. Duane A. Schlitter, Ph.D. Chairperson Vice President for Research and Dean of Graduate Studies Date: October 24, 2008 Abstract Molecular and paleontological approaches have produced extremely different estimates for divergence times among orders of placental mammals and within rodents with molecular studies suggesting a much older date than fossils. We evaluated the conflict between the fossil record and molecular data and find a significant correlation between dates estimated by fossils and relative branch lengths, suggesting that molecular data agree with the fossil record regarding divergence times in rodents.
    [Show full text]