Applications of Microbial Polysaccharides in Food Industry

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Microbial Polysaccharides in Food Industry Int. J. Pharm. Sci. Rev. Res., 27(1), July – August 2014; Article No. 58, Pages: 322-324 ISSN 0976 – 044X Research Article Applications of Microbial Polysaccharides in Food Industry Dr Ramalingam C*1, Jhanu Priya1, Shraddha Mundra1 School of biosciences and technology, VIT University, Vellore, Tamilnadu, India. *Corresponding author’s E-mail: [email protected] Accepted on: 27-05-2014; Finalized on: 30-06-2014. ABSTRACT Microbial polysaccharides are important sources in food industry. Among the profound variety of polysaccharides some of them are approved by the FDA as food additives and are extensively used in food processing industry. This paper gives a review on some microbial polysaccharides that are most commonly used such as Xanthan gum, Gellan gum, Dextran and Pullulan. Most of these find their application as stabilize, thickener, emulsifier, texturizer and as gelling agents. The addition of these microbial polysaccharides as food additives enhances the overall food quality. Keywords: FDA, Food industry, Food additives, Microbial polysaccharides. INTRODUCTION Table 1: Microbial polysaccharides and their sources olysaccharides are the carbon sources which are Microbial Polysaccharide Organism(s) found in huge amount in the biosphere.1 Most of Xanthan Xanthomonas Campestris these polysaccharides have found their importance P Gellan Sphingomonas paucimobilis in fields such as pharmaceutical industries, food industries, medical industries and various other related Pullulan Aureobasidium pullulans 2 industries. Microbial polysaccharides are secreted by the Leuconostoc Mesenteroides and Dextran micro-organisms. They are of two types; Leuconostoc Dextranicum Xylinan/Acetobacter xylinum a) Capsular polysaccharides Acetobacter xylinum cellulose b) Exo-polysaccharides Azotobacter chroococcum and Alginates Capsular polysaccharides are the ones which form a Azotobacter vinelandii protective capsule and thus prevent the pathogenic Curdlan Alcaligenes faecalis micro-organism from immune system defenses.1 Exo- polysaccharides are the polysaccharides that are secreted Brief Description of Major Microbial Polysaccharides in out by the micro-organisms. They have the capacity to Food Industry form solutions of high viscosity even at low Xanthan gum concentrations.1 Based on their position of polysaccharide secreted these microorganisms are termed exo- Xanthan is a microbial polysaccharide secreted by polysaccharides and capsular polysaccharides.2 These exo- organism Xanthomonas campestris (Table 1). Xanthan is polysaccharides act as barrier in preventing the harmful produced in tones in aerobic fermentation process for 2 intruders and capsular polysaccharides are however commercial uses in food and pharmaceutical industries. evolved to avoid any antibody responses.2 As extracting The high viscosity at very low concentrations makes it an these polysaccharides at low cost in larger quantities excellent agent as food additive for syruping, stabilizer makes it more useful in any research industries. Bulk and as a thickening agent. Another property that makes amount of these microbial polysaccharides are used in xanthan so suitable in food industry is the high shear 2 food industry such as xanthan to dextran.2 Some of the thinning i.e. good pourability. Xanthan is replaced in microbial polysaccharides play an important role in the many low calorie drinks which increase the thinning food industry. Due to their unique structure and physical consistency where the total or partial sugars are replaced 3 properties they are widely used as emulsifiers, stabilizers, by artificial sweetners. Xanthan acts like a stabilizer in thickeners, viscosifiers, film-formers and gelling agents.4 most liquid and semi-liquid foods and gives a body form to most dairy products.3 Since xanthan suspension have Mentioned below are some of the microbial freeze thaw stability its major food additive in frozen food polysaccharides that are commonly used in the food industries.3 Xanthan is extensively used in bakery industry and the organisms from which they are obtained. products to help retention of water in baking food and 3 therefore increases the shelf life of the food. It’s used in low fat food to increase the viscosity of the aqueous 3 phase and stabilize the food system. Such as International Journal of Pharmaceutical Sciences Review and Research Available online at www.globalresearchonline.net 322 © Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited. © Copyright protected. Unauthorised republication, reproduction, distribution, Int. J. Pharm. Sci. Rev. Res., 27(1), July – August 2014; Article No. 58, Pages: 322-324 ISSN 0976 – 044X mayonnaise, cheese, ready-to-eat meals etc.3 Xanthan time of gelling such as starch jellies.4 In addition it gives a was approved by FDA as food additive few decades ago suitable structure, mouth feel and also prevents the and since then it’s widely used in commercial food moisture loss in these sugary foods. Gellan gums are also industry. used in dessert gels to bring out the high clarity and increase in melting temperature to keep these foods soft Gellan and juicy.4 Gellan can replace pectin in jams with low Gellan is a microbial polysaccharide synthesized by concentrations use when compared to pectins. Gellan are bacterium Sphingomonas paucimobilis (Table 1) and also used in modified starch food to increase the stability as by different strains of the same bacteria. It’s majorly stabilizer and water binding agent preventing the manufactured by C.P KELCO in Japan.4 It was approved by “blunting effect” of the starch can have on food flavor.4 It FDA as a food additive in the year 1992.4 It is basically is also used in many fabricated food to provide matrix and used as stabilizer, gelling agent and as thickening agent in structure after heating and cooling. Fabricated food like many food sources. It provides structure; texture and meat, fruits, confectioneries fall into this category. Its mouth feel in many food substances rather than gelatin. potential use in food industry replacing gelatin makes it It’s mostly used in confectionary units to reduce the set an important polysaccharide.4 Table 2: Concentration usage of polysaccharides in food processing industry Polysaccharide Food in which it is used Concentration required (%) Functionality References Emulsion stabilizer; suspending Salad dressings 0.1-0.5 agent, dispersant Eases dispersion in hot or cold Dry mixes 0.05-0.2 water Syrups, toppings, relishes, Thickener; heat stability and 0.05-0.2 Xanthan gum sauces uniform viscosity 8 Beverages (fruit and non-fat 0.05-0.2 Stabilizer dry milk) Dairy products 0.2-0.5 Stabilizer; viscosity control of mix Baked foods 0.1-0.4 Stabilizer; Frozen foods 0.05-0.2 Improves freeze thaw stability Jellies 0.15-0.2 Gelling-agent Jams 0.12-0.3 Low calorie spreads Confectionery 0.8-1 Gelling in fruits vegetables Gellan Processed foods 0.2-0.3 Texture modification 7 Processed meats 0.1-1 Coating agent Icings 0.05-0.12 Texturizer Pie fillings 0.25-0.35 Edible films with low oxygen Edible Films in confectionary permeability, Bioadhesive Pullulan decoration 5-10 Stability to high pH and NaCl 9 Snack Foods Low viscosity Bakery products 2% Unique dough mixing properties Beneficial viscosity properties Dextran Ice cream, Frozen and dried 10 2-4% Film of dextran used in frozen foods foods Xylinan/Acetobacter Confectionary product-Nata Gelling agent 2 xylinum cellulose de coco Viscocifier Confectionary, Dairy Thickener products Alginates 0.3 Stabilizer 6,9 Beverages, Jams, Soups, Gelling agent Sauces, Meat, Fish, Gellies 1-5 Gelling agent Processed foods 1-10 Gelling agent Curdlan Processed meats 0.1-1 Texture modification 7 Sauces 0.2-0.7 Improved viscosity Freeze-dried foods 0.5-1 Improved rehydration International Journal of Pharmaceutical Sciences Review and Research Available online at www.globalresearchonline.net 323 © Copyright protected. Unauthorised republication, reproduction, distribution, dissemination and copying of this document in whole or in part is strictly prohibited. © Copyright protected. Unauthorised republication, reproduction, distribution, Int. J. Pharm. Sci. Rev. Res., 27(1), July – August 2014; Article No. 58, Pages: 322-324 ISSN 0976 – 044X Pullulan addition they possess anti-inflammatory and detoxifying properties.6 Pullulan is a type of exo-polysaccharide which is derived from a fungus Aureobasidium pullulans (Table 1).5 A white Curdlan to off-white tasteless, odorless powder that forms a Curdlan is a high molecular weight polysaccharide viscous non-hygroscopic solution when dissolved in water obtained from Alcaligenes faecalis (Table 1) but at 5-10%.5 It can be made into films of high tensile nowadays commercially produced by non-pathogenic strength and low oxygen permeability .It is mainly used as strain of Agrobacterium i.e. Agrobacterium biobar.2 The a matrix for edible flavored films (breath fresheners) and use of this polysaccharide is limited to the boundaries of also used in the production of capsule shells as well as Japan where they consider microbial polysaccharides as coated tablets for the preparation of dietary natural products and can be employed in food industry.7 supplements.5 It has particularly used to make snack It is the improved version of the gums providing viscosity, foods in Japan which are based on cod roe and powdered rehydration, gelling and texture-modification properties.7 cheese.2 But
Recommended publications
  • Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis
    nutrients Review Effect of Intake of Food Hydrocolloids of Bacterial Origin on the Glycemic Response in Humans: Systematic Review and Narrative Synthesis Norah A. Alshammari 1,2, Moira A. Taylor 3, Rebecca Stevenson 4 , Ourania Gouseti 5, Jaber Alyami 6 , Syahrizal Muttakin 7,8, Serafim Bakalis 5, Alison Lovegrove 9, Guruprasad P. Aithal 2 and Luca Marciani 2,* 1 Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; [email protected] 2 Translational Medical Sciences and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 3 Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen’s Medical Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham NG7 2UH, UK; [email protected] 4 Precision Imaging Beacon, University of Nottingham, Nottingham NG7 2UH, UK; [email protected] 5 Department of Food Science, University of Copenhagen, DK-1958 Copenhagen, Denmark; [email protected] (O.G.); [email protected] (S.B.) 6 Department of Diagnostic Radiology, Faculty of Applied Medical Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; [email protected] 7 Indonesian Agency for Agricultural Research and Development, Jakarta 12540, Indonesia; Citation: Alshammari, N.A.; [email protected] Taylor, M.A.; Stevenson, R.; 8 School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK Gouseti, O.; Alyami, J.; Muttakin, S.; 9 Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK; [email protected] Bakalis, S.; Lovegrove, A.; Aithal, G.P.; * Correspondence: [email protected]; Tel.: +44-115-823-1248 Marciani, L.
    [Show full text]
  • Differential Effects of the Poly (ADP-Ribose)Polymerase (PARP
    British Journal of Cancer (2001) 84(1), 106–112 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1555, available online at http://www.idealibrary.com on http://www.bjcancer.com Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro KJ Bowman*, DR Newell, AH Calvert and NJ Curtin Cancer Research Unit, University of Newcastle upon Tyne Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK Summary The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage.
    [Show full text]
  • Nutrition Facts Serving Size (140G) Servings Per Container 1
    BrustersBRUSTER’S Banana BANANA Cream Pie IceCREAM Cream, PIE Dish ICE Regular CREAM - DISH - SM Nutrition Facts Serving Size (140g) Servings Per Container 1 Amount Per Serving Calories 320 Calories from Fat 110 % Daily Value* Total Fat 12g 19% Saturated Fat 7g 35% Trans Fat 0g Cholesterol 35mg 11% Sodium 135mg 6% Total Carbohydrate 50g 17% Dietary Fiber <1g 2% Sugars 33g Protein 4g Vitamin A 8% • Vitamin C 4% Calcium 10% • Iron 8% * Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs: Calories: 2,000 2,500 Total Fat Less than 65g 80g Saturated Fat Less than 20g 25g Cholesterol Less than 300mg 300mg Sodium Less than 2,400mg 2,400mg Total Carbohydrate 300g 375g Dietary Fiber 25g 30g Ingredients: MILK, CREAM, BANANAS, SUGAR, CORN SYRUP, NONFAT MILK SOLIDS, SWEET WHEY, MONO & DIGLYCERIDES, HIGH FRUCTOSE CORN SYRUP, WATER, DEHYDRATED BANANA, GUAR GUM, LOCUST BEAN GUM, POLYSORBATE 80, CARRAGEENAN, VANILLA, VANILLIN, NATURAL FLAVOR, CARAMEL COLOR, CITRIC ACID, SODIUM BENZOATE (A PRESERVATIVE). MARSHMALLOW SWIRL: CORN SYRUP, SUGAR, WATER, HIGH FRUCTOSE CORN SYRUP, EGG ALBUMIN, PECTIN, XANTHAN GUM, VANILLA, NATURAL FLAVOR, POTASSIUM SORBATE (A PRESERVATIVE). VANILLA WAFER PIECES: ENRICHED WHEAT FLOUR (WHEAT FLOUR, NIACIN, REDUCED IRON, THIAMINE MONONITRATE, RIBOFLAVIN, FOLIC ACID), SUGAR, PALM OIL, CORN SYRUP, WHEY (MILK), SALT, CORNSTARCH, EGGS, SODIUM BICARBONATE, DEXTROSE, NATURAL AND ARTIFICIAL FLAVOR. Vertical, Full Sunday, May 15, 2011 BRUSTER’SBrusters Banana BANANA Cream Pie CREAMIce Cream, PIE Dish ICE Regular CREAM +1 - DISH - REG Nutrition Facts Serving Size (210g) Servings Per Container 1 Amount Per Serving Calories 490 Calories from Fat 160 % Daily Value* Total Fat 18g 28% Saturated Fat 10g 52% Trans Fat 0g Cholesterol 50mg 16% Sodium 200mg 8% Total Carbohydrate 75g 25% Dietary Fiber <1g 4% Sugars 49g Protein 5g Vitamin A 10% • Vitamin C 6% Calcium 15% • Iron 10% * Percent Daily Values are based on a 2,000 calorie diet.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi Et Al
    US 20120028333A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0028333 A1 Piatesi et al. (43) Pub. Date: Feb. 2, 2012 (54) USE OF ENZYMES TO REDUCE ALDEHYDES (30) Foreign Application Priority Data FROMALDEHYDE-CONTAINING PRODUCTS Apr. 7, 2009 (EP) .................................. O9157522.5 Publication Classification (76) Inventors: Andrea Piatesi, Mannheim (DE); (51) Int. Cl. Tilo Habicher, Speyer (DE); CI2N 9/02 (2006.01) Michael Bischel, Worms (DE); CI2N I/00 (2006.01) Li-Wen Wang, Mannheim (DE): CI2N 15/63 (2006.01) Jirgen Reichert, Limburgerhof A62D 3/02 (2007.01) (DE); Rainer Packe-Wirth, C7H 2L/04 (2006.01) Trostberg (DE); Kai-Uwe (52) U.S. Cl. ... 435/189: 435/262:536/23.2:435/320.1; Baldenius, Heidelberg (DE); Erich 435/243 Kromm, Weisenheim am Sand (57) ABSTRACT (DE); Stefan Häfner, Speyer (DE); Carsten Schwalb. Mannheim (DE); The invention relates to the use of an enzyme preparation Hans Wolfgang Höffken, which catalyzes the degradation of formaldehyde for reduc Ludwigshafen (DE) ing the formaldehyde content in a formaldehyde-containing formulation. In a preferred embodiment, the enzyme prepa ration contains a formaldehyde dismutase from a Pseudomo (21) Appl. No.: 13/262,662 nas putida Strain. Further, the invention refers to a process for reducing the formaldehyde content in cross-linking agents for textile finishing or in polymer dispersions used, e.g. in con (22) PCT Filed: Mar. 31, 2010 struction chemistry. Further the invention relates to the use of an enzyme preparation which catalyzes the degradation of (86). PCT No.: PCT/EP1OAS4284 aldehydes for reducing the formaldehyde content in an alde hyde-containing formulation.
    [Show full text]
  • Pharmaceutical Compositions of Rifaximin Pharmazeutische Rifaximin-Zusammensetzungen Compositions Pharmaceutiques De Rifaximine
    (19) TZZ Z__ T (11) EP 2 011 486 B2 (12) NEW EUROPEAN PATENT SPECIFICATION After opposition procedure (45) Date of publication and mention (51) Int Cl.: of the opposition decision: A61K 9/20 (2006.01) A61K 31/44 (2006.01) 12.08.2015 Bulletin 2015/33 (45) Mention of the grant of the patent: 23.05.2012 Bulletin 2012/21 (21) Application number: 08252198.0 (22) Date of filing: 26.06.2008 (54) Pharmaceutical compositions of rifaximin Pharmazeutische Rifaximin-Zusammensetzungen Compositions pharmaceutiques de rifaximine (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-A1- 0 616 808 EP-B1- 1 763 339 HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT WO-A-2006/094737 WO-A2-2006/039022 RO SE SI SK TR US-A- 6 140 355 US-A1- 2005 101 598 (30) Priority: 06.07.2007 IN KO09682007 • DUPONT ET AL: "Treatment of Travelers’ 23.06.2008 EP 08252158 Diarrhea: Randomized Trial Comparing Rifaximin, Rifaximin Plus Loperamide, and (43) Date of publication of application: Loperamide Alone" CLINICAL 07.01.2009 Bulletin 2009/02 GASTROENTEROLOGY AND HEPATOLOGY, AMERICAN GASTROENTEROLOGICAL (60) Divisional application: ASSOCIATION, US, vol. 5, no. 4, 17 April 2007 11176043.5 / 2 420 226 (2007-04-17), pages 451-456, XP022029177 ISSN: 14186563.4 / 2 837 378 1542-3565 • ARYA ET AL: "Rifaximin-the promising anti- (73) Proprietor: Lupin Ltd. microbial for enteric infections" JOURNAL OF Mumbai, Maharashtra 400 098 (IN) INFECTION, ACADEMIC PRESS, LONDON, GB, vol.
    [Show full text]
  • Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles
    pharmaceutics Article Selection of Cryoprotectant in Lyophilization of Progesterone-Loaded Stearic Acid Solid Lipid Nanoparticles Timothy M. Amis, Jwala Renukuntla, Pradeep Kumar Bolla and Bradley A. Clark * Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, High Point, NC 27268, USA; [email protected] (T.M.A.); [email protected] (J.R.); [email protected] (P.K.B.) * Correspondence: [email protected]; Tel.: +1-336-841-9665 Received: 18 August 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: Cryoprotectants are often required in lyophilization to reduce or eliminate agglomeration of solute or suspended materials. The aim of this study was to select a cryoprotecting agent and optimize its concentration in a solid lipid nanoparticle formulation. Progesterone-loaded stearic acid solid lipid nanoparticles (SA-P SLNs) were prepared by hot homogenization with high speed mixing and sonication. The stearic acid content was 4.6% w/w and progesterone was 0.46% w/w of the initial formulation. Multiple surfactants were evaluated, and a lecithin and sodium taurocholate system was chosen. Three concentrations of surfactant were then evaluated, and a concentration of 2% w/w was chosen based on particle size, polydispersity, and zeta potential. Agglomeration of SA-P SLNs after lyophilization was observed as measured by increased particle size. Dextran, glycine, mannitol, polyvinylpyrrolidone (PVP), sorbitol, and trehalose were evaluated as cryoprotectants by both an initial freeze–thaw analysis and after lyophilization. Once selected as the cryoprotectant, trehalose was evaluated at 5%, 10%, 15%, and 20% for optimal concentration, with 20% trehalose being finally selected as the level of choice.
    [Show full text]
  • Transcriptome Analysis of Polysaccharide-Based Microbial Flocculant MBFA9 Biosynthesis Regulated by Nitrogen Source
    www.nature.com/scientificreports OPEN Transcriptome analysis of polysaccharide-based microbial focculant MBFA9 biosynthesis regulated by nitrogen source Lili Fu1*, Binhui Jiang2, Jianwei Wei1, Jinliang Liu1, Xiaomin Hu2 & Li Zhang3 Microbial focculant (MBF), an environmentally friendly water treatment agent, can be widely used in various water treatments. However, its use is limited by low yield and high cost. This problem can be solved by clarifying its biosynthesis mechanism and regulating it. Paenibacillus shenyangensis A9, a focculant-producing bacterium, was used to produce polysaccharide-type MBFA9 by regulating the nitrogen source (nitrogen adequacy/nitrogen defciency). In this study, RNA-Seq high-throughput sequencing technology and bioinformatic approaches were used to investigate the fermentation and biosynthesis of polysaccharide-type MBFA9 by regulating the nitrogen source (high nitrogen/low nitrogen) in the focculant-producing bacteria Paenibacillus shenyangensis A9. Diferentially expressed genes, functional clustering, and functional annotation of key genes were assessed. Then the MBFA9 biosynthesis and metabolic pathway were reconstructed. Our results showed that when cultured under diferent nitrogen conditions, bacterial strain A9 had a greater ability to synthesize polysaccharide-type MBFA9 under low nitrogen compared to high nitrogen conditions, with the yield of MBFA9 reaching 4.2 g/L at 36 h of cultivation. The quality of transcriptome sequencing data was reliable, with a matching rate of 85.38% and 85.48% when L36/H36 was mapped to the reference genome. The total expressed genes detected were 4719 and 4730, with 265 diferentially expressed genes. The diferentially expressed genes were classifed into 3 categories: molecular function (MF), cell component (CC), and biological process (BP), and can be further divided into 22 subcategories.
    [Show full text]
  • 6) Dextran Antibody → Behavior of an Anti
    Position Effects of Variable Region Carbohydrate on the Affinity and In Vivo Behavior of an Anti-(1→6) Dextran Antibody This information is current as M. Josefina Coloma, Ryan K. Trinh, Alexander R. Martinez of September 27, 2021. and Sherie L. Morrison J Immunol 1999; 162:2162-2170; ; http://www.jimmunol.org/content/162/4/2162 Downloaded from References This article cites 45 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/162/4/2162.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 27, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Position Effects of Variable Region Carbohydrate on the Affinity and In Vivo Behavior of an Anti-(136) Dextran Antibody1 M. Josefina Coloma, Ryan K. Trinh, Alexander R. Martinez, and Sherie L. Morrison2 IgG is a glycoprotein with an N-linked carbohydrate structure attached to the CH2 domain of each of its heavy chains.
    [Show full text]
  • Tolerability and Product Properties of a Gum-Containing Thickener in Patients with Dysphagia Linda Killeen1,Bsc,Mirianlansink2, Phd & Dea Schröder3,Bsc
    FEATURE Tolerability and Product Properties of a Gum-Containing Thickener in Patients With Dysphagia Linda Killeen1,BSc,MirianLansink2, PhD & Dea Schröder3,BSc Abstract Purpose: The aim of the study was to determine the gastrointestinal (GI) tolerability of drinks and foods thickened with a gum- containing thickener compared to a starch-based thickener in patients with dysphagia. Design: A randomized, double-blind, controlled, parallel group study. Methods: Subjects started with a 3-day run-in period on a starch-based thickener and continued with a 14-day intervention on either the starch-based or gum-containing thickener. GI tolerance parameters were recorded at baseline and for three consecutive days in both weeks. Product properties were studied using a feedback questionnaire from carers. Findings: Incidence and intensity of GI symptoms was low and not significantly different between groups. Carers indicated that starch-thickened drinks became significantly thinner with time compared to gum-containing thickened drinks (p =.029). Conclusions and Clinical Relevance: No differences in GI tolerance parameters between groups were observed. We hypothesize that use of the gum-containing thickener is preferred to a starch-based thickener due to the stability of its viscosity during consumption. Key words: Gastrointestinal tolerability; dysphagia; tara gum; humans. Introduction accident (Martino et al., 2005), up to 82% of patients with Parkinson’s disease (Kalf, de Swart, Bloem, & Eating and drinking are an important part of life, not only Munneke, 2011), more than 35% of patients with head out of necessity but also because they are enjoyable social and neck diseases (García-Peris et al., 2007), between activities (Ekberg, Hamdy, Woisard, Wuttge-Hannig, & 13% and 57% of individuals with established dementia Ortega, 2002).
    [Show full text]
  • FIBER TYPES the Definitive Guide Copyright © 2016 by Dr
    FIBER TYPES The Definitive Guide Copyright © 2016 by Dr. Alan Christianson All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher, addressed “Attention: Permissions Coordinator,” at the address below. Dr. Alan Christianson 9200 East Raintree # 100 Scottsdale, AZ 85260 Page 2 of 48 Table of Contents Fiber Types 4 Cellulose 5 Hemicelluloses 7 Lignin 9 Pectin 11 Hydrocolloids 13 Oat Beta Glucan 15 Mushroom Beta Glucan 17 Oligosaccharides 19 Inulin 20 Fructo-Oligosaccharides 22 Galacto-Oligosaccharides 24 Raffinose Oligosaccharides 26 Resistant Starch 28 RS1 29 RS2 31 RS3 33 RS4 35 RS5 37 References 39 Page 3 of 48 FIBER TYPES Cellulose, Hemicelluloses, Lignin, Pectin, Hydrocolloids, Oat Beta Glucan, Mushroom Beta Glucan TYPE: Cellulose Definition: Insoluble Food category: Fruits, vegetables, legumes, grains, nuts, seeds Examples: Apples, bananas, raspberries, carrots, beets, broccoli, collar greens, spinach, artichokes, black beans, navy beans, pinto beans, garbanzo beans, almonds, pumpkin seeds, flax seeds, walnuts Metabolic by product: Short-chain fatty acids (SCFA) Page 5 of 48 (Cellulose Continued) Flora effects: Increase in Clostridiacea, Peptostreptococcaceae;
    [Show full text]
  • Physical Charaterization of Red Blood Cell Aggregation Daniel Amadeus Dominic Flormann
    Physical charaterization of red blood cell aggregation Daniel Amadeus Dominic Flormann To cite this version: Daniel Amadeus Dominic Flormann. Physical charaterization of red blood cell aggregation. Biological Physics [physics.bio-ph]. Universität des Saarlandes, 2017. English. NNT : 2017GREAY002. tel- 01577838 HAL Id: tel-01577838 https://tel.archives-ouvertes.fr/tel-01577838 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES préparée dans le cadre d’une cotutelle entre la Communauté Université Grenoble Alpes et l’Universität des Saarlandes Spécialité : Physique pour les sciences du vivant Arrêté ministériel : 25 mai 2016 Présentée par Daniel Amadeus Dominic Flormann Thèse dirigée par M. Thomas Podgorski et M. Christian Wagner préparée au sein du Laboratoire Interdisciplinaire de Physique, Grenoble et de Experimentalphysik, Saarbrücken dans les Écoles doctorales de Physique de l’Université Grenoble Alpes et de Dekanat der Universität des Saarlandes
    [Show full text]
  • Red Blood Cell Aggregation in Preterm and Term Neonates and Adults
    1356 LINDERKAMP ET AL. 003 1-3998/84/18 12-1356$02.00/0 PEDIATRIC RESEARCH Vol. 18, No. 12, 1984 Copyright O 1984 International Pediatric Research Foundation, Inc. Printed in U.S. A. Red Blood Cell Aggregation in Preterm and Term Neonates and Adults OTWIN LINDERKAMP, PATRICK OZANNE, PAUL Y. K. WU, AND HERBERT J. MEISELMAN Department of Pediatrics, University of Heidelberg, Federal Republic of Germany and Department of Physiology and Biophysics and Department of Pediatrics, University of Southern California, Los Angeles, California 90024 ABSTRACT. Aggregation of red blood cells (RBC) is a only during stasis or at low shear stresses (5, 22, 23). ~t high major determinant of blood viscosity and of blood circula- shear stresses (about 3 dynes/cm2 or more), RBC aggregates are tion through vessels with slow flow (i.e. veins). RBC ag- rapidly dispersed (23). Thus, RBC aggregation usually takes place gregation and plasma fibrinogen were studied in placental only in the venous portion of the circulation where the blood blood samples from 25 neonates with 24 to 41 wk of flow rate is slow and the fluid shear stresses are low. RBC gestation and in blood from 13 normal adults. The rate and aggregation may occur in other sections of the circulation, how- final extent of RBC aggregation were measured by means ever, under pathophysiological situations of reduced blood flow of a rheoscope (increase in light transmission during blood (i.e. shock). Conversely, increased RBC aggregation (e.g. as a stasis). Both the rate and extent of RBC aggregation were result of high fibrinogen level) can cause lower blood flow rates, low in the premature infants, increased with gestational and this latter mechanism has been suggested as a possible factor age, and reached the highest values in the adults.
    [Show full text]