ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 15 (2018) 39–51 https://doi.org/10.26493/1855-3974.1439.fdf (Also available at http://amc-journal.eu) Groups in which every non-nilpotent subgroup is self-normalizing Costantino Delizia University of Salerno, Italy Urban Jezernik , Primozˇ Moravec University of Ljubljana, Slovenia Chiara Nicotera University of Salerno, Italy Received 12 July 2017, accepted 29 August 2017, published online 2 November 2017 Abstract We study the class of groups having the property that every non-nilpotent subgroup is equal to its normalizer. These groups are either soluble or perfect. We describe solu- ble groups and finite perfect groups with the above property. Furthermore, we give some structural information in the infinite perfect case. Keywords: Normalizer, non-nilpotent subgroup, self-normalizing subgroup. Math. Subj. Class.: 20E34, 20D15, 20E32 1 Introduction A long standing problem posed by Y. Berkovich [3, Problem 9] is to study the finite p- groups in which every non-abelian subgroup contains its centralizer. In [6], the finite p-groups which have maximal class or exponent p and satisfy Berko- vich’s condition are characterized. Furthermore, the infinite supersoluble groups with the same condition are completely classified. Although it seems unlikely to be able to get a full classification of finite p-groups in which every non-abelian subgroup contains its cen- tralizer, Berkovich’s problem has been the starting point for a series of papers investigating finite and infinite groups in which every subgroup belongs to a certain family or it contains E-mail addresses:
[email protected] (Costantino Delizia),
[email protected] (Urban Jezernik),
[email protected] (Primozˇ Moravec),
[email protected] (Chiara Nicotera) cb This work is licensed under http://creativecommons.org/licenses/by/3.0/ 40 Ars Math.