Supplement to the 1987 Bibliography
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TREE NOTES CALIFORNIA DEPARTMENT of FORESTRY and FIRE PROTECTION Arnold Schwarzenegger Andrea E
TREE NOTES CALIFORNIA DEPARTMENT OF FORESTRY AND FIRE PROTECTION Arnold Schwarzenegger Andrea E. Tuttle Michael Chrisman Governor Director Secretary for Resources State of California The Resources Agency NUMBER: 28 JANUARY 2004 Ips Beetles in California Pines by Donald R. Owen Forest Pest Management Specialist, 6105 Airport Road, Redding, CA 96022 There are a number of bark beetle species that species, climate, and other factors, Ips may attack and kill pines in California. Foremost complete from one to many generations per among these are species of Dendroctonus and year. Under ideal conditions, a single Ips. Although species of Dendroctonus are generation may be completed in about 45 considered to be the most aggressive tree days. Ips killers, species of can be significant pests Ips under certain circumstances and/or on certain are shiny black to reddish brown, hosts. Nearly all of California’s native pines cylindrical beetles, ranging in size from about Ips 3 - 6.5 cm. A feature which readily areattackedbyoneormorespeciesof . Dendroctonus Some species of Ips also attack spruce, but are distinguishes them from beetles not considered to be significant pests in is the presence of spines on the posterior end California. of the wing covers. There may be between 3-6 pairs of spines, the size, number and While numerous bark beetles colonize pines, arrangement of which are unique for each only a handful are capable of killing live trees. The majority of bark beetles, including species of Ips, are secondary invaders that colonize recently dead, dying, or weakened trees. Those species of Ips that kill trees, do so opportunistically and typically only kill trees under stress. -
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional De Biodiversidad (Inbio)
Atta: Information Technologies for Conservation and Sustainable Use of Biodiversity Instituto Nacional de Biodiversidad (INBio) Company: Instituto Nacional de Biodiversidad (INBio) Website: http://www.inbio.ac.cr Social network outlets: www.facebook.com/inbio / www.twitter.com/inbiocr National and International Accolades: The project was recognized with the Tech Museum Award in 2003, organized by the Tech Museum of Innovation. Also with the award Augusto González de Linares of Environment in 2004, organized by the Cantabria University, the Environmental counsel and Territorial Organization of the Cantabria government and the company Residuos de Cantabria. In addition, it reached 1st place on the II National Contest of Websites in 2005 organized by the Ministry of Science, Technology and Telecommunications (MICITT), the Costa Rican Electrical Institute (ICE) and Radiográfica Costarricense (RACSA). Reached 2nd place on the Ibero-American best portals of 2005, organized by the Asociación Hispanoamericana de Centros de Investigación y Empresas de Telecomunicaciones (AHCIET) It was also named the winner of the Green Solution category on the “Costa Rica Verde e Inteligente” Awards (CAMTIC, 2015) Company Description: The National Biodiversity Institute (INBio) is a research and biodiversity management center, established in 1989 to support efforts to learn about biological biodiversity of Costa Rica and promote its sustainable use. The institute works under the premise that the better way to preserve biodiversity is by learning about it, studying it, appreciating it and taking advantage of the opportunities that it offers in order to improve the quality of life of human beings. It is a civil society organization, non-governmental and with a nonprofit philosophy, that works with a public interest end. -
Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure. -
Envenomations in Humans Caused by The
linica f C l To o x l ic a o n r l o u g o y J Amaral et al., J Clin Toxicol 2018, 8:4 Journal of Clinical Toxicology DOI: 10.4172/2161-0495.1000392 ISSN: 2161-0495 Case Report Open Access Envenomations in Humans Caused by the Venomous Beetle Onychocerus albitarsis: Observation of Two Cases in São Paulo State, Brazil Amaral ALS1*, Castilho AL1, Borges de Sá AL2 and Haddad V Jr3 1Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil 2Private Clinic, Botucatu, São Paulo State, Brazil 3Departamento de Dermatologia e Radioterapia, Faculdade de Medicina, Universidade Estadual Paulista – UNESP, CP 557, CEP 18618-000, Botucatu, São Paulo State, Brazil *Corresponding author: Antonio L. Sforcin Amaral, Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CEP 18618-000, Botucatu, São Paulo State, Brazil, Email: [email protected] Received date: July 23, 2018; Accepted date: August 21, 2018; Published date: August 24, 2018 Copyright: ©2018 Amaral ALS, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Beetles (Coleoptera) are the most diverse group of animals in the world and occur in many environments. In Atlantic and Amazon rainforests, the scorpion-beetle Onychocerus albitarsis (Cerambycidae), can be found. It has venom glandules and inoculators organs in the antenna extremities. Two injuries in humans are reported, showing different patterns of skin reaction after the stings. -
11-16589 PRA Record Saperda Candida
PRA Saperda candida 11-16589 (10-15760, 09-15659) European and Mediterranean Plant Protection Organisation Organisation Européenne et Méditerranéenne pour la Protection des Plantes Guidelines on Pest Risk Analysis Decision-support scheme for quarantine pests Version N°3 Pest Risk Analysis for Saperda candida Pest risk analysts: Expert Working group for PRA for Saperda candida (met in 2009-11) ANDERSON Helen (Ms) - The Food and Environment Research Agency (GB) AGNELLO Arthur (Mr) - Department of Entomology New York State Agricultural Experiment Station(USA) BAUFELD Peter (Mr) - Julius Kühn Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health (DE) GILL Bruce D. (Mr) - Head Entomology, Ottawa Plant Laboratories, C.F.I.A. (CA) PFEILSTETTER Ernst (Mr) - Julius Kühn Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for National and International Plant Health (DE) (core member) STEFFEK Robert (Mr) - Austrian Agency for Health and Food Safety (AGES), Institute for Plant Health (AT) (core member) VAN DER GAAG Dirk Jan (Mr) - Plant Protection Service (NL) (core member) The Section on risk management was reviewed by the EPPO Panel on Phytosanitary Measures in 2010-02-18. 1 PRA Saperda candida Stage 1: Initiation 1 Identification of a In summer 2008, the presence of Saperda candida was detected for the first time in Germany and in Europe (Nolte & Give the reason for performing the PRA single pest Krieger, 2008). This wood boring insect was observed on the island of Fehmarn on urban trees ( Sorbus intermedia and other host plants) and eradication measures were taken against it. S. candida is considered as a pest of apple trees and other tree species in North America. -
Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies. -
Plant Health Portal, and the Forestry Commission Website Also Has Further Information
Plant Health: Plant Passporting Updates Number 11, May 2018 In this update: Xylella fastidiosa Plant Passport fees Protected Zone changes New Plant Health Law Oak Processionary Moth Other pests and diseases If you have queries, please speak to your local inspector or please research through the web links. Kind regards, Edward Birchall Principal Plant Health & Seeds Inspector Xylella fastidiosa Please remain alert to the risks posed by the bacterial disease X. fastidiosa and make informed buying decisions and careful sourcing, traceability and good hygiene measures, to reduce the risk of introducing the disease to the UK. Current demarcated outbreaks are in southern Italy, the PACA region of France and Corsica, a site in Germany between Saxony and Thuringia, on mainland Spain in the Valencia region, and in all the X. fastidiosa on olive in Italy Balearic Islands. See the maps and names of outbreak (demarcated) areas on the European website. In April 2018 Spain detected X. fastidiosa for the first time in olive trees near to Madrid, outside the current outbreak area in the region of Valencia. There has also been a finding on Polygala myrtifolia plants in a glasshouse in Almeria. What authorised plant passporters must do: Hosts to X. fastidiosa are listed on the European Commission database and must move with a plant passport within and between Member States. There must be an annual authorisation of premises with testing of plants with suspect symptoms, with additional testing requirements for the 6 high risk hosts of: Olive (Olea europaea), Nerium oleander, Lavandula dentata, Almond (Prunus dulcis), Polygala myrtifolia and Coffea. -
Litteratura Coleopterologica (1758–1900)
A peer-reviewed open-access journal ZooKeys 583: 1–776 (2016) Litteratura Coleopterologica (1758–1900) ... 1 doi: 10.3897/zookeys.583.7084 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes Yves Bousquet1 1 Agriculture and Agri-Food Canada, Central Experimental Farm, Ottawa, Ontario K1A 0C6, Canada Corresponding author: Yves Bousquet ([email protected]) Academic editor: Lyubomir Penev | Received 4 November 2015 | Accepted 18 February 2016 | Published 25 April 2016 http://zoobank.org/01952FA9-A049-4F77-B8C6-C772370C5083 Citation: Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1–776. doi: 10.3897/zookeys.583.7084 Abstract Bibliographic references to works pertaining to the taxonomy of Coleoptera published between 1758 and 1900 in the non-periodical literature are listed. Each reference includes the full name of the author, the year or range of years of the publication, the title in full, the publisher and place of publication, the pagination with the number of plates, and the size of the work. This information is followed by the date of publication found in the work itself, the dates found from external sources, and the libraries consulted for the work. Overall, more than 990 works published by 622 primary authors are listed. For each of these authors, a biographic notice (if information was available) is given along with the references consulted. Keywords Coleoptera, beetles, literature, dates of publication, biographies Copyright Her Majesty the Queen in Right of Canada. -
Report of a Pest Risk Analysis for Platypus Parallelus (Fabricus, 1801) for Turkey
Bulletin OEPP/EPPO Bulletin (2015) 45 (1), 112–118 ISSN 0250-8052. DOI: 10.1111/epp.12190 Report of a pest risk analysis for Platypus parallelus (Fabricus, 1801) for Turkey E. M.Gum€ us€ß and A. Ergun€ Izmir_ Agricultural Quarantine Directorate, PO 35230, Konak, Izmir,_ Turkey; e-mail: [email protected] Invasive bark and ambrosia beetles (Curculionidae: Scolytinae and Platypodinae) are increasingly responsible for damage to forests, plantations and orchards worldwide. They are usually closely associated with fungi, which may be pathogenic causing tree mortal- ity. Stressed or weakened trees are particularly subject to attack, as is recently felled, non-treated wood. This PRA report concerns the ambrosia beetle Platypus parallelus (Euplatypus parallelus, Fabricus, 1801) (Coleoptera: Scolytidae), which was detected in official controls. The PRA area is Turkey. P. parallelus is not on the A1 or A2 list for Turkey but the Regulation on Plant Quarantine (3 December 2011-OJ no: 28131) Article 13 (5) indicates that pests which are assessed to pose a risk for Turkey following PRA that are not present in the above lists and plants, wood, plant products and other mate- rials contaminated by these organisms are banned from entry into Turkey. This risk assessment follows the EPPO Standard PM 5/3(5) Decision-support scheme for quarantine pests and uses the terminology defined in ISPM 5 Glossary of Phytosanitary Terms. This paper addresses the possible risk factors caused by Platypus parallelus (Euplatypus parallelus, Fabricus, 1801) in Turkey. Terms (available at https://www.ippc.int/index.php). The Introduction PRA area is Turkey. -
Hymenoptera: Formicidae) in Brazilian Forest Plantations
Forests 2014, 5, 439-454; doi:10.3390/f5030439 OPEN ACCESS forests ISSN 1999-4907 www.mdpi.com/journal/forests Review An Overview of Integrated Management of Leaf-Cutting Ants (Hymenoptera: Formicidae) in Brazilian Forest Plantations Ronald Zanetti 1, José Cola Zanuncio 2,*, Juliana Cristina Santos 1, Willian Lucas Paiva da Silva 1, Genésio Tamara Ribeiro 3 and Pedro Guilherme Lemes 2 1 Laboratório de Entomologia Florestal, Universidade Federal de Lavras, 37200-000, Lavras, Minas Gerais, Brazil; E-Mails: [email protected] (R.Z.); [email protected] (J.C.S.); [email protected] (W.L.P.S.) 2 Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-Mail: [email protected] 3 Departamento de Ciências Florestais, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe State, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-31-389-925-34; Fax: +55-31-389-929-24. Received: 18 December 2013; in revised form: 19 February 2014 / Accepted: 19 February 2014 / Published: 20 March 2014 Abstract: Brazilian forest producers have developed integrated management programs to increase the effectiveness of the control of leaf-cutting ants of the genera Atta and Acromyrmex. These measures reduced the costs and quantity of insecticides used in the plantations. Such integrated management programs are based on monitoring the ant nests, as well as the need and timing of the control methods. Chemical control employing baits is the most commonly used method, however, biological, mechanical and cultural control methods, besides plant resistance, can reduce the quantity of chemicals applied in the plantations. -
Expressed Sequence Tags from Atta Laevigata and Identification of Candidate Genes for the Control of Pest Leaf-Cutting Ants Rodovalho Et Al
Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Rodovalho et al. Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 (17 June 2011) Rodovalho et al. BMC Research Notes 2011, 4:203 http://www.biomedcentral.com/1756-0500/4/203 RESEARCHARTICLE Open Access Expressed sequence tags from Atta laevigata and identification of candidate genes for the control of pest leaf-cutting ants Cynara M Rodovalho1, Milene Ferro1, Fernando PP Fonseca2, Erik A Antonio3, Ivan R Guilherme4, Flávio Henrique-Silva2 and Maurício Bacci Jr1* Abstract Background: Leafcutters are the highest evolved within Neotropical ants in the tribe Attini and model systems for studying caste formation, labor division and symbiosis with microorganisms. Some species of leafcutters are agricultural pests controlled by chemicals which affect other animals and accumulate in the environment. Aiming to provide genetic basis for the study of leafcutters and for the development of more specific and environmentally friendly methods for the control of pest leafcutters, we generated expressed sequence tag data from Atta laevigata, one of the pest ants with broad geographic distribution in South America. Results: The analysis of the expressed sequence tags allowed us to characterize 2,006 unique sequences in Atta laevigata. Sixteen of these genes had a high number of transcripts and are likely positively selected for high level of gene expression, being responsible for three basic biological functions: energy conservation through redox reactions in mitochondria; cytoskeleton and muscle structuring; regulation of gene expression and metabolism. -
Disruption of Coniferophagous Bark Beetle (Coleoptera: Curculionidae: Scolytinae) Mass Attack Using Angiosperm Nonhost Volatiles: from Concept to Operational Use
The Canadian Entomologist (2021), 153,19–35 Published on behalf of the doi:10.4039/tce.2020.63 Entomological Society of Canada ARTICLE Disruption of coniferophagous bark beetle (Coleoptera: Curculionidae: Scolytinae) mass attack using angiosperm nonhost volatiles: from concept to operational use Dezene P.W. Huber1* , Christopher J. Fettig2 , and John H. Borden3 1Faculty of Environment, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, V2N 4Z9, Canada, 2Pacific Southwest Research Station, United States Department of Agriculture Forest Service, 1731 Research Park Drive, Davis, California, 95618, United States of America, and 3JHB Consulting, 6552 Carnegie Street, Burnaby, British Columbia, V5B 1Y3, Canada *Corresponding author. Email: [email protected] (Received 24 June 2020; accepted 22 September 2020; first published online 13 November 2020) Abstract Although the use of nonhost plants intercropped among host crops has been a standard agricultural prac- tice for reducing insect herbivory for millennia, the use of nonhost signals to deter forest pests is much more recent, having been developed over the past several decades. Early exploratory studies with synthetic nonhost volatile semiochemicals led to targeted electrophysiological and trapping experiments on a variety of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) across three continents. This work disclosed a suite of antennally and behaviourally active nonhost volatiles, which are detected in common across a range of coniferophagous bark beetles. It also established the fact that dispersing bark and ambro- sia beetles detect nonhost signals while in flight and avoid nonhost trees without necessarily landing on them. Later work showed that groups of synthetic nonhost volatiles, sometimes combined with insect- derived antiaggregants, are effective in protecting individual trees and forest stands.