Dual Involvement of G-Substrate in Motor Learning Revealed by Gene Deletion
Dual involvement of G-substrate in motor learning revealed by gene deletion Shogo Endoa,1, Fumihiro Shutohb,1, Tung Le Dinhc,1, Takehito Okamotob, Toshio Ikedad, Michiyuki Suzukie, Shigenori Kawaharae, Dai Yanagiharaf, Yamato Satof, Kazuyuki Yamadag, Toshiro Sakamotoa, Yutaka Kirinoe, Nicholas A. Hartellh, Kazuhiko Yamaguchic, Shigeyoshi Itoharad, Angus C. Nairni, Paul Greengardj, Soichi Nagaob, and Masao Itoc,2 aUnit for Molecular Neurobiology of Learning and Memory, Okinawa Institute of Science and Technology, Uruma 904-2234, Japan; bLaboratory for Motor Learning Control, cLaboratory for Memory and Learning, dLaboratory for Behavioral Genetics, and gSupport Unit for Animal Experiment, Research Resources Center, RIKEN Brain Science Institute, Wako 351-0198, Japan; eLaboratory for Neurobiophysics, School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan; fDepartment of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan; hDepartment of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom; iDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT 06519; and jLaboratory for Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY 10021-6399 Contributed by Masao Ito, December 30, 2008 (sent for review December 7, 2008) In this study, we generated mice lacking the gene for G-substrate, pathway acts as a modulator whose requirement for LTD may a specific substrate for cGMP-dependent protein kinase
[Show full text]