Simple Groups of Finite Morley Rank, by T. Altinel, A. V. Borovik, and G
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 47, Number 4, October 2010, Pages 729–734 S 0273-0979(10)01287-5 Article electronically published on February 24, 2010 Simple groups of finite Morley rank, by T. Altinel, A. V. Borovik, and G. Cherlin, Mathematical Surveys and Monographs, 145, American Mathematical Society, Providence, RI, 2008, xix+556 pp., US $109.00, ISBN 978-0-8218-4305-5 The Algebraicity Conjecture treats model-theoretic foundations of algebraic group theory. It states that any simple group of finite Morley rank is an algebraic group over an algebraically closed field. In the mid-1990s a view was consolidated that this project falls into four cases of different flavour: even type, mixed type, odd type, and degenerate type. This book contains a proof of the conjecture in the first two cases, and much more besides: insight into the current state of the other cases (which are very much open), applications for example to permutation groups of finite Morley rank, and open questions. The book will be of interest to both model theorists and group theorists: techniques from the classification of fi- nite simple groups (CFSG), and from other aspects of group theory (e.g., black box groups in computational group theory, and the theory of Tits buildings, especially of generalised polygons) play a major role. The techniques used are primarily group theoretic, but the history and motiva- tion are more model theoretic. The origins of the conjecture, as with much modern model theory, lie in Morley’s Theorem: this states that if T is a complete theory in a countable first order language L (that is, T is a maximally consistent set of L-sentences) and T is κ-categorical for some uncountable cardinal κ,thenT is κ- categorical for all uncountable κ,thatis,T is uncountably categorical.
[Show full text]