I. Progress Toward the Development of an Alkyl Heck Reaction II

Total Page:16

File Type:pdf, Size:1020Kb

I. Progress Toward the Development of an Alkyl Heck Reaction II I. Progress Toward the Development of an Alkyl Heck Reaction II. Preparation of an Unusual Palladacycle Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Jimmy Alvarez Graduate Program in Chemistry The Ohio State University 2010 Thesis Committee: Professor James P. Stambuli Professor Jovica Badjic Copyright by Jimmy Malery Alvarez 2010 Abstract Transition-metals have been an area of high interest in organic chemistry because of the myriad of chemical transformations they can achieve. The Heck reaction is an example of these tranformations and widely used in organic synthesis. But, it is limited because one can only use either aryl or alkenyl halides. The first topic that will be discussed in this thesis is the progress made toward developing an alkyl Heck reaction. The final goal was not achieved but a reductive alkylation on non-activated alkenes was accomplished. The second topic deals with an interesting new palladacycle. Palladacycles have many applications in organic and bio-organic chemistry. A few of their applications are as catalyst, pre- catalyst, chiral auxiliaries and as mesogenic and photoluminescent agents. Palladacycle A was tested to see if it was the catalytically active Pd species in reactions catalyzed by Pd(OAc)2 and P(t-Bu)3. It was found that palladacycle A was not the active catalyst but has potential as a pre- catalyst. The optimal conditions to afford palladacycle A were also established. ii Dedication To my family. iii Acknowledgments I would like to begin by thanking Professor James P. Stambuli, my advisor, for allowing me to work in his group during my graduate career at The Ohio State University. He has been a very good mentor; his up-front demeanor has helped me to mature as a chemist and a person. His vast knowledge in both inorganic and organic chemistry was always inspirational. James’ advice and guidance supported me through my project from the very beginning. His drive and ambition rub off on his students and helps us become better chemist. The research going on in the Stambuli lab is amazing and will only get better. I also would like to thank Professor Jovica Badjic for serving on my thesis committee. I would also like to thank the entire Stambuli group who. First, Dr. Nicolas Proust, thank you for answering so many questions and proofreading this thesis. A very special shout-out goes to William Henderson (Big 6), Sean Whittemore (Chankla), Chris Check (Baby Check) and Matt Lauer (Stambuli Rules), for all the unforgettable weekends at Baby Check’s and Big 6’s. It wouldn’t have been the same without you guys. Brenda and Kamala you can finally take the earmuffs off. Thanks for all the birthday cakes Brenda, the banana cheese cake is still the best. I would also like to mention the rest of our group members who were always willing to lend a helping hand: Chad, Matt V., Mathieu and Carla. Last but not least our undergrads Eric, Jen, and Zack. iv My final thanks go to my parent, little brother, and my best friends Tasha, Ronald and Antwyne, (I’m finally coming home) for everything they have done for me and always being behind me when I needed them. None of this would have been possible without you. v Vita September 8th 1985 ….......................................................Born – Los Angeles, California, USA May 2007...........................................................................B. S. Chemistry, Edinboro University of Pennsylvania, Edinboro, Pennsylvania August 2007- Present……………………………………..Graduate Teaching Assistant `The Ohio State University Publications Henderson, W.; Eichman, C.; Alvarez, J.; Gallucci, J.; Stambuli, J. “An Unusual Palladium(II) Complex from Palladium Acetate and Tri-tert-butyl Phosphine.” Organometallics, 2010, Manuscript in Preparation. Field of Study Major Field: Organic Chemistry vi Table of Contents Abstract ............................................................................................................................................ ii Dedication ....................................................................................................................................... iii Acknowledgments........................................................................................................................... iv Vita.................................................................................................................................................. vi List of Figures ................................................................................................................................. ix List of Tables ................................................................................................................................... x List of Schemes ............................................................................................................................... xi List of Abbreviations .................................................................................................................... xiii Chapter 1 ...................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 The Heck Reaction ............................................................................................................... 3 1.3 Palladacycle ......................................................................................................................... 6 Chapter 2 .................................................................................................................................... 10 2.1 Background Information .................................................................................................... 10 2.2 Synthesis of the Heck Product ........................................................................................... 11 2.3 Results and Discussion ...................................................................................................... 15 2.4 Ethereal Coordinating Alkenes .......................................................................................... 15 2.5 Pyridyl Coordinating Alkenes ............................................................................................ 19 2.6 Mechanistic Considerations ............................................................................................... 22 2.7 Solvent Selection ............................................................................................................... 25 2.8 Base Selection .................................................................................................................... 26 2.9 Phosphine Selection ........................................................................................................... 28 2.10 Further Optimization .......................................................................................................... 29 2.11 Conclusion ..................................................................................................................... 32 Chapter 3 .................................................................................................................................... 33 3.1 Background ........................................................................................................................ 33 vii 3.2 Results and Discussion ...................................................................................................... 34 3.3 Synthesis of Palladacycle A ............................................................................................... 34 3.4 Variable Temperature NMR Experiments ......................................................................... 37 3.5 Amination Reactions .......................................................................................................... 40 3.7 Conclusion ......................................................................................................................... 45 Chapter 4 .................................................................................................................................... 46 4.1 General Methods ................................................................................................................ 46 4.2 Chapter 2: Experimental Methods ..................................................................................... 47 4.3 Chapter 3: Experimental Methods ..................................................................................... 54 Appendix .................................................................................................................................... 56 Crystal Data ............................................................................................................................... 65 Bibliography .............................................................................................................................. 93 viii List of Figures 1.1 Palladacycle A .................................................................................................................... 7 1.2 Types of Palladacycles ........................................................................................................ 8 1.3 Palladacycle B ....................................................................................................................
Recommended publications
  • Stilbene Synthesis by Mizoroki–Heck Coupling Reaction Under Microwave Irradiation
    An effective Pd nanocatalyst in aqueous media: stilbene synthesis by Mizoroki–Heck coupling reaction under microwave irradiation Carolina S. García, Paula M. Uberman and Sandra E. Martín* Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2017, 13, 1717–1727. INFIQC-CONICET- Universidad Nacional de Córdoba, Departamento doi:10.3762/bjoc.13.166 de Química Orgánica, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Received: 25 April 2017 Argentina Accepted: 04 August 2017 Published: 18 August 2017 Email: Sandra E. Martín* - [email protected] Associate Editor: L. Vaccaro * Corresponding author © 2017 García et al.; licensee Beilstein-Institut. License and terms: see end of document. Keywords: aqueous reaction medium; MAOS; Mizoroki–Heck reaction; Pd nanoparticle; sustainable organic synthesis Abstract Aqueous Mizoroki–Heck coupling reactions under microwave irradiation (MW) were carried out with a colloidal Pd nanocatalyst stabilized with poly(N-vinylpyrrolidone) (PVP). Many stilbenes and novel heterostilbenes were achieved in good to excellent yields starting from aryl bromides and different olefins. The reaction was carried out in a short reaction time and with low catalyst loading, leading to high turnover frequency (TOFs of the order of 100 h−1). The advantages like operational simplicity, high robust- ness, efficiency and turnover frequency, the utilization of aqueous media and simple product work-up make this protocol a great option for stilbene syntheses by Mizoroki–Heck reaction. Introduction Palladium-catalyzed reactions have emerged as an important basic types of Pd-catalyzed reactions, particularly the vinyl- tool for organic synthesis. Among them, cross-coupling and ation of aryl/vinyl halides or triflates [7-10], explored not only coupling reactions have been broadly applied for C–C and in the inter- and intramolecular version [2,11-13], but also in C–heteroatom bond formation [1-6].
    [Show full text]
  • Mechanisms of the Mizoroki-Heck Reaction
    P1: OTA c01 JWBK261-Oestreich December 16, 2008 10:9 Printer: Yet to come 1 Mechanisms of the Mizoroki–Heck Reaction Anny Jutand Departement´ de Chimie, Ecole Normale Superieure,´ CNRS, 24 Rue Lhomond, Paris Cedex 5, France 1.1 Introduction The palladium-catalysed Mizoroki–Heck reaction is the most efficient route for the vinyla- tion of aryl/vinyl halides or triflates. This reaction, in which a C C bond is formed, proceeds in the presence of a base (Scheme 1.1) [1, 2]. Nonconjugated alkenes are formed in re- actions involving cyclic alkenes (Scheme 1.2) [1e, 2a,c,e,g] or in intramolecular reactions (Scheme 1.3) [2b,d–g] with creation of stereogenic centres. Asymmetric Mizoroki–Heck reactions may be performed in the presence of a chiral ligand [2]. The Mizoroki–Heck reaction has been intensively developed from a synthetic and mechanistic point of view, as expressed by the impressive number of reviews and book chapters [1, 2]. In the late 1960s, Heck reported that arylated alkenes were formed in the reaction of alkenes with a stoichiometric amount of [Ar–Pd Cl] or [Ar–Pd–OAc], generated in situ by reacting ArHgCl with PdCl2 or ArHgOAc with Pd(OAc)2 respectively [3]. A mechanism was proposed which involves a syn migratory insertion of the alkene into the Ar–Pd bond, followedbyasyn β-hydride elimination of a hydridopalladium [HPdX] (X = Cl, OAc) (Scheme 1.4a). In the case of cyclic alkenes, in which no syn β-hydride is available, a syn β-hydride elimination occurs, leading to a nonconjugated alkene (Scheme 1.4b).
    [Show full text]
  • Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry
    Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 244 _____________________________ _____________________________ Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry BY KRISTOFER OLOFSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Organic Pharmaceutical Chemistry presented at Uppsala University in 2001. Abstract Olofsson, K. 2001. Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 244. 74 pp. Uppsala. ISBN 91–554–4883–6 The palladium-catalysed Heck-reaction has been utilised in organic synthesis, where the introduction of aryl groups at the internal, β-carbon of different allylic substrates has been performed with high regioselectivity. The β-stabilising effect of silicon enhances the regiocontrol in the internal arylation of allyltrimethylsilane, while a coordination between palladium and nitrogen induces very high regioselectivities in the arylation of N,N-dialkylallylamines and the Boc-protected allylamine, producing β-arylated arylethylamines, which are of interest for applications in medicinal chemistry. Phthalimido-protected allylamines are arylated with poor to moderate regioselectivity. Single-mode microwave heating can reduce the reaction times of Heck-, Stille- and radical mediated reactions drastically from approximately 20 hours to a few minutes with, in the majority of cases, retained, high
    [Show full text]
  • Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic C-H Activation
    Article Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic CÀH Activation Anna Tomberg, Michael E´ ric Muratore, Magnus Jan Johansson, Ina Terstiege, Christian Sko¨ ld, Per-Ola Norrby per-ola.norrby@astrazeneca. com HIGHLIGHTS Directing group strength for ortho-palladation can be predicted quantum chemically Correlation with fragments allow regioselectivity predictions in complex molecules Directing strength is enhanced by deprotonation under the reaction conditions Palladation in between two directing groups is disfavored sterically; no synergy Tomberg et al., iScience 20, 373–391 October 25, 2019 ª 2019 The Author(s). https://doi.org/10.1016/ j.isci.2019.09.035 Article Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic CÀH Activation Anna Tomberg,1 Michael E´ ric Muratore,2 Magnus Jan Johansson,2 Ina Terstiege,3 Christian Sko¨ ld,4 and Per-Ola Norrby5,6,* SUMMARY Efficient functionalization of CÀH bonds can be achieved using transition metal catalysts, such as Pd(OAc)2. To better control the regioselectivity in these reactions, some functional groups on the sub- strate may be used as directing groups, guiding the reactivity to an ortho position. Herein, we describe a methodology to score the relative strength of such directing groups in palladium-catalyzed aromatic CÀH activation. The results have been collected into a scale that serves to predict the regio- selectivity on molecules with multiple competing directing groups. We demonstrate that this scale yields accurate predictions on over a hundred examples, taken from the literature. In addition to the regioselectivity prediction on complex molecules, the knowledge of the relative strengths of directing groups can also be used to work with new combinations of functionalities, exploring un- charted chemical space.
    [Show full text]
  • Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization
    !"#$%&"'&()%$&*+&,-$&./01),)#23$/&4++5#),*6$& 1-#"7"8-$+2#$+$&9*:$7*3),*"+& Li-Ping Xu,a,b Brandon E. Haines,c Manjaly J. Ajitha,a Kei Murakami,d Kenichiro Itami,*,d and Djamaladdin G. Musaev*,a a Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA b School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China c Westmont College, Department of Chemistry, Santa Barbara CA, 93108, USA d Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464- 8602, Japan KEYWORDS: Palladium catalyst, polycyclic aromatic hydrocarbon, C-H functionalization, DFT, base effect ABSTRACT By using computation, the detailed mechanism of the Pd-catalyzed annulative chlorophenylene dimerization has been elucidated and the roles of the base have been identified. It is shown that the initial steps of this reaction are the active catalyst formation and the first C–Cl bond activation proceeds via the “base-assisted oxidative addition” mechanism. Overall, these steps of the reaction proceed via 16.2 kcal/mol free energy barrier for the C–Cl bond activation and are highly exergonic. Importantly, the base directly participates in the C–Cl bond cleavage introduces a mechanistic switch of the Pd(0)/Pd(II) oxidation and makes the reaction more exergonic. The following steps of the reaction are palladacycle and Pd-aryne formations, among which the palladacycle formation is found to be favorable: it proceeds with a moderate C–H activation barrier and is slightly exergonic. Although the Pd-aryne formation requires a slightly lower energy barrier, it is highly endergonic: therefore, the participation of the Pd-aryne complex, or its derivatives, in the Pd- catalyzed annulative chlorophenylene dimerization in the presence of Cs2CO3 seems to be unlikely.
    [Show full text]
  • Heck Reaction Chem 115
    Myers The Heck Reaction Chem 115 Reviews: Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E.Tetrahedron 2011, 67, 2815–2831. • Pd(II) is reduced to the catalytically active Pd(0) in situ, typically through the oxidation of a Belestskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. phosphine ligand. • Intramolecular: Link, J. T.; Overman, L. E. In Metal-catalyzed Cross-coupling Reactions, Diederich, F., and Pd(OAc)2 + H2O + nPR3 + 2R'3N Pd(PR3)n-1 + O=PR3 + 2R'3N•HOAc Eds.; Wiley-VCH: New York, 1998, pp. 231–269. Gibson, S. E.; Middleton, R. J. Contemp. Org. Synth. 1996, 3, 447–471. Ozawa, F.; Kubo, A.; Hayashi, T. Chemistry Lett. 1992, 2177–2180. • Asymmetric: McCartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122–5150. • Ag+ / Tl+ salts irreversibly abstract a halide ion from the Pd complex formed by oxidative • Solid phase: addition. Reductive elimination from the cationic complex is probably irreversible. Franzén, R. Can. J. Chem. 2000, 78, 957–962. • Dehydrogenative: • An example of a proposed mechanism involving cationic Pd: Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170–1214. General transformation: Pd catalyst Ph–Br Ph CH3O2C CH3O2C Pd(II) or Pd(0) catalyst Ag+ R' R–X + R' + HX base R R = alkenyl, aryl, allyl, alkynyl, benzyl X = halide, triflate R' = alkyl, alkenyl, aryl, CO R, OR, SiR 2 3 Pd(II) AgHCO 2 L; 2 e – • Proposed mechanism involving neutral Pd: 3 – reductive elimination AgCO3 Ph–Br oxidative addition Pd(0)L2 Mechanism: Pd catalyst + Ph–Br Ph H–Pd(II)L2 Ph–Pd(II)L2–Br CH3O2C CH3O2C Ph Ag + CH3O2C Pd(II) KHCO + KBr 2 L; 2 e – AgBr 3 syn elimination + halide abstraction Pd(II)L2 reductive elimination oxidative addition H + K2CO3 Ph–Br H Ph–Pd(II)L2 Pd(0)L2 CH3O2C Ph H + Pd(II)L2 H–Pd(II)L2–Br Ph–Pd(II)L2–Br H Ph CH3O2C syn elimination CH3O2C H internal rotation syn addition CH3O2C H Ph CH3O2C Pd(II)L2Br syn addition H Pd(II)L2Br H H CH O C Ph 3 2 Ph CH3O2C H H H Abelman, M.
    [Show full text]
  • Pd-Pincer Complexes Containing Six-Membered Rings That Are More Active Allylation Catalysts Than Five-Membered Ring Analogues
    Pd-pincer complexes containing six-membered rings that are more active allylation catalysts than five-membered ring analogues Dan E. Wise,a Natalie E. Pridmore,a Paul G. Pringlea aSchool of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K. Abstract A series of symmetric and non-symmetric PCP-pincer complexes have been prepared and an evaluation of their activity in catalytic allylic alkylation carried out. The X-ray crystallography and NMR spectroscopy data suggest that metallacycles containing one (or two) 6-membered rings are inherently more rigid than initially anticipated. The observed catalyst activity is found to increase as the metallacycle size increases from 5 to 6. Introduction Since the pioneering work on cyclometalated phosphine pincer complexes by Shaw et al. and amine pincer complexes by van Koten et al. in the 1970s, chemists have exploited the tunability of pincer complexes to develop many thousands of variants.1,2 The rich chemistry of pincer complexes is attributed to the many points of derivatisation present, such as the donor atoms and substituents, backbone structure, metal centre, and ancillary ligands. The applications of transition metal pincer complexes in catalysis have been extensively reviewed.3–7 Most pincer complexes are derived from C2v symmetric ligands which give rise to complexes with two fused 5-membered metallacycles (i.e. 5,5-metallacycles).3 Less well studied are pincer complexes with fused 6-membered metallacycles (i.e. 6,6-metallacycles).8–10 Pincer complexes containing 6-membered metallacycles have a larger P-M-P bite angle and would be anticipated to be more conformationally flexible.
    [Show full text]
  • Palladium-Catalyzed Synthesis of Β-Hydroxy Compounds Via A
    Chemical Science EDGE ARTICLE View Article Online View Journal | View Issue Palladium-catalyzed synthesis of b-hydroxy compounds via a strained 6,4-palladacycle from Cite this: Chem. Sci., 2020, 11,7260 directed C–H activation of anilines and C–O All publication charges for this article have been paid for by the Royal Society insertion of epoxides† of Chemistry a b b Raju S. Thombal, Taisiia Feoktistova, Gisela A. Gonzalez-Montiel,´ Paul H.-Y. Cheong *b and Yong Rok Lee *a A palladium-catalyzed C–H activation of acetylated anilines (acetanilides, 1,1-dimethyl-3-phenylurea, 1- phenylpyrrolidin-2-one, and 1-(indolin-1-yl)ethan-1-one) with epoxides using O-coordinating directing groups was accomplished. This C–H alkylation reaction proceeds via formation of a previously unknown 6,4-palladacycle intermediate and provides rapid access to regioselectively functionalized b-hydroxy products. Notably, this catalytic system is applicable for the gram scale mono-functionalization of acetanilide in good yields. The palladium-catalyzed coupling reaction of the ortho-C(sp2) atom of O- Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Received 11th March 2020 coordinating directing groups with a C(sp3) carbon of chiral epoxides offers diverse substrate scope in Accepted 20th June 2020 good to excellent yields. In addition, further transformations of the synthesized compound led to DOI: 10.1039/d0sc01462a biologically important heterocycles. Density functional theory reveals that the 6,4-palladacycle leveraged À rsc.li/chemical-science in this work is significantly more strained (>10 kcal mol 1) than the literature known 5,4 palladacycles.
    [Show full text]
  • Bedford-Type Palladacycle Catalyzed Miyaura-Borylation of Aryl Halides with Tetrahydroxydiboron in Water
    Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water Item Type Article Authors Zernickel, Anna; du, weiyuan; Ghorpade, Seema; Sawant, Dinesh; Makki, Arwa; Sekar, Nagaiyan; Eppinger, Jörg Citation Zernickel A, Du W, Ghorpade S, Sawant DN, Makki AA, et al. (2018) Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water. The Journal of Organic Chemistry. Available: http://dx.doi.org/10.1021/ acs.joc.7b02771. Eprint version Post-print DOI 10.1021/acs.joc.7b02771 Publisher American Chemical Society (ACS) Journal The Journal of Organic Chemistry Rights This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Organic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/ acs.joc.7b02771. Download date 28/09/2021 03:17:04 Link to Item http://hdl.handle.net/10754/626747 Subscriber access provided by King Abdullah University of Science and Technology Library Article Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water Anna Zernickel, Weiyuan Du, Seema Ghorpade, Dinesh Nanaji Sawant, Arwa A. Makki, Nagaiyan Sekar, and Jörg Eppinger J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.7b02771 • Publication Date (Web): 09 Jan 2018 Downloaded from http://pubs.acs.org on January 14, 2018 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing.
    [Show full text]
  • Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow
    catalysts Review Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow Christophe Len 1,*, Sophie Bruniaux 1, Frederic Delbecq 2 and Virinder S. Parmar 3 1 Centre de Recherche Royallieu, Université de Technologie de Compiègne (UTC), Sorbonne Universités, CS 60319, F-60203 Compiègne CEDEX, France; [email protected] 2 Ecole Supérieure de Chimie Organique et Minérale (ESCOM), 1 rue du Réseau Jean-Marie Buckmaster, F-60200 Compiègne, France; [email protected] 3 Institute of Advanced Sciences, 86-410 Faunce Corner Mall Road, Dartmouth, MA 02747, USA; [email protected] * Correspondence: [email protected]; Tel.: +33-344-234-323 Academic Editor: Ioannis D. Kostas Received: 15 March 2017; Accepted: 25 April 2017; Published: 9 May 2017 Abstract: Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts. Keywords: palladium; continuous flow; Suzuki–Miyaura; cross-coupling 1. Introduction Among the main reactions in organic chemistry, C–C bond formation via a cross-coupling reaction catalyzed by transition metals is undoubtedly the most important and has been exploited very widely in the recent years.
    [Show full text]
  • John F. Hartwig Henry Rapoport Professor of Chemistry
    John F. Hartwig Henry Rapoport Professor of Chemistry Department of Chemistry, University of California Berkeley 718 Latimer Hall MC# 1460, Berkeley, CA 94720-1460 Email: [email protected] http://www.cchem.berkeley.edu/jfhgrp/ Personal Born August 7, 1964 in Elmhurst, IL Employment 2011-present University of California, Berkeley Henry Rapoport Professor of Chemistry. 2011-present Lawrence Berkeley National Laboratory, Berkeley Senior Faculty Scientist. 2006-2011 University of Illinois Urbana-Champaign Kenneth L. Reinhart Jr. Professor of Chemistry. 2004-2006 Yale University, New Haven, CT Irénée DuPont Professor of Chemistry. 1998-2004 Yale University, New Haven, CT Professor of Chemistry. 1996-1998 Yale University, New Haven, CT Associate Professor of Chemistry. 1992-1996 Yale University, New Haven, CT Assistant Professor of Chemistry. Appointment commenced July 1, 1992. 1990-1992 Massachusetts Institute of Technology, Cambridge, MA American Cancer Society Postdoctoral Associate. 1986-1989 University of California, Berkeley, CA Graduate Student Instructor. Taught organic chemistry to undergraduate students and inorganic chemistry to graduate students. 1985 Monsanto Japan Ltd., Kawachi, Japan Worked among an all-Japanese staff for three months on an agricultural and surface science research project. 1984 General Electric Research and Development, Schenectady, NY Synthesis of novel monomers, ionomers and polymer blends. Education 1990-1992 Massachusetts Institute of Technology, Cambridge, MA Postdoctoral Advisor: Prof. Stephen J. Lippard Studied the Pt-DNA adducts formed by an orally active platinum antitumor drug and the ability of these adducts to block DNA replication and bind cellular proteins. Designed, synthesized, and analyzed a platinum antitumor drug possessing a fluorescent ligand for in vivo monitoring. 1986-1990 University of California, Berkeley, CA Ph.D., Chemistry.
    [Show full text]
  • 1 Stilbenes Preparation and Analysis
    j1 1 Stilbenes Preparation and Analysis 1.1 General The name for stilbene (1,2-diphenylethylene) was derived from the Greek word stilbos, which means shining. There are two isomeric forms of 1,2-diphenylethylene: (E)-stilbene (trans-stilbene), which is not sterically hindered, and (Z)-stilbene (cis-stilbene), which is sterically hindered and therefore less stable. trans-stilbene cis-stilbene (E)-Stilbene has a melting point of about 125 C, while the melting point of (Z)-stilbene is 6 C. Stilbene is a relatively unreactive colorless compound practically insoluble in water [1]. trans-Stilbene isomerizes to cis-stilbene under the influence of light. The reverse path can be induced by heat or light. The stilbene feature is associated with intense absorption and fluorescence properties, which correspond to the excitation of p-electrons of the conjugated ethenediyl group into pà orbitals, as well as some other dynamic processes. The excited singlet state behavior of fl trans-stilbene is governed by uorescence from the S1 state that effectively competes with isomerization. This phenomenon of photochromism, namely, trans–cis photo- isomerization of stilbene derivatives, can be readily monitored by a single steady-state fluorescence technique. A necessary stage in the olefinic photoisomerization process, in the singlet or triplet excited state, involves twisting (about the former double bond) of stilbene fragments relative to one another. The chemistry and photochemistry of stilbenes have been extensively investigated for decades and have been reviewed [2–25]. Stilbene derivatives are synthesized relatively easily, are usually thermally and chemically stable, and possess absorption and fluorescence properties that are Stilbenes.
    [Show full text]