Sequence and Annotation of the 314-Kb MT325 and the 321-Kb FR483 Viruses That Infect Chlorella Pbi”: Appendix B: Gene Names M001L Through M807R

Total Page:16

File Type:pdf, Size:1020Kb

Sequence and Annotation of the 314-Kb MT325 and the 321-Kb FR483 Viruses That Infect Chlorella Pbi”: Appendix B: Gene Names M001L Through M807R University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2-20-2007 Supplementary Data for “Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi”: Appendix B: Gene Names M001L through M807R Lisa A. Fitzgerald University of Nebraska-Lincoln, [email protected] Michael V. Graves University of Massachusetts–Lowell, [email protected] Xiao Li University of Massachusetts–Lowell Tamara Feldblyum The Institute for Genomic Research, Rockville, MD James Hartigan Agencourt Bioscience Corporation, Beverly, MA See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Virology Commons Fitzgerald, Lisa A.; Graves, Michael V.; Li, Xiao; Feldblyum, Tamara; Hartigan, James; and Van Etten, James L., "Supplementary Data for “Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi”: Appendix B: Gene Names M001L through M807R" (2007). Virology Papers. 3. https://digitalcommons.unl.edu/virologypub/3 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Lisa A. Fitzgerald, Michael V. Graves, Xiao Li, Tamara Feldblyum, James Hartigan, and James L. Van Etten This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/3 Published in Virology 358:2 (February 20, 2007), pp. 459–471. doi:10.1016/j.virol.2006.08.034 Copyright © 2006 Elsevier Inc. Used by permission. Submitted July 27, 2006; revised August 18, 2006; accepted August 23, 2006; published online October 4, 2006. Supplementary data originally published online at doi:10.1016/j.virol.2006.08.034. SUPPLEMENTARY DATA FOR Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi Lisa A. Fitzgeralda, Michael V. Gravesb, Xiao Lib, Tamara Feldblyumc, James Hartigand, and James L. Van Ettene, f, * aDepartment of Chemistry, University of Nebraska–Lincoln, Lincoln, NE 68588-0304 bDepartment of Biological Sciences, University of Massachusetts–Lowell, Lowell, MA 01854 cThe Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850 dAgencourt Bioscience Corporation, 500 Cummings Center, Suite 2450, Beverly, MA 01915 eDeparment of Plant Pathology, University of Nebraska–Lincoln, Lincoln, NE 68583-0722 fNebraska Center for Virology, University of Nebraska, Lincoln, NE 68588-0666 *Corresponding author. Email: [email protected] Abstract: Viruses MT325 and FR483, members of the family Phycodnaviridae, genus Chlorovirus, infect the fresh water, unicellular, eukaryotic, chlorella-like green alga, Chlorella Pbi. The 314,335- bp genome of MT325 and the 321,240-bp genome of FR483 are the first viruses that infect Chlorella Pbi to have their genomes sequenced and annotated. Furthermore, these genomes are the two smallest chlorella virus genomes sequenced to date, MT325 has 331 putative protein-encoding and 10 tRNA-encoding genes and FR483 has 335 putative protein-encoding and 9 tRNA-encoding genes. The protein-encoding genes are almost evenly distributed on both strands, and intergenic space is minimal. Approximately 40% of the viral gene products resemble entries in public databases, including some that are the first of their kind to be detected in a virus. For example, these unique gene products include an aquaglyceroporin in MT325, a potassium ion transporter protein and an alkyl sulfatase in FR483, and a dTDP–glucose pyrophosphorylase in both viruses. Comparison of MT325 and FR483 protein-encoding genes with the prototype chlorella virus PBCV-1 indicates that approximately 82% of the genes are present in all three viruses. Supplementary data associated with this article is archived in this repository as 4 separate files: Appendices A–D. Each document, in spreadsheet format, shows Gene Name, Genome Position, A.A. length, Peptid e Mw, pI, CDD Hit Number, COGs, COG Definition, Bit Score, E-value, % Identity, % Positive, Query from-to, Hit from-to, BLASTp Hit Number, Hit Accession, BLASTp Definition, Bit Score, E-value, % Identity, % Positive, Query from-to, and Hit from-to. Appendix A: Gene Names m002R through m843L Appendix B: Gene Names M001L through M807R Appendix C: Gene Names n001L through n849R Appendix D: Gene Names N003L through N847R Appendix B: Gene Names M001L through M807R BLASTp Gene Genome A.A. Peptide CDD Hit Bit % % Query Hit Hit Bit % % Query Hit from- pI COGs COG Definition E-value Hit BLASTp Definition E-value Name Position length Mw Number Score Identity Positive from-to from-to Accession Score Identity Positive from-to to Number M001L 1052--384 223 26,253 6.70 No Hit Found 1 ZP_00575949 RepA / Rep+ protein KID 55.45 1.41E-06 25% 59% 14--113 61--160 2 NP_705165 hypothetical malaria antigen 51.60 2.03E-05 24% 51% 1--136 1993--2129 3 YP_161395 hypothetical protein BGP110 49.68 7.73E-05 27% 54% 27--137 91--194 M003L 1521--1147 125 13,988 9.87 No Hit Found No Hit Found No Hit Found M005L 2294--1755 180 20,424 10.16 No Hit Found 1 NP_048429 A81L 110.92 1.71E-23 40% 60% 33--158 21--163 M007L 2839--2330 170 19,447 6.12 No Hit Found 1 NP_048432 A84L 73.94 1.97E-12 33% 57% 11--135 10--149 Exostosin, Exostosin family. The EXT family is a family of tumour suppressor genes. Mutations of EXT1 on 8q24.1, EXT2 on 11p11-13, and EXT3 on 19p have been associated with the autosomal dominant disorder known as hereditary multiple exostoses (HME). This is the most common known skeletal dysplasia. The chromosomal locations of other M009L 3736--2930 269 31,504 6.02 1 pfam03016 45.82 4.20E-06 25% 51% 159--235 221--292 1 NP_048423 A75L 233.42 5.34E-60 40% 61% 8--268 7--276 EXT genes suggest association with other forms of neoplasia. EXT1 and EXT2 have both been shown to encode a heparan sulphate polymerase with both D-glucuronyl (GlcA) and N-acetyl-D-glucosaminoglycan (GlcNAC) transferase activities. The nature of the defect in heparan sulphate biosynthesis in HME is unclear.. nucleoside_deaminase, Nucleoside deaminases include adenosine, guanine and cytosine deaminases. These enzymes are Zn dependent and catalyze the deamination of nucleosides. The zinc ion in the active site plays a central role in the proposed catalytic mechanism, activating a water molecule to form a hydroxide ion that performs a nucleophilic attack on the substrate. The functional enzyme is a homodimer. Cytosine deaminase catalyzes the deamination of cytosine to uracil and ammonia M010L 4146--3790 119 13,199 9.97 1 cd01285 and is a member of the pyrimidine salvage pathway. Cytosine deaminase 57.97 9.98E-10 35% 51% 4--106 1--94 1 NP_048547 contains cytidine and deoxycytidine deaminase Zn-binding region 161.38 7.13E-39 62% 83% 1--118 1--118 is found in bacteria and fungi but is not present in mammals; for this signature reason, the enzyme is currently of interest for antimicrobial drug design and gene therapy applications against tumors. Some members of this family are tRNA-specific adenosine deaminases that generate inosine at the first position of their anticodon (position 34) of specific tRNAs; this modification is thought to enlarge the codon recognition capacity during protein synthesis. Other members of the family are guanine deaminases which deaminate guanine to xanthine as part of the utilization of guanine as a nitrogen source.. CumB, Cytosine/adenosine deaminases [Nucleotide transport and 2 COG0590 52.65 3.33E-08 31% 47% 2--106 10--105 2 AAR26853 FirrV-1-A29 50.83 1.36E-05 27% 50% 22--111 24--105 metabolism / Translation, ribosomal structure and biogenesis]. dCMP_cyt_deam, Cytidine and deoxycytidylate deaminase zinc-binding 3 pfam00383 43.43 2.04E-05 30% 47% 4--106 7--101 3 AAX51127 tRNA-specific adenosine deaminase 48.52 6.74E-05 31% 49% 4--108 10--104 region.. Riboflavin_deaminase-reductase, Riboflavin-specific deaminase. Riboflavin biosynthesis protein RibD (Diaminohydroxyphosphoribosylaminopyrimidine deaminase) catalyzes the deamination of 2,5-diamino-6-ribosylamino-4(3H)-pyrimidinone 4 cd01284 5'-phosphate, which is an intermediate step in the biosynthesis of 36.76 0.002101 26% 45% 4--107 1--95 4 AAC68441 cytosine deaminase 48.14 8.80E-05 31% 49% 4--108 10--104 riboflavin.The ribG gene of Bacillus subtilis and the ribD gene of E. coli are bifunctional and contain this deaminase domain and a reductase domain which catalyzes the subsequent reduction of the ribosyl side chain.. M011L 4524--4237 96 10,637 10.49 No Hit Found 1 NP_048546 A199R 73.17 2.59E-12 43% 68% 1--79 1--82 M012R 4552--5019 156 17,894 7.66 No Hit Found 1 NP_048543 A196L 185.27 4.65E-46 56% 72% 1--151 1--151 PCNA_N, Proliferating cell nuclear antigen, N-terminal domain. N- M014R 5076--5867 264 29,728 5.00 1 pfam00705 terminal and C-terminal domains of PCNA are topologically identical. 92.25 4.08E-20 28% 57% 9--132 1--125 1 NP_048540 similar to human PCNA, corresponds to Swiss-Prot Accession Number 368.24 1.34E-100 68% 85% 9--261 7--259 Three PCNA molecules are tightly associated to form a closed ring P12004 encircling duplex DNA.. PCNA_C, Proliferating cell nuclear antigen, C-terminal domain. N- terminal and C-terminal domains of PCNA are topologically identical. 2 pfam02747 79.98 2.27E-16 34% 55% 137--261 2--127 2 XP_534355 PREDICTED: similar to proliferating cell nuclear antigen 158.69 1.61E-37 32% 55% 5--264 202--461 Three PCNA molecules are tightly associated to form a closed ring encircling duplex DNA.
Recommended publications
  • Activation-Induced Deoxycytidine Deaminase (AID) Co-Transcriptional Scanning at Single-Molecule Resolution
    ARTICLE Received 19 Nov 2014 | Accepted 13 Nov 2015 | Published 18 Dec 2015 DOI: 10.1038/ncomms10209 OPEN Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution Gayan Senavirathne1,*, Jeffrey G. Bertram2,*, Malgorzata Jaszczur2,*, Kathy R. Chaurasiya3,4,*, Phuong Pham2, Chi H. Mak5,6, Myron F. Goodman2,5 & David Rueda1,3,4 Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single- molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for B5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer. 1 Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA. 2 Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. 3 Department of Medicine, Section of Virology, Imperial College London, Du Cane Road, London W12 0NN, UK. 4 Single Molecule Imaging Group, MRC Clinical Sciences Center, Imperial College London, Du Cane Road, London W12 0NN, UK.
    [Show full text]
  • Non-Homologous Isofunctional Enzymes: a Systematic Analysis Of
    Omelchenko et al. Biology Direct 2010, 5:31 http://www.biology-direct.com/content/5/1/31 RESEARCH Open Access Non-homologousResearch isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution Marina V Omelchenko, Michael Y Galperin*, Yuri I Wolf and Eugene V Koonin Abstract Background: Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. Results: We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress.
    [Show full text]
  • Exosomes Confer Chemoresistance to Pancreatic Cancer Cells By
    FULL PAPER British Journal of Cancer (2017) 116, 609–619 | doi: 10.1038/bjc.2017.18 Keywords: chemoresistance; exosomes; pancreatic cancer; ROS; microRNA Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK Girijesh Kumar Patel1, Mohammad Aslam Khan1, Arun Bhardwaj1, Sanjeev K Srivastava1, Haseeb Zubair1, Mary C Patton1, Seema Singh1,2, Moh’d Khushman3 and Ajay P Singh*,1,2 1Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; 2Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL, USA and 3Department of Interdisciplinary Clinical Oncology, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA Background: Chemoresistance is a significant clinical problem in pancreatic cancer (PC) and underlying molecular mechanisms still remain to be completely understood. Here we report a novel exosome-mediated mechanism of drug-induced acquired chemoresistance in PC cells. Methods: Differential ultracentrifugation was performed to isolate extracellular vesicles (EVs) based on their size from vehicle- or gemcitabine-treated PC cells. Extracellular vesicles size and subtypes were determined by dynamic light scattering and marker profiling, respectively. Gene expression was examined by qRT-PCR and/or immunoblot analyses, and direct targeting of DCK by miR-155 was confirmed by dual-luciferase 30-UTR reporter assay. Flow cytometry was performed to examine the apoptosis indices and reactive oxygen species (ROS) levels in PC cells using specific dyes. Cell viability was determined using the WST-1 assay. Results: Conditioned media (CM) from gemcitabine-treated PC cells (Gem-CM) provided significant chemoprotection to subsequent gemcitabine toxicity and most of the chemoresistance conferred by Gem-CM resulted from its EVs fraction.
    [Show full text]
  • Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals
    Journal of the American Heart Association ORIGINAL RESEARCH Association Between the Gut Microbiota and Blood Pressure in a Population Cohort of 6953 Individuals Joonatan Palmu , MD; Aaro Salosensaari , MSc; Aki S. Havulinna , DSc (Tech); Susan Cheng , MD, MPH; Michael Inouye, PhD; Mohit Jain, MD, PhD; Rodolfo A. Salido , BSc; Karenina Sanders , BSc; Caitriona Brennan, BSc; Gregory C. Humphrey, BSc; Jon G. Sanders , PhD; Erkki Vartiainen , MD, PhD; Tiina Laatikainen , MD, PhD; Pekka Jousilahti, MD, PhD; Veikko Salomaa , MD, PhD; Rob Knight , PhD; Leo Lahti , DSc (Tech); Teemu J. Niiranen , MD, PhD BACKGROUND: Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted as- sociation between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abun- dance and between Lactobacillus abundance and BP. METHODS AND RESULTS: We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and β (between-sample) diversities of taxonomic composition were strongly re- lated to BP indexes (P<0.001 for most). In multivariable-adjusted models, β diversity was only associated with diastolic BP (P=0.032).
    [Show full text]
  • Difluorodeoxycytidine 5'-Triphosphate: a Mechanism of Self-Potentiation1
    ICANCER RESEARCH 52, 533-539, February 1, 1992] Cellular Elimination of 2',2'-Difluorodeoxycytidine 5'-Triphosphate: A Mechanism of Self-Potentiation1 Volker Heinemann,2 Y¡-ZhengXu, Sherri Chubb, Alina Sen, Larry W. Hertel, Gerald B. Grindey, and William Plunkett1 Department of Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 [V. H., Y. X., S. C., A. S., W. P.], and Lilly Research Laboratories, Indianapolis, Indiana 46285 (L. W. H., G. B. G.] ABSTRACT less, clinical cellular pharmacology studies have demonstrated 2',2'-Difluorodeoxycytidine (dFdC, Gemcitabine) is a deoxycytidine that the dFdCTP:dCTP value reaches potentially inhibitory analogue which, after phosphorylation to the 5'-di- and 5'-triphosphate values during clinical trials (4, 10, 11). (b) dFdCTP is incor porated into DNA by DNA polymerases a and f, inhibiting (dFdCTP), induces inhibition of DNA synthesis and cell death. We examined the values for elimination kinetics of cellular dFdCTP and further elongation (9). (c) Once incorporated, dFdCMP resi found they were dependent on cellular concentration after incubation of dues in the terminal or penultimate positions of the DNA strand CCRF-CEM cells with dFdC and washing into drug-free medium. When inhibit the editing function of DNA polymerase <(9). This may the drug was washed out at low cellular dFdCTP levels (<50 n\\), fix damage caused by the incorporated analogue, (d) dFdCDP dFdCTP elimination was linear (t,: = 3.3 h), but it became biphasic at inhibits ribonucleotide reducíase,blocking DNA synthesis by intracellular dFdCTP levels >100 JIM. Although the initial elimination decreasing the cellular concentrations of deoxynucleoside tri rate was similar at all concentrations, at higher concentrations the phosphates (12-14).
    [Show full text]
  • Genome of Phaeocystis Globosa Virus Pgv-16T Highlights the Common Ancestry of the Largest Known DNA Viruses Infecting Eukaryotes
    Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes Sebastien Santinia, Sandra Jeudya, Julia Bartolia, Olivier Poirota, Magali Lescota, Chantal Abergela, Valérie Barbeb, K. Eric Wommackc, Anna A. M. Noordeloosd, Corina P. D. Brussaardd,e,1, and Jean-Michel Claveriea,f,1 aStructural and Genomic Information Laboratory, Unité Mixte de Recherche 7256, Centre National de la Recherche Scientifique, Aix-Marseille Université, 13288 Marseille Cedex 9, France; bCommissariat à l’Energie Atomique–Institut de Génomique, 91057 Evry Cedex, France; cDepartment of Plant and Soil Sciences, University of Delaware, Newark, DE 19711; dDepartment of Biological Oceanography, Royal Netherlands Institute for Sea Research, NL-1790 AB Den Burg (Texel), The Netherlands; eAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; and fService de Santé Publique et d’Information Médicale, Hôpital de la Timone, Assistance Publique–Hôpitaux de Marseille, FR-13385 Marseille, France Edited by James L. Van Etten, University of Nebraska, Lincoln, NE, and approved May 1, 2013 (received for review February 22, 2013) Large dsDNA viruses are involved in the population control of many viruses: 730 kb and 1.28 Mb for CroV and Megavirus chilensis, globally distributed species of eukaryotic phytoplankton and have respectively. Other studies, targeting virus-specific genes [e.g., a prominent role in bloom termination. The genus Phaeocystis (Hap- DNA polymerase B (8) or capsid proteins (9)] have suggested tophyta, Prymnesiophyceae) includes several high-biomass-forming a close phylogenetic relationship between Mimivirus and several phytoplankton species, such as Phaeocystis globosa, the blooms of giant dsDNA viruses infecting various unicellular algae such as which occur mostly in the coastal zone of the North Atlantic and the Pyramimonas orientalis (Chlorophyta, Prasinophyceae), Phaeocys- North Sea.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk Et Al
    US 2014O155567A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0155567 A1 Burk et al. (43) Pub. Date: Jun. 5, 2014 (54) MICROORGANISMS AND METHODS FOR (60) Provisional application No. 61/331,812, filed on May THE BIOSYNTHESIS OF BUTADENE 5, 2010. (71) Applicant: Genomatica, Inc., San Diego, CA (US) Publication Classification (72) Inventors: Mark J. Burk, San Diego, CA (US); (51) Int. Cl. Anthony P. Burgard, Bellefonte, PA CI2P 5/02 (2006.01) (US); Jun Sun, San Diego, CA (US); CSF 36/06 (2006.01) Robin E. Osterhout, San Diego, CA CD7C II/6 (2006.01) (US); Priti Pharkya, San Diego, CA (52) U.S. Cl. (US) CPC ................. CI2P5/026 (2013.01); C07C II/I6 (2013.01); C08F 136/06 (2013.01) (73) Assignee: Genomatica, Inc., San Diego, CA (US) USPC ... 526/335; 435/252.3:435/167; 435/254.2: (21) Appl. No.: 14/059,131 435/254.11: 435/252.33: 435/254.21:585/16 (22) Filed: Oct. 21, 2013 (57) ABSTRACT O O The invention provides non-naturally occurring microbial Related U.S. Application Data organisms having a butadiene pathway. The invention addi (63) Continuation of application No. 13/101,046, filed on tionally provides methods of using Such organisms to produce May 4, 2011, now Pat. No. 8,580,543. butadiene. Patent Application Publication Jun. 5, 2014 Sheet 1 of 4 US 2014/O155567 A1 ?ueudos!SMS |?un61– Patent Application Publication Jun. 5, 2014 Sheet 2 of 4 US 2014/O155567 A1 VOJ OO O Z?un61– Patent Application Publication US 2014/O155567 A1 {}}} Hººso Patent Application Publication Jun.
    [Show full text]
  • Supplementary Data for “Sequence and Annotation of the 369-Kb NY-2A and the 345-Kb AR158 Viruses That Infect Chlorella NC64A”: Appendix D: Gene Names C006R – C815L
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Virology Papers Virology, Nebraska Center for 2-20-2007 Supplementary Data for “Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A”: Appendix D: Gene Names C006R – C815L Lisa A. Fitzgerald University of Nebraska-Lincoln, [email protected] Michael V. Graves University of Massachusetts–Lowell, [email protected] Xiao Li University of Massachusetts–Lowell Tamara Feldblyum The Institute for Genomic Research, Rockville, MD Willaim C. Nierman The Institute for Genomic Research, Rockville, MD, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/virologypub Part of the Virology Commons Fitzgerald, Lisa A.; Graves, Michael V.; Li, Xiao; Feldblyum, Tamara; Nierman, Willaim C.; and Van Etten, James L., "Supplementary Data for “Sequence and annotation of the 369-kb NY-2A and the 345-kb AR158 viruses that infect Chlorella NC64A”: Appendix D: Gene Names C006R – C815L" (2007). Virology Papers. 10. https://digitalcommons.unl.edu/virologypub/10 This Article is brought to you for free and open access by the Virology, Nebraska Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Virology Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Lisa A. Fitzgerald, Michael V. Graves, Xiao Li, Tamara Feldblyum, Willaim C. Nierman, and James L. Van Etten This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ virologypub/10 Main article published in Virology 358:2 (February 20, 2007), pp.
    [Show full text]
  • Progress Toward Understanding the Contribution of Alkali Generation in Dental Biofilms to Inhibition of Dental Caries
    International Journal of Oral Science (2012) 4, 135–140 ß 2012 WCSS. All rights reserved 1674-2818/12 www.nature.com/ijos REVIEW Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries Ya-Ling Liu1, Marcelle Nascimento2 and Robert A Burne1 Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. International Journal of Oral Science (2012) 4, 135–140; doi:10.1038/ijos.2012.54; published online 21 September 2012 Keywords: arginine; biofilm; dental caries; microbial ecology; urea INTRODUCTION via the arginine deiminase system (ADS).15–18 Urea is provided con- Dental biofilms, the microbial communities that colonize the surfaces tinuously in salivary secretions and gingival exudates at concentra- of the teeth, exist in a dynamic equilibrium with host defenses and are tions roughly equivalent to those in serum, which range from about 3 generally compatible with the integrity of the tissues they colonize.1–4 to10 mmol?L21 in healthy humans. Urea is rapidly converted to A strong correlation is evident between the compositional and meta- ammonia and CO2 by bacterial ureases (Figure 1), which are produced bolic changes of the dental biofilms and the transition from oral health by a small subset of oral bacteria that includes Streptococcus salivarius, 2,5 to disease states, including dental caries and periodontal disease.
    [Show full text]
  • Paul R Thompson
    Paul R Thompson Department of Biochemistry and Molecular Pharmacology Voice: (508) 856-8492 UMass Medical School FAX: (508) 856-6215 Worcester, MA, 01605 Email: [email protected] PROFESSIONAL PREPARATION Institution Major Area Degree & Year McMaster University Biochemistry Honors B.S.c. – 1994 McMaster University Biochemistry Ph.D. – 2000 Johns Hopkins University SOM Pharmacology PDF – 2000-2003 PROFESSIONAL EXPERIENCE Dates Title Institution Department 2014-present Professor and Director University of Massachusetts Biochemistry and of Chemical Biology Medical School Molecular with tenure Pharmacology 2010-2014 Associate Professor The Scripps Research Chemistry with tenure Institute, Scripps Florida 2009-2010 Associate Professor University of South Carolina Chemistry with Tenure 2004-2008 Assistant Professor University of South Carolina Chemistry 2003-2004 Visiting Assistant Professor University of South Carolina Chemistry 2000-2003 Postdoctoral Fellow Johns University SOM Pharmacology 1994-2000 Teaching and McMaster University Biochemistry Research Assistant 1993-1994 Teaching Assistant McMaster University Chemistry HONORS, AWARDS AND OTHER SIGNIFICANT ACTIVITIES • Consultant to Disarm Therapeutics, 2018 to present • Chair, Bioorganic Chemistry Gordon Research Conference 2017 • Permanent Member, Synthetic Biological Chemistry B (SBCB) Study Section, NIH October 2016- present. • Consultant to Celgene, 2018 to present. • Associate Chair, Bioorganic Chemistry Gordon Research Conference 2017 • Consultant to Bristol Myers Squibb,
    [Show full text]
  • Leeds Thesis Template
    Determining the Link Between Genome Integrity and Seed Quality Robbie Michael Gillett Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Faculty of Biological Sciences School of Biology January, 2017 - ii - The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Robbie M. Gillett to be identified as Author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. © 2016 The University of Leeds and Robbie Michael Gillett - iii - Acknowledgements I would like to thank my supervisor Dr Christopher West and co-supervisor Dr. Wanda Waterworth for all of their support, expertise and incredible patience and for always being available to help. I would like to thank Aaron Barrett, James Cooper, Valérie Tennant, and all my other friends at university for their help throughout my PhD. Thanks to Vince Agboh and Grace Hoysteed for their combined disjointedness and to Ashley Hines, Daniel Johnston and Darryl Ransom for being a source of entertainment for many years. I would like to thank my international Sona friends, Lindsay Hoffman and Jan Maarten ten Katen. Finally unreserved thanks to my loving parents who supported me throughout the tough times and to my Grandma and Granddad, Jean and Dennis McCarthy, who were always very vocal with their love, support and pride.
    [Show full text]