Arxiv:1809.04940V2 [Math.LO]
WEAKLY MINIMAL GROUPS WITH A NEW PREDICATE GABRIEL CONANT AND MICHAEL C. LASKOWSKI Abstract. Fix a weakly minimal (i.e., superstable U-rank 1) structure M. Let M∗ be an expansion by constants for an elementary substructure, and let A be an arbitrary subset of the universe M. We show that all formulas in the expansion (M∗,A) are equivalent to bounded formulas, and so (M,A) is stable (or NIP) if and only if the M-induced structure AM on A is stable (or NIP). We then restrict to the case that M is a pure abelian group with a weakly minimal theory, and AM is mutually algebraic (equivalently, weakly minimal with trivial forking). This setting encompasses most of the recent research on stable expansions of (Z, +). Using various characterizations of mutual alge- braicity, we give new examples of stable structures of the form (M,A). Most notably, we show that if (G, +) is a weakly minimal additive subgroup of the algebraic numbers, A ⊆ G is enumerated by a homogeneous linear recurrence relation with algebraic coefficients, and no repeated root of the characteristic polynomial of A is a root of unity, then (G, +, B) is superstable for any B ⊆ A. 1. Introduction Given a structure M, and a set A ⊆ M, a common line of investigation concerns model-theoretic properties of M that are preserved in the expansion (M, A) of M by a unary predicate naming A. In this situation, the M-induced structure on A, denoted AM (see Definition 2.2), is interpretable in (M, A) and so model theoretic complexity in AM persists in (M, A).
[Show full text]