1 IG. Palladium I I. Basic Principles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stilbene Synthesis by Mizoroki–Heck Coupling Reaction Under Microwave Irradiation
An effective Pd nanocatalyst in aqueous media: stilbene synthesis by Mizoroki–Heck coupling reaction under microwave irradiation Carolina S. García, Paula M. Uberman and Sandra E. Martín* Full Research Paper Open Access Address: Beilstein J. Org. Chem. 2017, 13, 1717–1727. INFIQC-CONICET- Universidad Nacional de Córdoba, Departamento doi:10.3762/bjoc.13.166 de Química Orgánica, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA, Córdoba, Received: 25 April 2017 Argentina Accepted: 04 August 2017 Published: 18 August 2017 Email: Sandra E. Martín* - [email protected] Associate Editor: L. Vaccaro * Corresponding author © 2017 García et al.; licensee Beilstein-Institut. License and terms: see end of document. Keywords: aqueous reaction medium; MAOS; Mizoroki–Heck reaction; Pd nanoparticle; sustainable organic synthesis Abstract Aqueous Mizoroki–Heck coupling reactions under microwave irradiation (MW) were carried out with a colloidal Pd nanocatalyst stabilized with poly(N-vinylpyrrolidone) (PVP). Many stilbenes and novel heterostilbenes were achieved in good to excellent yields starting from aryl bromides and different olefins. The reaction was carried out in a short reaction time and with low catalyst loading, leading to high turnover frequency (TOFs of the order of 100 h−1). The advantages like operational simplicity, high robust- ness, efficiency and turnover frequency, the utilization of aqueous media and simple product work-up make this protocol a great option for stilbene syntheses by Mizoroki–Heck reaction. Introduction Palladium-catalyzed reactions have emerged as an important basic types of Pd-catalyzed reactions, particularly the vinyl- tool for organic synthesis. Among them, cross-coupling and ation of aryl/vinyl halides or triflates [7-10], explored not only coupling reactions have been broadly applied for C–C and in the inter- and intramolecular version [2,11-13], but also in C–heteroatom bond formation [1-6]. -
2. Catalysis Involving CO
2. Catalysis Involving CO (Source: Collman / Hegedus + Chiusoli / Maitlis + original papers mentioned below) !1 General Reactivity of CO-Complexes 1 is the resonance representing the pure "-donation of CO to the metal. 3 is contributing the most when the # back donation from the metal to CO is weak. The carbon is more electrophilic here. 2 is the extreme structure that evidences the # back donation of the metal to the #* of CO. !2 – Synthesis Gas and Water Gas Shift Reaction CO / H2 as feedstock. – Hydrocarbonylation (or Hydroformylation) of Olefins / Oxo Reaction Synthesis of aldehydes and alcohols from alkenes with cobalt and rhodium catalysts. – Carbonylation of Alcohols: Monsanto’s Acetic Acid Process Preparation of acetic acid from methanol and CO. !3 Synthesis Gas (Syn Gas, CO / H2) as Feedstock Steam over coal: C + H2O → CO + H2 0 0 (!ΔH 298 K = 131 kJ/mol; !ΔG1073 K= –12 kJ/mol) Steam reforming of methane: CH4 + H2O → CO + 3 H2 0 0 (!ΔH 298 K = 206 kJ/mol; !ΔG1073 K= –24 kJ/mol) Coupled with partial oxidation to give an endothermic overall reaction: H 0 2 C + H2O + O2 → CO + CO2 + H2 (Δ 298 K = –285 kJ/mol) 1 H 0 CH4 + 2 O2 → CO + 2 H2 (Δ 298 K = –36 kJ/mol) !4 Water-Gas-Shift Reaction (WGSR) Allows adjust the CO : H2 ratio by converting CO to H2: !!⇀ CO + H2O ↽!! CO2 + H2 Drawback: CO2 as byproduct. Catalysts: Heterogeneous Cr2O3 (T = 350°C) Cu-Zn-oxide (T = 200 – 300°C) Fe3O4 Homogeneous Carbonyl complexes: [FeH(CO)4]–, [RhI2(CO)2]–, [RuCl(bipy)2(CO)]+ !5 Homogeneously Catalyzed WGSR Principle: O CO OH– – CO2 M M CO M C M H – OH – + H O – ! M H 2 M + OH + H2 !6 Catalytic WGSR ! !7 Hydroformylation or Oxo Synthesis Synthesis of aldehydes and alcohols from alkenes. -
Reactions of Alkenes and Alkynes with Formaldehyde Catalyzed by Rhodium Systems Containing Phosphine Ligands
J. Mex. Chem. Soc. 2017, 61(2), 120-127 Article © 2017, Sociedad Química de México ISSN 1870-249X Reactions of alkenes and alkynes with formaldehyde catalyzed by rhodium systems containing phosphine ligands Merlín Rosales,1* Beatriz González,1 Jessely Molina,1 Homero Pérez,1 María Modroño-Alonso2 and Pablo J. Baricelli2 1 Universidad del Zulia (L.U.Z.), Facultad Experimental de Ciencias. Departamento de Química, Laboratorio de Química Inorgánica (LQI). Maracaibo (Venezuela). 2 Universidad de Carabobo, Facultad de Ingeniería, Centro de Investigaciones Químicas, Valencia (Venezuela). * Corresponding author: Tel +584143602104 FAX +582614127701 Ciudad Universitaria. Módulo 2. Maracaibo. Venezuela e-mail adress: merlin2002 @cantv.net; [email protected] (M. Rosales) Received October 18th, 2016; Accepted March 8th, 2017. Abstract. The reaction of alkenes (allyl alcohol, styrene and C6 Resumen. La reacción de alquenos (alcohol alílico, estireno y alquenos alkenes) with formaldehyde was efficiently performed by using Rh C6) con formaldehido se realizó eficientemente usando precatalizado- precatalysts formed in situ by the addition of triphenylphosphine res de Rh formados in situ por adición de trifenilfosfina (PPh3), (PPh3), 1,2-bis(diphenylphosphino)ethane (dppe) or 1,1,1-tris(diphen- 1,2-bis(difenilfosfino)etano (dffe) o 1,1,1-tris(difenilfosfinometil) etano ylphosphinomethyl)ethane (triphos) to the complex Rh(acac)(CO)2 at (trifos) al complejo Rh(acac)(CO)2 a 130ºC en 1,4-dioxano, produ- 130ºC in 1,4-dioxane, yielding their corresponding aldehydes; the best ciendo los correspondientes aldehídos. El mejor sistema catalítico fue 2 catalytic system was Rh(acac)(CO)2/2dppe, which generates the cat- Rh(acac)(CO)2/2dffe, el cual genera el complejo catiónico [Rh(k -P,P- 2 + + ionic complex [Rh(k -P,P-dppe)2] . -
Mechanisms of the Mizoroki-Heck Reaction
P1: OTA c01 JWBK261-Oestreich December 16, 2008 10:9 Printer: Yet to come 1 Mechanisms of the Mizoroki–Heck Reaction Anny Jutand Departement´ de Chimie, Ecole Normale Superieure,´ CNRS, 24 Rue Lhomond, Paris Cedex 5, France 1.1 Introduction The palladium-catalysed Mizoroki–Heck reaction is the most efficient route for the vinyla- tion of aryl/vinyl halides or triflates. This reaction, in which a C C bond is formed, proceeds in the presence of a base (Scheme 1.1) [1, 2]. Nonconjugated alkenes are formed in re- actions involving cyclic alkenes (Scheme 1.2) [1e, 2a,c,e,g] or in intramolecular reactions (Scheme 1.3) [2b,d–g] with creation of stereogenic centres. Asymmetric Mizoroki–Heck reactions may be performed in the presence of a chiral ligand [2]. The Mizoroki–Heck reaction has been intensively developed from a synthetic and mechanistic point of view, as expressed by the impressive number of reviews and book chapters [1, 2]. In the late 1960s, Heck reported that arylated alkenes were formed in the reaction of alkenes with a stoichiometric amount of [Ar–Pd Cl] or [Ar–Pd–OAc], generated in situ by reacting ArHgCl with PdCl2 or ArHgOAc with Pd(OAc)2 respectively [3]. A mechanism was proposed which involves a syn migratory insertion of the alkene into the Ar–Pd bond, followedbyasyn β-hydride elimination of a hydridopalladium [HPdX] (X = Cl, OAc) (Scheme 1.4a). In the case of cyclic alkenes, in which no syn β-hydride is available, a syn β-hydride elimination occurs, leading to a nonconjugated alkene (Scheme 1.4b). -
Hydroformylation of Formaldehyde with Rhodium Catalyst
Patentamt O JEuropâischesEuropean Patent Office © Publication number: 002 908 Office européen des brevets Bl @ EUROPEAN PATENT SPECIFICATION (46) Date of publication of patent spécification: 12.05.82 © Int. Cl.3: C 07 C 47/19, 8 01 J 31/°2' C 07 C 45/50 © Application number: 78300820.4 @ Date of filing: 1 4.1 2.78 © Hydroformylation of formaldehyde with rhodium cataiyst. © Priority: 16.12.77 US 861474 @ Proprietor: MONSANTO COMPANY Patent Department 800 North Lindbergh Boulevard © Date of publication of application: St. Louis, Missouri 631 66 (US) 11.07.79 Bulletin 79/14 @ Inventor: Spencer, Alwyn © Publication of the grant of the patent: Johnson Matthey Research Centre Blount's Court 1 2.05.82 Bulletin 82/1 9 Jonning Common Reading R64-9NH (GB) @ Designated Contracting States: © Representative: Lunt, John Cooper etal, BECHDEFRGBLUNLSE Monsanto House 1 0-1 8 Victoria Street London, SW1H ONQ(GB) "© References cited: DE- A- 3 940 432 DE - A - 2 741 589 GB - A - 1 335 531 US - A - 3 940 432 Chemical Abstracts vol. 87, no. 19. 1977, Columbus, Ohio, USA T. MIZOROKI "Syntheses of oxygen-containing C2-compounds using carbon monoxide" page 541, column 1, abstract no. 151 634g Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. -
Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 244 _____________________________ _____________________________ Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry BY KRISTOFER OLOFSSON ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy (Faculty of Pharmacy) in Organic Pharmaceutical Chemistry presented at Uppsala University in 2001. Abstract Olofsson, K. 2001. Regiocontrol in the Heck-Reaction and Fast Fluorous Chemistry. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 244. 74 pp. Uppsala. ISBN 91–554–4883–6 The palladium-catalysed Heck-reaction has been utilised in organic synthesis, where the introduction of aryl groups at the internal, β-carbon of different allylic substrates has been performed with high regioselectivity. The β-stabilising effect of silicon enhances the regiocontrol in the internal arylation of allyltrimethylsilane, while a coordination between palladium and nitrogen induces very high regioselectivities in the arylation of N,N-dialkylallylamines and the Boc-protected allylamine, producing β-arylated arylethylamines, which are of interest for applications in medicinal chemistry. Phthalimido-protected allylamines are arylated with poor to moderate regioselectivity. Single-mode microwave heating can reduce the reaction times of Heck-, Stille- and radical mediated reactions drastically from approximately 20 hours to a few minutes with, in the majority of cases, retained, high -
Hydroformylation of 1-Hexene Over Rh/Nano-Oxide Catalysts
Catalysts 2013, 3, 324-337; doi:10.3390/catal3010324 OPEN ACCESS catalysts ISSN 2073-4344 www.mdpi.com/journal/catalysts Article Hydroformylation of 1-Hexene over Rh/Nano-Oxide Catalysts Maija-Liisa Kontkanen 1, Matti Tuikka 1,2, Niko M. Kinnunen 1, Sari Suvanto 1 and Matti Haukka 1,2,* 1 Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; E-Mails: [email protected] (M.-L.K.); [email protected] (M.T.); [email protected] (N.M.K.); [email protected] (S.S.) 2 Department of Chemistry, University of Jyväskylä, P.O. Box 35, University of Jyväskylä, Finland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +358-40-805-4666; Fax: +358-4-260-2501. Received: 26 January 2013; in revised form: 25 February 2013 / Accepted: 6 March 2013 / Published: 21 March 2013 Abstract: The effect of nanostructured supports on the activity of Rh catalysts was studied by comparing the catalytic performance of nano- and bulk-oxide supported Rh/ZnO, Rh/SiO2 and Rh/TiO2 systems in 1-hexene hydroformylation. The highest activity with 100% total conversion and 96% yield of aldehydes was obtained with the Rh/nano-ZnO catalyst. The Rh/nano-ZnO catalyst was found to be more stable and active than the corresponding rhodium catalyst supported on bulk ZnO. The favorable morphology of Rh/nano-ZnO particles led to an increased metal content and an increased number of weak acid sites compared to the bulk ZnO supported catalysts. Both these factors favored the improved catalytic performance. -
Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic C-H Activation
Article Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic CÀH Activation Anna Tomberg, Michael E´ ric Muratore, Magnus Jan Johansson, Ina Terstiege, Christian Sko¨ ld, Per-Ola Norrby per-ola.norrby@astrazeneca. com HIGHLIGHTS Directing group strength for ortho-palladation can be predicted quantum chemically Correlation with fragments allow regioselectivity predictions in complex molecules Directing strength is enhanced by deprotonation under the reaction conditions Palladation in between two directing groups is disfavored sterically; no synergy Tomberg et al., iScience 20, 373–391 October 25, 2019 ª 2019 The Author(s). https://doi.org/10.1016/ j.isci.2019.09.035 Article Relative Strength of Common Directing Groups in Palladium-Catalyzed Aromatic CÀH Activation Anna Tomberg,1 Michael E´ ric Muratore,2 Magnus Jan Johansson,2 Ina Terstiege,3 Christian Sko¨ ld,4 and Per-Ola Norrby5,6,* SUMMARY Efficient functionalization of CÀH bonds can be achieved using transition metal catalysts, such as Pd(OAc)2. To better control the regioselectivity in these reactions, some functional groups on the sub- strate may be used as directing groups, guiding the reactivity to an ortho position. Herein, we describe a methodology to score the relative strength of such directing groups in palladium-catalyzed aromatic CÀH activation. The results have been collected into a scale that serves to predict the regio- selectivity on molecules with multiple competing directing groups. We demonstrate that this scale yields accurate predictions on over a hundred examples, taken from the literature. In addition to the regioselectivity prediction on complex molecules, the knowledge of the relative strengths of directing groups can also be used to work with new combinations of functionalities, exploring un- charted chemical space. -
Hydroformylation of C3 and C8 Olefins in Hydrocarbon Gas-Expanded Solvents
HYDROFORMYLATION OF C3 AND C8 OLEFINS IN HYDROCARBON GAS-EXPANDED SOLVENTS By Dupeng Liu Submitted to the graduate degree program in Chemical & Petroleum Engineering and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chairperson: Bala Subramaniam Raghunath V. Chaudhari Jon Tunge Aaron Scurto Kevin Leonard Date Defended: April 30th, 2018 The dissertation committee for Dupeng Liu certifies that this is the approved version of the following dissertation: HYDROFORMYLATION OF C3 AND C8 OLEFINS IN HYDROCARBON GAS-EXPANDED SOLVENTS Chairperson: Bala Subramaniam Date Approved: May 8th, 2018 ii Abstract Hydroformylation involves the addition of syngas to the double bond of an alkene yielding aldehydes used to produce basic building blocks for myriad consumer goods. Resource-efficient technologies that conserve feedstock and energy continue to be of interest to industry. It has been shown previously by our group that the use of CO2-expanded liquids significantly enhances the Rh-catalyzed 1-octene hydroformylation rate and selectivity. This dissertation extends this concept by employing light alkanes such as propane and n-butane as compressed solvents in propylene and 1-octene hydroformylation, respectively. Phase behavior measurements demonstrate that at identical H2 or CO fugacities in the vapor phase, the H2 and CO solubilities in either propane- or propylene-expanded solvents (PXLs) are greater than those in the corresponding neat solvents by as high as 76% at 70 °C and 1.5 MPa. The H2/CO ratio in PXLs is enhanced by simply increasing the propane partial pressure. In contrast, the H2/CO in the neat solvent at a given temperature is constant at all syngas partial pressures. -
(12) Patent Application Publication (10) Pub. No.: US 2003/0032845 A1 Han Et Al
US 20030032845A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0032845 A1 Han et al. (43) Pub. Date: Feb. 13, 2003 (54) HYDROFORMYLATION OF ETHYLENE Related U.S. Application Data OXIDE (63) Continuation-in-part of application No. 09/924,822, (76) Inventors: Yuan-Zhang Han, West Chester, PA filed on Aug. 8, 2001, now abandoned. (US); Krishnan Viswanathan, Houston, TX (US) Publication Classification Correspondence Address: (51) Int. Cl. ................................................ C07C 29/15 LYONDELL CHEMICAL COMPANY (52) U.S. Cl. ............................................ 568/862; 568/867 3801 WEST CHESTER PIKE NEWTOWN SQUARE, PA 19073 (US) (57) ABSTRACT (21) Appl. No.: 10/038,975 1,3-propanediol is formed from ethylene oxide containing formaldehyde and acetaldehyde impurities by hydroformy (22) Filed: Jan. 4, 2002 lation and hydrogenation. Patent Application Publication Feb. 13, 2003 US 2003/0032845 A1 N y so US 2003/0032845 A1 Feb. 13, 2003 HYDROFORMYLATION OF ETHYLENE OXDE wise, the procedures described in recently filed applications Ser. No. 09/882,346, 09/882,347 and 09/882,641 filed Jun. RELATED APPLICATION 15, 2001 can be employed and are incorporated herein by 0001. This application is a continuation-in-part of appli reference. cation Ser. No. 09/924,822 filed Aug. 8, 2001. 0010 Generally speaking, ethylene oxide which has been employed as feed in prior procedures is a commercial grade BACKGROUND OF THE INVENTION of ethylene oxide from which a predominance of the impu rities coproducted during ethylene oxide formation have 0002) 1. Field of the Invention been removed. Generally, the aldehyde Specifications for 0003. This invention relates to the catalytic hydroformy such commercial ethylene oxide are a maximum of 30-50 lation of ethylene oxide and especially to a process wherein ppm by weight of aldehyde expressed as acetaldehyde. -
Roles of Base in the Pd-Catalyzed Annulative Chlorophenylene Dimerization
!"#$%&"'&()%$&*+&,-$&./01),)#23$/&4++5#),*6$& 1-#"7"8-$+2#$+$&9*:$7*3),*"+& Li-Ping Xu,a,b Brandon E. Haines,c Manjaly J. Ajitha,a Kei Murakami,d Kenichiro Itami,*,d and Djamaladdin G. Musaev*,a a Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA b School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255000, China c Westmont College, Department of Chemistry, Santa Barbara CA, 93108, USA d Institute of Transformative Bio-Molecules (WPI-ITbM) and Graduate School of Science, and JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464- 8602, Japan KEYWORDS: Palladium catalyst, polycyclic aromatic hydrocarbon, C-H functionalization, DFT, base effect ABSTRACT By using computation, the detailed mechanism of the Pd-catalyzed annulative chlorophenylene dimerization has been elucidated and the roles of the base have been identified. It is shown that the initial steps of this reaction are the active catalyst formation and the first C–Cl bond activation proceeds via the “base-assisted oxidative addition” mechanism. Overall, these steps of the reaction proceed via 16.2 kcal/mol free energy barrier for the C–Cl bond activation and are highly exergonic. Importantly, the base directly participates in the C–Cl bond cleavage introduces a mechanistic switch of the Pd(0)/Pd(II) oxidation and makes the reaction more exergonic. The following steps of the reaction are palladacycle and Pd-aryne formations, among which the palladacycle formation is found to be favorable: it proceeds with a moderate C–H activation barrier and is slightly exergonic. Although the Pd-aryne formation requires a slightly lower energy barrier, it is highly endergonic: therefore, the participation of the Pd-aryne complex, or its derivatives, in the Pd- catalyzed annulative chlorophenylene dimerization in the presence of Cs2CO3 seems to be unlikely. -
Heck Reaction Chem 115
Myers The Heck Reaction Chem 115 Reviews: Felpin, F.-X.; Nassar-Hardy, L.; Le Callonnec, F.; Fouquet, E.Tetrahedron 2011, 67, 2815–2831. • Pd(II) is reduced to the catalytically active Pd(0) in situ, typically through the oxidation of a Belestskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066. phosphine ligand. • Intramolecular: Link, J. T.; Overman, L. E. In Metal-catalyzed Cross-coupling Reactions, Diederich, F., and Pd(OAc)2 + H2O + nPR3 + 2R'3N Pd(PR3)n-1 + O=PR3 + 2R'3N•HOAc Eds.; Wiley-VCH: New York, 1998, pp. 231–269. Gibson, S. E.; Middleton, R. J. Contemp. Org. Synth. 1996, 3, 447–471. Ozawa, F.; Kubo, A.; Hayashi, T. Chemistry Lett. 1992, 2177–2180. • Asymmetric: McCartney, D.; Guiry, P. J. Chem. Soc. Rev. 2011, 40, 5122–5150. • Ag+ / Tl+ salts irreversibly abstract a halide ion from the Pd complex formed by oxidative • Solid phase: addition. Reductive elimination from the cationic complex is probably irreversible. Franzén, R. Can. J. Chem. 2000, 78, 957–962. • Dehydrogenative: • An example of a proposed mechanism involving cationic Pd: Le Bras, J.; Muzart, J. Chem. Rev. 2011, 111, 1170–1214. General transformation: Pd catalyst Ph–Br Ph CH3O2C CH3O2C Pd(II) or Pd(0) catalyst Ag+ R' R–X + R' + HX base R R = alkenyl, aryl, allyl, alkynyl, benzyl X = halide, triflate R' = alkyl, alkenyl, aryl, CO R, OR, SiR 2 3 Pd(II) AgHCO 2 L; 2 e – • Proposed mechanism involving neutral Pd: 3 – reductive elimination AgCO3 Ph–Br oxidative addition Pd(0)L2 Mechanism: Pd catalyst + Ph–Br Ph H–Pd(II)L2 Ph–Pd(II)L2–Br CH3O2C CH3O2C Ph Ag + CH3O2C Pd(II) KHCO + KBr 2 L; 2 e – AgBr 3 syn elimination + halide abstraction Pd(II)L2 reductive elimination oxidative addition H + K2CO3 Ph–Br H Ph–Pd(II)L2 Pd(0)L2 CH3O2C Ph H + Pd(II)L2 H–Pd(II)L2–Br Ph–Pd(II)L2–Br H Ph CH3O2C syn elimination CH3O2C H internal rotation syn addition CH3O2C H Ph CH3O2C Pd(II)L2Br syn addition H Pd(II)L2Br H H CH O C Ph 3 2 Ph CH3O2C H H H Abelman, M.