A Trichotomy of Countable, Stable, Unsuperstable Theories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Elementary Set Theory
1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection). -
Intransitivity, Utility, and the Aggregation of Preference Patterns
ECONOMETRICA VOLUME 22 January, 1954 NUMBER 1 INTRANSITIVITY, UTILITY, AND THE AGGREGATION OF PREFERENCE PATTERNS BY KENNETH 0. MAY1 During the first half of the twentieth century, utility theory has been subjected to considerable criticism and refinement. The present paper is concerned with cer- tain experimental evidence and theoretical arguments suggesting that utility theory, whether cardinal or ordinal, cannot reflect, even to an approximation, the existing preferences of individuals in many economic situations. The argument is based on the necessity of transitivity for utility, observed circularities of prefer- ences, and a theoretical framework that predicts circularities in the presence of preferences based on numerous criteria. THEORIES of choice may be built to describe behavior as it is or as it "ought to be." In the belief that the former should precede the latter, this paper is con- cerned solely with descriptive theory and, in particular, with the intransitivity of preferences. The first section indicates that transitivity is not necessary to either the usual axiomatic characterization of the preference relation or to plau- sible empirical definitions. The second section shows the necessity of transitivity for utility theory. The third section points to various examples of the violation of transitivity and suggests how experiments may be designed to bring out the conditions under which transitivity does not hold. The final section shows how intransitivity is a natural result of the necessity of choosing among alternatives according to conflicting criteria. It appears from the discussion that neither cardinal nor ordinal utility is adequate to deal with choices under all conditions, and that we need a more general theory based on empirical knowledge of prefer- ence patterns. -
Natural Numerosities of Sets of Tuples
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 1, January 2015, Pages 275–292 S 0002-9947(2014)06136-9 Article electronically published on July 2, 2014 NATURAL NUMEROSITIES OF SETS OF TUPLES MARCO FORTI AND GIUSEPPE MORANA ROCCASALVO Abstract. We consider a notion of “numerosity” for sets of tuples of natural numbers that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N. Introduction In this paper we consider a notion of “equinumerosity” on sets of tuples of natural numbers, i.e. an equivalence relation, finer than equicardinality, that satisfies the celebrated five Euclidean common notions about magnitudines ([8]), including the principle that “the whole is greater than the part”. This notion preserves the basic properties of equipotency for finite sets. In particular, the natural Cantorian definitions endow the corresponding numerosities with a structure of a discretely ordered semiring, where 0 is the size of the emptyset, 1 is the size of every singleton, and greater numerosity corresponds to supersets. This idea of “Euclidean” numerosity has been recently investigated by V. -
Stability Theory
Department of Mathematics Master's thesis Stability Theory Author: Supervisor: Sven Bosman Dr. Jaap van Oosten Second reader: Prof. Dr. Gunther Cornelissen May 15, 2018 Acknowledgements First and foremost, I would like to thank my supervisor, Dr. Jaap van Oosten, for guiding me. He gave me a chance to pursue my own interests for this project, rather then picking a topic which would have been much easier to supervise. He has shown great patience when we were trying to determine how to get a grip on this material, and has made many helpful suggestions and remarks during the process. I would like to thank Prof. Dr. Gunther Cornelissen for being the second reader of this thesis. I would like to thank Dr. Alex Kruckman for his excellent answer to my question on math.stackexchange.com. He helped me with a problem I had been stuck with for quite some time. I have really enjoyed the master's thesis logic seminar the past year, and would like to thank the participants Tom, Menno, Jetze, Mark, Tim, Bart, Feike, Anton and Mireia for listening to my talks, no matter how boring they might have been at times. Special thanks go to Jetze Zoethout for reading my entire thesis and providing me with an extraordinary number of helpful tips, comments, suggestions, corrections and improvements. Most of my thesis was written in the beautiful library of the Utrecht University math- ematics department, which has been my home away from home for the last three years. I would like to thank all my friends there for the many enjoyable lunchbreaks, the interesting political discussions, and the many, many jokes. -
Arxiv:1801.06566V1 [Math.LO] 19 Jan 2018
MODEL THEORY AND MACHINE LEARNING HUNTER CHASE AND JAMES FREITAG ABSTRACT. About 25 years ago, it came to light that a single combinatorial property deter- mines both an important dividing line in model theory (NIP) and machine learning (PAC- learnability). The following years saw a fruitful exchange of ideas between PAC learning and the model theory of NIP structures. In this article, we point out a new and similar connection between model theory and machine learning, this time developing a correspon- dence between stability and learnability in various settings of online learning. In particular, this gives many new examples of mathematically interesting classes which are learnable in the online setting. 1. INTRODUCTION The purpose of this note is to describe the connections between several notions of com- putational learning theory and model theory. The connection between probably approxi- mately correct (PAC) learning and the non-independence property (NIP) is well-known and was originally noticed by Laskowski [8]. In the ensuing years, there have been numerous interactions between the combinatorics associated with PAC learning and model theory in the NIP setting. Below, we provide a quick introduction to the PAC-learning setting as well as learning in general. Our main purpose, however, is to explain a new connection between the model theory and machine learning. Roughly speaking, our manuscript is similar to [8], but develops the connection between stability and online learning. That the combinatorial quantity of VC-dimension plays an essential role in isolating the main dividing line in both PAC-learning and perhaps the second most prominent dividing line in model-theoretic classification theory (NIP/IP) is a remarkable fact. -
Arxiv:1609.03252V6 [Math.LO] 21 May 2018 M 00Sbetcasfiain Rmr 34.Secondary: 03C48
TOWARD A STABILITY THEORY OF TAME ABSTRACT ELEMENTARY CLASSES SEBASTIEN VASEY Abstract. We initiate a systematic investigation of the abstract elementary classes that have amalgamation, satisfy tameness (a locality property for or- bital types), and are stable (in terms of the number of orbital types) in some cardinal. Assuming the singular cardinal hypothesis (SCH), we prove a full characterization of the (high-enough) stability cardinals, and connect the sta- bility spectrum with the behavior of saturated models. We deduce (in ZFC) that if a class is stable on a tail of cardinals, then it has no long splitting chains (the converse is known). This indicates that there is a clear notion of superstability in this framework. We also present an application to homogeneous model theory: for D a homogeneous diagram in a first-order theory T , if D is both stable in |T | and categorical in |T | then D is stable in all λ ≥|T |. Contents 1. Introduction 2 2. Preliminaries 4 3. Continuity of forking 8 4. ThestabilityspectrumoftameAECs 10 5. The saturation spectrum 15 6. Characterizations of stability 18 7. Indiscernibles and bounded equivalence relations 20 arXiv:1609.03252v6 [math.LO] 21 May 2018 8. Strong splitting 22 9. Dividing 23 10. Strong splitting in stable tame AECs 25 11. Stability theory assuming continuity of splitting 27 12. Applications to existence and homogeneous model theory 31 References 32 Date: September 7, 2018 AMS 2010 Subject Classification: Primary 03C48. Secondary: 03C45, 03C52, 03C55, 03C75, 03E55. Key words and phrases. Abstract elementary classes; Tameness; Stability spectrum; Saturation spectrum; Limit models. 1 2 SEBASTIEN VASEY 1. -
Reverse Mathematics, Trichotomy, and Dichotomy
Reverse mathematics, trichotomy, and dichotomy Fran¸coisG. Dorais, Jeffry Hirst, and Paul Shafer Department of Mathematical Sciences Appalachian State University, Boone, NC 28608 February 20, 2012 Abstract Using the techniques of reverse mathematics, we analyze the log- ical strength of statements similar to trichotomy and dichotomy for sequences of reals. Capitalizing on the connection between sequential statements and constructivity, we find computable restrictions of the statements for sequences and constructive restrictions of the original principles. 1 Axiom systems and encoding reals We will examine several statements about real numbers and sequences of real numbers in the framework of reverse mathematics and in some formalizations of weak constructive analysis. From reverse mathematics, we will concentrate on the axiom systems RCA0, WKL0, and ACA0, which are described in detail by Simpson [8]. Very roughly, RCA0 is a subsystem of second order arith- metic incorporating ordered semi-ring axioms, a restricted form of induction, 0 and comprehension for ∆1 definable sets. The axiom system WKL0 appends K¨onig'stree lemma restricted to 0{1 trees, and the system ACA0 appends a comprehension scheme for arithmetically definable sets. ACA0 is strictly stronger than WKL0, and WKL0 is strictly stronger than RCA0. We will also make use of several formalizations of subsystems of con- structive analysis, all variations of E-HA!, which is intuitionistic arithmetic 1 (Heyting arithmetic) in all finite types with an extensionality scheme. Unlike the reverse mathematics systems which use classical logic, these constructive systems omit the law of the excluded middle. For example, we will use ex- tensions of E\{HA!, a form of Heyting arithmetic with primitive recursion restricted to type 0 objects, and induction restricted to quantifier free for- mulas. -
Measures in Model Theory
Measures in model theory Anand Pillay University of Leeds Logic and Set Theory, Chennai, August 2010 IntroductionI I I will discuss the growing use and role of measures in \pure" model theory, with an emphasis on extensions of stability theory outside the realm of stable theories. I The talk is related to current work with Ehud Hrushovski and Pierre Simon (building on earlier work with Hrushovski and Peterzil). I I will be concerned mainly, but not exclusively, with \tame" rather than \foundational" first order theories. I T will denote a complete first order theory, 1-sorted for convenience, in language L. I There are canonical objects attached to T such as Bn(T ), the Boolean algebra of formulas in free variables x1; ::; xn up to equivalence modulo T , and the type spaces Sn(T ) of complete n-types (ultrafilters on Bn(T )). IntroductionII I Everything I say could be expressed in terms of the category of type spaces (including SI (T ) for I an infinite index set). I However it has become standard to work in a fixed saturated model M¯ of T , and to study the category Def(M¯ ) of sets X ⊆ M¯ n definable, possibly with parameters, in M¯ , as well as solution sets X of types p 2 Sn(A) over small sets A of parameters. I Let us remark that the structure (C; +; ·) is a saturated model of ACF0, but (R; +; ·) is not a saturated model of RCF . I The subtext is the attempt to find a meaningful classification of first order theories. Stable theoriesI I The stable theories are the \logically perfect" theories (to coin a phrase of Zilber). -
Some Set Theory We Should Know Cardinality and Cardinal Numbers
SOME SET THEORY WE SHOULD KNOW CARDINALITY AND CARDINAL NUMBERS De¯nition. Two sets A and B are said to have the same cardinality, and we write jAj = jBj, if there exists a one-to-one onto function f : A ! B. We also say jAj · jBj if there exists a one-to-one (but not necessarily onto) function f : A ! B. Then the SchrÄoder-BernsteinTheorem says: jAj · jBj and jBj · jAj implies jAj = jBj: SchrÄoder-BernsteinTheorem. If there are one-to-one maps f : A ! B and g : B ! A, then jAj = jBj. A set is called countable if it is either ¯nite or has the same cardinality as the set N of positive integers. Theorem ST1. (a) A countable union of countable sets is countable; (b) If A1;A2; :::; An are countable, so is ¦i·nAi; (c) If A is countable, so is the set of all ¯nite subsets of A, as well as the set of all ¯nite sequences of elements of A; (d) The set Q of all rational numbers is countable. Theorem ST2. The following sets have the same cardinality as the set R of real numbers: (a) The set P(N) of all subsets of the natural numbers N; (b) The set of all functions f : N ! f0; 1g; (c) The set of all in¯nite sequences of 0's and 1's; (d) The set of all in¯nite sequences of real numbers. The cardinality of N (and any countable in¯nite set) is denoted by @0. @1 denotes the next in¯nite cardinal, @2 the next, etc. -
Logic and Proof Release 3.18.4
Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................ -
Notes on Totally Categorical Theories
Notes on totally categorical theories Martin Ziegler 1991 0 Introduction Cherlin, Harrington and Lachlan’s paper on ω0-categorical, ω0-stable theories ([CHL]) was the starting point of geometrical stability theory. The progress made since then allows us better to understand what they did in modern terms (see [PI]) and also to push the description of totally categorical theories further, (see [HR1, AZ1, AZ2]). The first two sections of what follows give an exposition of the results of [CHL]. Then I explain how a totally categorical theory can be decomposed by a sequence of covers and in the last section I discuss the problem how covers can look like. I thank the parisian stabilists for their invation to lecture on these matters, and also for their help during the talks. 1 Fundamental Properties Let T be a totally categorical theory (i.e. T is a complete countable theory, without finite models which is categorical in all infinite cardinalities). Since T is ω1-categorical we know that a) T has finite Morley-rank, which coincides with the Lascar rank U. b) T is unidimensional : All non-algebraic types are non-orthogonal. The main result of [CHL] is that c) T is locally modular. A pregeometry X (i.e. a matroid) is modular if two subspaces are always independent over their intersection. X is called locally modular if two subspaces are independent over their intersection provided this intersection has positive dimension. A pregeometry is a geometry if the closure of the empty set is empty and the one-dimensional subspaces are singletons. -
Preliminary Knowledge on Set Theory
Huan Long Shanghai Jiao Tong University Basic set theory Relation Function Spring 2018 Georg Cantor(1845-1918) oGerman mathematician o Founder of set theory Bertrand Russell(1872-1970) oBritish philosopher, logician, mathematician, historian, and social critic. Ernst Zermelo(1871-1953) oGerman mathematician, foundations of mathematics and hence on philosophy David Hilbert (1862-1943) o German mathematicia, one of the most influential and universal mathematicians of the 19th and early 20th centuries. Kurt Gödel(1906-1978) oAustrian American logician, mathematician, and philosopher. ZFC not ¬CH . Paul Cohen(1934-2007)⊢ oAmerican mathematician, 1963: ZFC not CH,AC . Spring 2018 ⊢ Spring 2018 By Georg Cantor in 1870s: A set is an unordered collection of objects. ◦ The objects are called the elements, or members, of the set. A set is said to contain its elements. Notation: ◦ Meaning that: is an element of the set A, or, Set A contains ∈ . Important: ◦ Duplicates do not matter. ◦ Order does not matter. Spring 2018 a∈A a is an element of the set A. a A a is NOT an element of the set A. Set of sets {{a,b},{1, 5.2}, k} ∉ the empty set, or the null set, is set that has no elements. A B subset relation. Each element of A is also an element of B. ∅ A=B equal relation. A B and B A. ⊆ A B ⊆ ⊆ A B strict subset relation. If A B and A B ≠ |A| cardinality of a set, or the number of distinct elements. ⊂ ⊆ ≠ Venn Diagram V U A B U Spring 2018 { , , , } a {{a}} ∈ ∉ {{ }} ∅ ∉∅ {3,4,5}={5,4,3,4} ∅ ∈ ∅ ∈ ∅ S { } ∅⊆ S S ∅ ⊂ ∅ |{3, 3, 4, {2, 3},{1,2,{f}} }|=4 ⊆ Spring 2018 Union Intersection Difference Complement Symmetric difference Power set Spring 2018 Definition Let A and B be sets.