Endosomes Requires Vti1b-Dependent Pairing with CD3

Total Page:16

File Type:pdf, Size:1020Kb

Endosomes Requires Vti1b-Dependent Pairing with CD3 Docking of Lytic Granules at the Immunological Synapse in Human CTL Requires Vti1b-Dependent Pairing with CD3 Endosomes This information is current as of October 2, 2021. Bin Qu, Varsha Pattu, Christian Junker, Eva C. Schwarz, Shruthi S. Bhat, Carsten Kummerow, Misty Marshall, Ulf Matti, Frank Neumann, Michael Pfreundschuh, Ute Becherer, Heiko Rieger, Jens Rettig and Markus Hoth J Immunol published online 11 May 2011 Downloaded from http://www.jimmunol.org/content/early/2011/05/11/jimmun ol.1003471 Supplementary http://www.jimmunol.org/content/suppl/2011/05/11/jimmunol.100347 http://www.jimmunol.org/ Material 1.DC1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 2, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 11, 2011, doi:10.4049/jimmunol.1003471 The Journal of Immunology Docking of Lytic Granules at the Immunological Synapse in Human CTL Requires Vti1b-Dependent Pairing with CD3 Endosomes Bin Qu,*,1 Varsha Pattu,†,1 Christian Junker,* Eva C. Schwarz,* Shruthi S. Bhat,* Carsten Kummerow,* Misty Marshall,† Ulf Matti,† Frank Neumann,‡ Michael Pfreundschuh,‡ Ute Becherer,† Heiko Rieger,x Jens Rettig,† and Markus Hoth* Lytic granule (LG)-mediated apoptosis is the main mechanism by which CTL kill virus-infected and tumorigenic target cells. CTL form a tight junction with the target cells, which is called the immunological synapse (IS). To avoid unwanted killing of neighboring cells, exocytosis of lytic granules (LG) is tightly controlled and restricted to the IS. In this study, we show that in activated human primary CD8+ T cells, docking of LG at the IS requires tethering LG with CD3-containing endosomes (CD3-endo). Combining Downloaded from total internal reflection fluorescence microscopy and fast deconvolution microscopy (both in living cells) with confocal microscopy (in fixed cells), we found that LG and CD3-endo tether and are cotransported to the IS. Paired but not single LG are accumulated at the IS. The dwell time of LG at the IS is substantially enhanced by tethering with CD3-endo, resulting in a preferential release of paired LG over single LG. The SNARE protein Vti1b is required for tethering of LG and CD3-endo. Downregulation of Vti1b reduces tethering of LG with CD3-endo. This leads to an impaired accumulation and docking of LG at the IS and a reduction of target cell killing. Therefore, Vti1b-dependent tethering of LG and CD3-endo determines accumulation, docking, and efficient http://www.jimmunol.org/ lytic granule secretion at the IS. The Journal of Immunology, 2011, 186: 000–000. ytotoxic T lymphocytes are considered key players in enriched at the IS after its formation (10–12). This is necessary to the immune response to eliminate tumorigenic or virus- recruit effector molecules and initiate downstream signaling that C infected target cells (1–5). CTL cytotoxicity is mainly leads to target cell death (13, 14). mediated by exocytosis of lytic granules (LG) and the Fas path- LG, which contain perforin and granzymes (15), are transported, way (6). To kill cognate target cells efficiently, CTL and target docked, and released at the IS and induce target cell apoptosis (2, cells form a close connection, called the immunological synapse 16, 17). The directed secretion of LG is Ca2+ dependent (18), and (IS), upon TCR engagement by matching peptide–MHC com- it is critical to ensure the selective killing of a cognate target cell. by guest on October 2, 2021 plexes (4, 7, 8). Formation of the IS involves drastic morpholog- Upon target cell recognition, CTL undergo large-scale rear- ical changes and cell polarization, which facilitates the stable rangements of the cytoskeleton. In NK cells, actin polymerization physical contact between the two cells (4, 9) leading to CTL ac- is required for receptor clustering, granule polarization (19), and tivation and target cell death (2). TCR are constitutively in- cytotoxic function (20). The convergence of LG to the microtu- ternalized and recycled back to the cell surface and are quickly bule organizing center (MTOC) depends on dynein (21), and myosin IIA is required for interaction of LG and F-actin as well as *Department of Biophysics, Saarland University, 66421 Homburg, Germany; the subsequent release of LG (22). In mouse CTL, the MTOC has † Department of Physiology, Saarland University, 66421 Homburg, Germany; even been shown to deliver LG to the IS by touching the plasma ‡Department of Internal Medicine I, Saarland University, 66421 Homburg, Germany; x and Department of Theoretical Physics, Saarland University, 66041 Saarbru¨cken, membrane (23). There is currently substantial excitement in elu- Germany cidating the molecular mechanisms of LG polarization to the se- 1B.Q. and V.P. contributed equally to this work. cretory domain of the CTL–target contact zone (4, 24). Jenkins Received for publication October 20, 2010. Accepted for publication April 11, 2011. et al. (25) have shown that the strength of the TCR signal is ex- This work was supported by the Deutsche Forschungsgemeinschaft (Graduate Pro- ceptionally important for LG accumulation at the IS, and Beal gram on Calcium Signalling and Cellular Nanodomains, Grants RE 1092/6-1 and et al. (26) unmasked the kinetics of a short and long path of LG to SFB 894 to J.R. and M.H.) by the Deutsche Krebshilfe (to M.P.), and by a Homburger Forschungsfo¨rderung grant from the Medical Faculty, Saarland University, Homburg, the synapse. Germany (to J.R., M.H., and E.C.S.). The importance of CTL for the immune response is highlighted Address correspondence and reprint requests to Prof. Markus Hoth or Prof. Jens by life-threatening diseases: dysfunction of LG release is associ- Rettig, Institute of Biophysics, Saarland University, Building 58, 66421 Homburg, ated with familial hemophagocytic lymphohistiocytosis (FHL) or Germany (M.H.) or Institute of Physiology, Saarland University, Building 59, 66421 Homburg, Germany (J.R.). E-mail addresses: [email protected] (M.H.) acquired hemophagocytic lymphohistiocytosis (27–29). Among and [email protected] (J.R.) the known causes of FHL are mutations in perforin (FHL2) (27), The online version of this article contains supplemental material. Munc13-4 (FHL3) (30), syntaxin11 (FHL4) (31), and Munc18-2 Abbreviations used in this article: CD3-endo, CD3-containing endosomes; 4D, four- (FHL5) (32). In addition, Vti1b and Vamp8 are important for the dimensional; FHL, familial hemophagocytic lymphohistiocytosis; LG, lytic granule; MTOC, microtubule organizing center; qRT-PCR, quantitative real-time PCR; SEA, killing capacity of CTL (33). staphylococcal enterotoxin A; siRNA, small interfering RNA; SNARE, soluble N- These diseases illustrate the importance of directed transport ethylmaleimide–sensitive factor attachment receptor; Stx11, syntaxin 11; TfR, trans- regulated by soluble N-ethylmaleimide–sensitive factor attach- ferrin receptors; TIRF, total internal reflection fluorescence. ment receptor (SNARE) and/or SNARE-related proteins in tar- Copyright Ó 2011 by The American Association of Immunologists, Inc. 0022-1767/11/$16.00 geting LG to the IS. SNARE proteins play a central role in www.jimmunol.org/cgi/doi/10.4049/jimmunol.1003471 2 LG DOCKING REQUIRES Vti1b-DEPENDENT LG/CD3-ENDO PAIRING budding, target selection, and fusion of intracellular compartments 2mML-glutamine (Life Technologies, Invitrogen, Karlsruhe, Germany) (34–36). It has been reported that SNARE proteins are also in- and 1% penicillin/streptomycin (Life Technologies) and pulsed with pep- volved in focal and multidimensional pathways of cytokine re- tide p495–503 (2 mM, 37˚C, 1.5 h). Thereafter cells were washed, irra- diated with 30 Gy, and resuspended in X-Vivo medium with 10% human lease in T cells (37). The 36 mammalian SNAREs can be defined AB serum and served as APC. The same number of CD8+ T cells were as either Q- (Qa, Qb, Qc or Qbc) or R-SNAREs, depending on coincubated as prospective effector cells. At days 7 and 14, the CD8+ 2 which conservative residue the SNARE protein contributes at effector cells were restimulated using peptide-pulsed CD8 APC under layer 0 within the four-helix bundle of SNARE complexes. identical conditions. At day 14, specificity of the stimulated effector cells was assessed by IFN-g segregation using an ELISPOT assay as described SNARE proteins mediate membrane fusion in all trafficking steps previously (41). of the secretory pathway. Prior to fusion, SNAREs on opposing membranes are able to form four helix bundles that lead to a tight Establishment of epitope-specific CD8+ T cell clones connection of vesicular and target membranes (36). Responding T cells were isolated out of the bulk population by IFN-g–based We report that tethering (or pairing) of LG and CD3-containing magnetic cell enrichment using a cytokine-secretion assay (Miltenyi Bio- endosomes (CD3-endo) is required for the enrichment, docking, tec) and cloned by limiting-dilution culture, following a protocol de- + and release of LG at the IS, which is needed for CTL-dependent scribed by zum Bu¨schenfelde et al. (42). Specifically reacting CD8 clones were expanded by restimulation performed after 14 d under identical target cell killing. In addition, we unmask that LG/CD3-endo + conditions. Cytotoxicity of CD8 T cells from CTL clone KL-1/#35 tethering requires the Qb-SNARE protein Vti1b.
Recommended publications
  • Deletion of the SNARE Vti1b in Mice Results in the Loss of a Single
    MOLECULAR AND CELLULAR BIOLOGY, Aug. 2003, p. 5198–5207 Vol. 23, No. 15 0270-7306/03/$08.00ϩ0 DOI: 10.1128/MCB.23.15.5198–5207.2003 Copyright © 2003, American Society for Microbiology. All Rights Reserved. Deletion of the SNARE vti1b in Mice Results in the Loss of Downloaded from a Single SNARE Partner, Syntaxin 8 Vadim Atlashkin,1 Vera Kreykenbohm,1 Eeva-Liisa Eskelinen,2 Dirk Wenzel,3 Afshin Fayyazi,4 and Gabriele Fischer von Mollard1* Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II,1 and Abteilung Pathologie,4 Universita¨t Go¨ttingen, and Abteilung Neurobiologie, Max-Planck Institut fu¨r Biophysikalische Chemie,3 Go¨ttingen, and http://mcb.asm.org/ Biochemisches Institut, Universita¨t Kiel, Kiel,2 Germany Received 13 February 2003/Accepted 26 April 2003 SNARE proteins participate in recognition and fusion of membranes. A SNARE complex consisting of vti1b, syntaxin 8, syntaxin 7, and endobrevin/VAMP-8 which is required for fusion of late endosomes in vitro has been identified recently. Here, we generated mice deficient in vti1b to study the function of this protein in vivo. vti1b-deficient mice had reduced amounts of syntaxin 8 due to degradation of the syntaxin 8 protein, while the amounts of syntaxin 7 and endobrevin did not change. These data indicate that vti1b is specifically required for the stability of a single SNARE partner. vti1b-deficient mice were viable and fertile. Most vti1b-deficient on February 22, 2016 by MAX PLANCK INSTITUT F BIOPHYSIKALISCHE CHEMIE mice were indistinguishable from wild-type mice and did not display defects in transport to the lysosome.
    [Show full text]
  • Genome-Wide Approach to Identify Risk Factors for Therapy-Related Myeloid Leukemia
    Leukemia (2006) 20, 239–246 & 2006 Nature Publishing Group All rights reserved 0887-6924/06 $30.00 www.nature.com/leu ORIGINAL ARTICLE Genome-wide approach to identify risk factors for therapy-related myeloid leukemia A Bogni1, C Cheng2, W Liu2, W Yang1, J Pfeffer1, S Mukatira3, D French1, JR Downing4, C-H Pui4,5,6 and MV Relling1,6 1Department of Pharmaceutical Sciences, The University of Tennessee, Memphis, TN, USA; 2Department of Biostatistics, The University of Tennessee, Memphis, TN, USA; 3Hartwell Center, The University of Tennessee, Memphis, TN, USA; 4Department of Pathology, The University of Tennessee, Memphis, TN, USA; 5Department of Hematology/Oncology St Jude Children’s Research Hospital, The University of Tennessee, Memphis, TN, USA; and 6Colleges of Medicine and Pharmacy, The University of Tennessee, Memphis, TN, USA Using a target gene approach, only a few host genetic risk therapy increases, the importance of identifying host factors for factors for treatment-related myeloid leukemia (t-ML) have been secondary neoplasms increases. defined. Gene expression microarrays allow for a more 4 genome-wide approach to assess possible genetic risk factors Because DNA microarrays interrogate multiple ( 10 000) for t-ML. We assessed gene expression profiles (n ¼ 12 625 genes in one experiment, they allow for a ‘genome-wide’ probe sets) in diagnostic acute lymphoblastic leukemic cells assessment of genes that may predispose to leukemogenesis. from 228 children treated on protocols that included leukemo- DNA microarray analysis of gene expression has been used to genic agents such as etoposide, 13 of whom developed t-ML. identify distinct expression profiles that are characteristic of Expression of 68 probes, corresponding to 63 genes, was different leukemia subtypes.13,14 Studies using this method have significantly related to risk of t-ML.
    [Show full text]
  • UVRAG Is Required for Virus Entry Through Combinatorial Interaction with the Class C-Vps Complex and Snares
    UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs Sara Dolatshahi Pirooza, Shanshan Hea, Tian Zhanga, Xiaowei Zhanga, Zhen Zhaoa, Soohwan Oha, Douglas O’Connella, Payam Khalilzadeha, Samad Amini-Bavil-Olyaeea, Michael Farzanb, and Chengyu Lianga,1 aDepartment of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033; and bDepartment of Infectious Diseases, The Scripps Research Institute, Jupiter, FL 33458 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved January 15, 2014 (received for review November 4, 2013) Enveloped viruses exploit the endomembrane system to enter host (R)-SNAREs embedded in the other (3). Specifically, syntaxin 7 cells. Through a cascade of membrane-trafficking events, virus-bearing (STX7; Qa), Vti1b (Qb), and STX8 (Qc) on the LE, when paired vesicles fuse with acidic endosomes and/or lysosomes mediated by with VAMP7 (R), mediate the LE fusion with the lysosome, but SNAREs triggering viral fusion. However, the molecular mechanisms when paired with VAMP8 (R), regulate homotypic fusion of the underlying this process remain elusive. Here, we found that UV- LEs (4). The upstream process regulating LE-associated SNARE radiation resistance-associated gene (UVRAG), an autophagic tumor pairing relies on the class C vacuolar protein sorting (Vps) complex suppressor, is required for the entry of the prototypic negative- (hereafter referred to as C-Vps), composed of Vps11, Vps16, strand RNA virus, including influenza A virus and vesicular stoma- Vps18, and Vps33 as core subunits (5, 6). A recent study indicated titis virus, by a mechanism independent of IFN and autophagy.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Single-Cell RNA-Seq of Dopaminergic Neurons Informs Candidate Gene Selection for Sporadic
    bioRxiv preprint doi: https://doi.org/10.1101/148049; this version posted August 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single-cell RNA-seq of dopaminergic neurons informs candidate gene selection for sporadic 2 Parkinson's disease 3 4 Paul W. Hook1, Sarah A. McClymont1, Gabrielle H. Cannon1, William D. Law1, A. Jennifer 5 Morton2, Loyal A. Goff1,3*, Andrew S. McCallion1,4,5* 6 7 1McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of 8 Medicine, Baltimore, Maryland, United States of America 9 2Department of Physiology Development and Neuroscience, University of Cambridge, 10 Cambridge, United Kingdom 11 3Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 12 Maryland, United States of America 13 4Department of Comparative and Molecular Pathobiology, Johns Hopkins University School of 14 Medicine, Baltimore, Maryland, United States of America 15 5Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, 16 United States of America 17 *, To whom correspondence should be addressed: [email protected] and [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/148049; this version posted August 31, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Genetic Tools to Improve Reproduction Traits in Dairy Cattle
    Genetic tools to improve reproduction traits in dairy cattle Aurelien Capitan, Pauline Michot, Aurélia Baur, Romain Saintilan, Chris Hoze, Damien Valour, François Guillaume, D Boichon, Anne Barbat, Didier Boichard, et al. To cite this version: Aurelien Capitan, Pauline Michot, Aurélia Baur, Romain Saintilan, Chris Hoze, et al.. Genetic tools to improve reproduction traits in dairy cattle. Reproduction, Fertility and Development, CSIRO Publishing, 2015, 27 (1), pp.14-21. 10.1071/RD14379. hal-01194016 HAL Id: hal-01194016 https://hal.archives-ouvertes.fr/hal-01194016 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSIRO PUBLISHING Reproduction, Fertility and Development, 2015, 27, 14–21 http://dx.doi.org/10.1071/RD14379 Genetic tools to improve reproduction traits in dairy cattle A. CapitanA,B,F, P. MichotA,B, A. BaurA,B, R. SaintilanA,B, C. Hoze´ A,B, D. ValourA,D, F. GuillaumeC, D. BoichonE, A. BarbatB, D. BoichardB, L. SchiblerA and S. FritzA,B AUNCEIA (Union Nationale des Coope´ratives d’Elevage et d’Inse´mination Animale), 149 rue de Bercy, 75012 Paris, France. BINRA (Institut National de la Recherche Agronomique), UMR1313 Ge´ne´tique Animale et Biologie Inte´grative, Domaine de Vilvert, 78352 Jouy-en-Josas, France.
    [Show full text]
  • Syntaxin 8 Regulates Platelet Dense Granule Secretion, Aggregation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 290, NO. 3, pp. 1536–1545, January 16, 2015 Author’s Choice © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Syntaxin 8 Regulates Platelet Dense Granule Secretion, Aggregation, and Thrombus Stability*□S Received for publication, August 4, 2014, and in revised form, November 7, 2014 Published, JBC Papers in Press, November 17, 2014, DOI 10.1074/jbc.M114.602615 Ewelina M. Golebiewska‡, Matthew T. Harper‡, Christopher M. Williams‡, Joshua S. Savage§, Robert Goggs¶, Gabriele Fischer von Mollardʈ, and Alastair W. Poole‡1 From the ‡School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom, the §School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom, the ¶Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and the ʈFakultät für Chemie, Biochemie III, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany Background: The molecular machinery controlling exocytosis of the three secretable granules types in platelets is not fully elucidated. Results: ATP secretion, aggregation, and thrombus stability are defective in Stx8Ϫ/Ϫ mouse platelets. Conclusion: STX8 is involved in platelet dense granule secretion, and the STX8-mediated pathway contributes to thrombus stabilization. Significance: Identification of the novel functional SNARE STX8 suggests alternative mechanisms of granule secretion exist in platelets. Platelet secretion not only drives thrombosis and hemostasis, regulatory proteins including small GTPases (5–7), MUNC pro- but also mediates a variety of other physiological and patholog- teins (8, 9), and calcium sensors (10, 11) contribute to regulation of ical processes.
    [Show full text]
  • Identification of Toxocara Canis Antigen-Interacting Partners
    pathogens Article Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host–Parasite Interactions Ewa Długosz 1,* , Małgorzata Milewska 1 and Piotr B ˛aska 2 1 Division of Parasitology and Invasive Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland; [email protected] 2 Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative Citation: Długosz, E.; Milewska, M.; processes observed during neurotoxocariasis, and some are associated with lung pathology found in B ˛aska,P. Identification of Toxocara infected hosts. Our results should open new areas of research and provide further data to enable a canis Antigen-Interacting Partners by better understanding of this complex and underestimated disease.
    [Show full text]
  • The SNARE Vti1a-Β Is Localized to Small Synaptic Vesicles And
    The Journal of Neuroscience, August 1, 2000, 20(15):5724–5732 The SNARE Vti1a-␤ Is Localized to Small Synaptic Vesicles and Participates in a Novel SNARE Complex Wolfram Antonin,2 Dietmar Riedel,2 and Gabriele Fischer von Mollard1 1Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Biochemie II, Universita¨tGo¨ ttingen, 37073 Go¨ ttingen, Germany, and 2Abteilung Neurobiologie, Max-Planck Institut fu¨ r Biophysikalische Chemie, 37077 Go¨ ttingen, Germany Specific soluble N-ethylmaleimide-sensitive factor attachment aptic vesicles and endosomes. Therefore, both synaptobrevin protein (SNAP) receptor (SNARE) proteins are required for differ- and Vti1a-␤ are integral parts of synaptic vesicles throughout ent membrane transport steps. The SNARE Vti1a has been their life cycle. Vti1a-␤ was part of a SNARE complex in nerve colocalized with Golgi markers and Vti1b with Golgi and the terminals, which bound N-ethylmaleimide-sensitive factor and trans-Golgi network or endosomal markers in fibroblast cell lines. ␣-SNAP. This SNARE complex was different from the exocytic Here we study the distribution of Vti1a and Vti1b in brain. Vti1b SNARE complex because Vti1a-␤ was not coimmunoprecipi- was found in synaptic vesicles but was not enriched in this tated with syntaxin 1 or SNAP-25. These data suggest that organelle. A brain-specific splice variant of Vti1a was identified Vti1a-␤ does not function in exocytosis but in a separate SNARE that had an insertion of seven amino acid residues next to the complex in a membrane fusion step during recycling or biogen- putative SNARE-interacting helix. This Vti1a-␤ was enriched in esis of synaptic vesicles. small synaptic vesicles and clathrin-coated vesicles isolated from nerve terminals.
    [Show full text]
  • A Dual Mechanism Controlling the Localization and Function of Exocytic V-Snares
    A dual mechanism controlling the localization and function of exocytic v-SNAREs Sonia Martinez-Arca*, Rachel Rudge*, Marcella Vacca†, Grac¸a Raposo‡, Jacques Camonis§¶,Ve´ ronique Proux- Gillardeaux*, Laurent Daviet¶ʈ, Etienne Formstecher¶ʈ, Alexandre Hamburger¶ʈ, Francesco Filippini**, Maurizio D’Esposito†, and Thierry Galli*†† *Membrane Traffic and Neuronal Plasticity, Institut National de la Sante´et de la Recherche Me´dicale U536, Institut du Fer-a`-Moulin, 75005 Paris, France; †Institute of Genetics and Biophysics ‘‘A. Buzzati Traverso,’’ Consiglio Nazionale delle Ricerche, 80125 Naples, Italy; ‡Unite´Mixte de Recherche, 144-Centre National de la Recherche Scientifique, Institut Curie, 75005 Paris, France; §Institut National de la Sante´et de la Recherche Me´dicale U528, Institut Curie, 75005 Paris, France; Departments of ¶Biology and ʈBioinformatics, Hybrigenics, 75014 Paris, France; and **Molecular Biology and Bioinformatics Unit (MOLBINFO), Department of Biology, University of Padua, 35131 Padua, Italy Edited by Pietro V. De Camilli, Yale University School of Medicine, New Haven, CT, and approved May 14, 2003 (received for review April 2, 2003) SNARE [soluble NSF (N-ethylmaleimide-sensitive factor) attach- Materials and Methods ment protein receptor] proteins are essential for membrane fusion Antibodies and DNA Constructs. Mouse mAb clone 158.2 anti-TI- but their regulation is not yet fully understood. We have previously VAMP will be described elsewhere. Mouse mAbs anti-GFP shown that the amino-terminal Longin domain of the v-SNARE (GFP; clones 7.1 and 13.1, Roche Diagnostics, Indianapolis), TI-VAMP (tetanus neurotoxin-insensitive vesicle-associated mem- syntaxin 6 (clone 30, Transduction Laboratories, Lexington, brane protein)͞VAMP7 plays an inhibitory role in neurite out- KY), syntaxin 4 (clone 49, Transduction Laboratories), syntaxin growth.
    [Show full text]
  • Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and Their Roles in Complex Disease Jeremy J
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2013 Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease Jeremy J. Jay Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Computer Sciences Commons Recommended Citation Jay, Jeremy J., "Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease" (2013). Electronic Theses and Dissertations. 2140. http://digitalcommons.library.umaine.edu/etd/2140 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. CONTEXTUAL ANALYSIS OF LARGE-SCALE BIOMEDICAL ASSOCIATIONS FOR THE ELUCIDATION AND PRIORITIZATION OF GENES AND THEIR ROLES IN COMPLEX DISEASE By Jeremy J. Jay B.S.I. Baylor University, 2006 M.S. University of Tennessee, 2009 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Computer Science) The Graduate School The University of Maine December 2013 Advisory Committee: George Markowsky, Professor, Advisor Elissa J Chesler, Associate Professor, The Jackson Laboratory Erich J Baker, Associate Professor, Baylor University Judith Blake, Associate Professor, The Jackson Laboratory James Fastook, Professor DISSERTATION ACCEPTANCE STATEMENT On behalf of the Graduate Committee for Jeremy J. Jay, I affirm that this manuscript is the final and accepted dissertation. Signatures of all committee members are on file with the Graduate School at the University of Maine, 42 Stodder Hall, Orono, Maine.
    [Show full text]