Estimation of Phylogeny of Nineteen Sedoideae Species Cultivated in Korea Inferred from Chloroplast DNA Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Estimation of Phylogeny of Nineteen Sedoideae Species Cultivated in Korea Inferred from Chloroplast DNA Analysis The Horticulture Journal 87 (1): 132–139. 2018. e Japanese Society for doi: 10.2503/hortj.OKD-087 JSHS Horticultural Science http://www.jshs.jp/ Estimation of Phylogeny of Nineteen Sedoideae Species Cultivated in Korea Inferred from Chloroplast DNA Analysis Mi Sang Lim and Sun Hee Choi* Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women’s University, Seoul 01797, Korea The genetic diversity and relationships among plants belonging to the subfamily Sedoideae (Crassulaceae), some of which are indigenous to Korea or introduced from other countries, were determined using chloroplast (cp) nucleotide sequence analysis. To analyze genetic diversity and variation among 19 plants including species belonging to Sedum, Hylotelephium, and Phedimus, the tRNA-Leucine gene (trnL [UAA]) and adjoining spacer in chloroplast DNA (cpDNA) were sequenced and compared across species. Species were divided into two main groups based on the cpDNA sequence comparison. The generated phylogeny indicated that many native Sedum species had diverged from S. album. Members of the Phedimus and Hylotelephium species, and several Sedum species analyzed here, clustered distinctively in different groups. Using cpDNA sequence analysis, we successfully discriminated Sedoideae plants cultivated in Korea from each other, even at the intraspecific level, and the results were reflective of the morphological and biogeographical characteristics. These findings could be useful for classifying samples for proper naming, choosing breeding materials for new cultivars, or identifying species for conservation of horticultural crop resources. Key Words: classification, Crassulaceae, Hylotelephium, Phedimus, Sedum. countries, Mexico, and Far Eastern countries like Introduction China, Japan, and Korea (Stephenson, 1994). Sedum is The Crassulaceae family includes 35 genera in six known to contain about 470 species (Mayuzumi and subfamilies that are divided into two lineages, a Ohba, 2004), 22 of which are indigenous to Korea Crassula lineage and a Sedum lineage. The latter line- (http://www.nature.go.kr). The taxonomy of the sub- age is composed of three subfamilies (Echeverioideae, families in Crassulaceae is based on the number and ar- Sedoideae, and Sempervivoideae) (Berger et al., 1930). rangement of floral parts, the degree of sympetaly, and Despite the general consensus that a substantial part of the phyllotaxis, with these factors featuring in each of it is highly artificial, Berger’s classification for the larger genera (Van Ham and ’T Hart, 1998). Plants Crassulaceae has been widely used because of its com- in the genus Sedum have succulent leaves, and the flow- prehensiveness and great practical value (Van Ham ers usually have five petals, and only occasionally four and ’T Hart, 1998). Sedum, the largest genus of or six. These features, along with their chromosome Crassulaceae, is a polyphyletic genus that encompasses counts, define the genus Sedum (Ohba, 1977). While much of the morphological diversity present in the fam- the basic genome chromosome number in Sedum spe- ily. The Sedum genus is, however, still poorly character- cies is eight (x = 8), chromosome doubling has oc- ized and requires further investigation (Mort et al., curred repeatedly, and some Sedum species contain x = 2001). Plants of the genus Sedum occur across the 16, 32, and 64. Polyploidy appears to be common Northern Hemisphere, including in the Mediterranean throughout the Sedum genus, and some members also show euploidy with chromosome counts of x = 7 or 31 Received; February 7, 2017. Accepted; June 5, 2017. (Stephenson, 1994). Especially in Korea, Sedum taxon- First Published Online in J-STAGE on July 12, 2017. omy is mainly based on morphological characteristics, This work was supported by a research grant from Seoul Women’s and there is currently no accurate method of classifying University (2015), and also carried out with the support of Sedum species by genetic variation and divergence “Cooperative Research Program for Agriculture Science & from the closest relative. Hylotelephium and Phedimus Technology Development (Project No. PJ010878042016)” Rural Development Administration, Republic of Korea. species have been previously classified as Sedum spe- * Corresponding author (E-mail: [email protected]). cies (e.g., Sedum telephium) (Ohba, 1977). However, © 2018 The Japanese Society for Horticultural Science (JSHS), All rights reserved. Hort. J. 87 (1): 132–139. 2018. 133 there is still confusion in the common or public naming examine the relationships between them. Sedoideae system in Korea. Sedum species, such as species used in this study either grow naturally or have S. sarmentosum, which is known as ‘Dolnamul’ in been recently introduced to Korea and are cultivated. Korean, have been used traditionally as food. Recently, To discriminate native species from imported species Sedum species were recognized as useful plant re- and to develop hybrid cultivars showing useful new sources for landscape architecture or materials for traits in breeding programs, the genetic characteristics ground cover in Korea. Despite these uses, a classifica- and relationships need to be assessed. Therefore, we tion system for Sedum and related species based on ge- aimed to estimate the genetic relationships between netic identification has not been properly established in Sedoideae plants from various origins by examining Korea. To avoid naming confusion in the commercial cpDNA sequences. The information obtained in this market and improper identification, we aimed to identi- study could be useful for discriminating the native fy indigenous Sedum and related species and those pre- plants from each other for identification during resource viously imported and now cultivated in Korea using conservation programs. The evaluation of molecular molecular genetics data from chloroplast DNA cpDNA markers would allow the development of prop- (cpDNA) sequences to facilitate the conservation of er discrimination methods among Sedoideae plants cul- horticultural resources and breeding materials. tivated in Korea and their application for various Since DNA sequence data has led to reconstructions practical uses, including in breeding programs. of classifications that often conflict with traditional Materials and Methods taxonomy, cpDNA sequences have proven to be a valu- able tool for phylogeny construction in plants because Plant materials and genomic DNA extraction of their small size, high copy number, and maternally Nineteen sample plants were obtained from the inherited nature (Chase and Palmer, 1989; Dong et al., National Institute of Horticultural and Herbal Science 2013; Wu et al., 2010). The simultaneous alignment of located in Gyeonggi province, Korea, in May, 2014. many nucleotide sequences is an essential tool in mo- Samples comprised eleven Sedum species, five lecular biology to detect homology among species, and Phedimus species, and three Hylotelephium species the use of cpDNA in multiple sequence alignment to (Table 1). The closely related genera Aeonium and examine relationships and evolutionary changes is ad- Greenovia were used as outgroups for the analysis. The vantageous. To resolve phylogenetic relationships at species used and their overall characteristics are shown several taxonomic levels, the maturase K (matK) gene in Table 1. As the imported Sedoideae plants have been of cpDNA was used (Soltis et al., 1996). Recently, the cultivated in Korea over several years, they were used phylogeny of the Dendrobium species in Thailand was in addition to the indigenous plants. Genomic DNA was reconstructed using data from a partial matK gene and extracted using an DNeasy Plant Mini Kit (Qiagen, rDNA internal transcribed spacer (ITS) sequences USA). For each sample, 100 mg FW of plant leaves (Srikulnath et al., 2015). Using sequences in a noncod- was used. The DNA quantity and quality were mea- ing region in cpDNA, Crassulaceae species have been sured by absorbance at 260 nm with an ND 2000 spec- analyzed by several research groups for their molecular trophotometer (Nanodrop Technologies, USA), and evolution or discrimination within the genus (Van Ham isolated DNA was checked by visualization on a 1% and ’T Hart, 1998; Van Ham et al., 1994). In particular, agarose gel with ethidium bromide (EtBr). Mayuzumi and Ohba (2004) evaluated the phylogenetic positions of Eastern Asian Sedoideae plants using trnL- Amplification of cpDNA and sequencing F (spacers between tRNA-Leucine and Phenylalanine) To compare cpDNA sequence variation, regions data. Recently, trnL-F regions were applied to estimate consisting of a tRNA-UAA gene (trnL) and trnL-trnF the relationships and track the origins among 31 hostas intergenic spacer (trnL-F) located in the large single- (Lee and Maki, 2015). Random amplified polymorphic copy region of cpDNA were amplified. Samples were DNA (RAPD) has also been used previously to set con- analyzed using primers encompassing trnL and flanking servation priorities and design management strategies two intergenic spacers, trnL-F and trnT-L, as previously for taxa in Sedum species (Olfelt et al., 2001). Korean described by Taberlet et al. (1991). PCR amplification Sedum plants, in particular, are thought to have diverse reactions contained 10–20 ng of genomic DNA, 20 pM phenotypes at both the species and interspecies levels of each primer (Taberlet et al., 1991), 10 mM Tris-HCl (Kwon and Jeong, 1999). When investigating the rela- at pH 8.3, 50 mM KCl, 1.5 mM MgCl2, 0.25 mM
Recommended publications
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • CRASSULACEAE 景天科 Jing Tian Ke Fu Kunjun (傅坤俊 Fu Kun-Tsun)1; Hideaki Ohba 2 Herbs, Subshrubs, Or Shrubs
    Flora of China 8: 202–268. 2001. CRASSULACEAE 景天科 jing tian ke Fu Kunjun (傅坤俊 Fu Kun-tsun)1; Hideaki Ohba 2 Herbs, subshrubs, or shrubs. Stems mostly fleshy. Leaves alternate, opposite, or verticillate, usually simple; stipules absent; leaf blade entire or slightly incised, rarely lobed or imparipinnate. Inflorescences terminal or axillary, cymose, corymbiform, spiculate, racemose, paniculate, or sometimes reduced to a solitary flower. Flowers usually bisexual, sometimes unisexual in Rhodiola (when plants dioecious or rarely gynodioecious), actinomorphic, (3 or)4– 6(–30)-merous. Sepals almost free or basally connate, persistent. Petals free or connate. Stamens as many as petals in 1 series or 2 × as many in 2 series. Nectar scales at or near base of carpels. Follicles sometimes fewer than sepals, free or basally connate, erect or spreading, membranous or leathery, 1- to many seeded. Seeds small; endosperm scanty or not developed. About 35 genera and over 1500 species: Africa, America, Asia, Europe; 13 genera (two endemic, one introduced) and 233 species (129 endemic, one introduced) in China. Some species of Crassulaceae are cultivated as ornamentals and/or used medicinally. Fu Shu-hsia & Fu Kun-tsun. 1984. Crassulaceae. In: Fu Shu-hsia & Fu Kun-tsun, eds., Fl. Reipubl. Popularis Sin. 34(1): 31–220. 1a. Stamens in 1 series, usually as many as petals; flowers always bisexual. 2a. Leaves always opposite, joined to form a basal sheath; inflorescences axillary, often shorter than subtending leaf; plants not developing enlarged rootstock ................................................................ 1. Tillaea 2b. Leaves alternate, occasionally opposite proximally; inflorescence terminal, often very large; plants sometimes developing enlarged, perennial rootstock.
    [Show full text]
  • Green Roof Substrate Composition Affects Phedimus Kamtschaticus
    HORTSCIENCE 52(2):320–325. 2017. doi: 10.21273/HORTSCI11202-16 ponding. In the early 19th century, green roofs in Berlin did not use engineered media; rather, construction rubble was Green Roof Substrate Composition spread over tar paper roofs and the living systems developed overtime (Kohler and Affects Phedimus kamtschaticus Poll, 2010). Modern GRS composition is largely based on recommendations in the Growth and Substrate Water Content Forschungsgesellschaft Landschaftsent- wicklung Landschaftsbau (FLL), the German landscape industry’s guidelines for the de- under Controlled Environmental sign, planting, and maintenance of green roof systems. The FLL makes recommen- Conditions dations for particle size distribution and 1 organic content as well as specific physical Whitney N. Griffin , Steven M. Cohan, John D. Lea-Cox, properties such as water holding capacity, and Andrew G. Ristvey bulk density, and total porosity (FLL, Department of Plant Sciences and Landscape Architecture, University of 2008). Maryland, Plant Sciences Building, College Park, MD 20740 Beyond the basic FLL recommendations, GRS composition varies internationally and Additional index words. Phedimus, eco roof, living roof, evapotranspiration, plant available regionally, usually due to raw material water, Sedum kamtschaticum availability; however, the FLL recommen- dations have been adopted by municipalities Abstract. Phedimus kamtschaticus (Fischer) were grown in three experimental crushed and public entities around the world and brick-based green roof substrates (GRSs) with increasing organic matter (OM) content Ò applied to green roof components not (10%, 20%, and 40% by volume) and a commercially available blend, Rooflite ,in considered in or by the FLL. North Amer- single-pot replicates in a growth chamber for 6 months.
    [Show full text]
  • A New Combination in Phedimus (Crassulaceae), with Neotypification of Sedum Latiovalifolium
    Phytotaxa 278 (3): 294–296 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Correspondence ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.278.3.10 A new combination in Phedimus (Crassulaceae), with neotypification of Sedum latiovalifolium DONG CHAN SON1, HYUN-JUN KIM1, AE-RA MOON2, CHANG-GEE JANG3 & KAE SUN CHANG1* 1Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon-si, 11186, Republic of Korea 2Division of Gardens and Education, Korea National Arboretum, Pocheon-si, 11186, Republic of Korea 3Department of Biology Education, Kongju National University, Gongju-si, 32588, Republic of Korea *Corresponding author: [email protected] According to recent molecular studies (‘t Hart 1995, Ham 1995, Ham & ‘t Hart 1998, Gontcharova et al. 2006, Thiede & Eggli 2007, Gontcharova & Gontchaov 2009), the genus Phedimus Rafinesque (1817: 438) was segregated from Sedum Lin- naeus (1753: 430). This taxonomic treatment of Phedimus is also supported by morphological evidences (Ohba et al. 2000, Ohba 2001, Fu et al. 2001). During the preparation of the account of the Crassulaceae for the A Synonymic List of Vascular Plants in Korea, it was decided that Phedimus should be separated from Sedum. Most of correct names in Sedum which is found in Korean peninsula have combinations in Phedimus already. However, Sedum latiovalifolium Y.N.Lee (1992: 8), which is described as a endemic to Korea has not yet been transferred to Phedimus. Meanwhile, regarding taxonomic identity of S. latiovalifolium, ‘t Hart & Bleij (2003) considered that S. latiovali- folium was tentatively treated as synonym of P.
    [Show full text]
  • Drought Resistance Mechanisms of Phedimus Aizoon L. Yuhang Liu1, Zhongqun He1*, Yongdong Xie1,2, Lihong Su1, Ruijie Zhang1, Haixia Wang1, Chunyan Li1 & Shengju Long1
    www.nature.com/scientificreports OPEN Drought resistance mechanisms of Phedimus aizoon L. Yuhang Liu1, Zhongqun He1*, Yongdong Xie1,2, Lihong Su1, Ruijie Zhang1, Haixia Wang1, Chunyan Li1 & Shengju Long1 Phedimus aizoon L. is a drought-resistant Chinese herbal medicine and vegetable. However, its drought tolerant limit and the mechanism of drought tolerance are unknown, which restricts the promotion of water-saving cultivation of Phedimus aizoon L. in arid areas. To solve the above problem, we carried out a 30-day-long drought stress experiment in pots that presented diferent soil water contents and were divided into four groups: control check, 75–80% of the maximum water-holding capacity (MWHC); mild drought, 55–60%; moderate drought, 40–45%; and severe drought, 20–25%. The dynamic changes in both plant physiological indexes from 10 to 30 days and leaf anatomical structure on the 30th day of stress were recorded. The results show that Phedimus aizoon L. grew normally under mild drought stress for 30 days, but the growth of the plants became inhibited after 20 days of severe drought and after 30 days of moderate drought. At the same time, Phedimus aizoon L. physiologically responded to cope with drought stress: the growth of the root system accelerated, the waxy layer of the leaves thickened, and the dark reactions of the plants transformed from those of the C3 cycle to CAM. The activity of antioxidant enzymes (SOD, POD and CAT) continuously increased to alleviate the damage caused by drought stress. To ensure the relative stability of the osmotic potential, the contents of osmoregulatory substances such as proline, soluble sugars, soluble protein and trehalose increased correspondingly.
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Horticulture UTILIZING SEDUM SEEDS AS AN INSTALLATION METHOD FOR GREEN ROOFS THROUGH SEED ENHANCEMENT TECHNIQUES A Dissertation in Horticulture by Kathryn Lyn McDavid 2012 Kathryn Lyn McDavid Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2012 The dissertation of Kathryn L. McDavid was reviewed and approved* by the following: Robert Berghage Associate Professor of Horticulture Dissertation Advisor Chair of Committee Ricky M. Bates Associate Professor of Ornamental Horticulture E. Jay Holcomb Emeritus Professor of Floriculture Robert D. Shannon Associate Professor of Agricultural Engineering Richard Marini Head and Professor of the Department of Horticulture *Signatures are on file in the Graduate School iii ABSTRACT There are many benefits to installing green roofs including reducing storm water runoff and the associated problems with overloaded sewage systems, especially in high density urban areas. Green roofs also improve rain water and air quality and reduce the effect from urban heat islands by acting as thermal damper/evaporative coolers, which decrease heating and cooling costs and the subsequent pollution. Additionally, green roofs can extend the life of a roof and create natural habitats for birds and insects. They are also aesthetically pleasing which can improve people’s psychological state and productivity levels. One of the primary limitations to increased green roof installations in the United States is the cost, specifically, the high costs of labor to install the plants on the roof. The majority of green roofs today are installed using cuttings and/or plugs, nursery containers, vegetative mats, or modules.
    [Show full text]
  • Crassulaceae Stonecrop Family
    Crassulaceae stonecrop family Mainly northern, this family is represented in Nova Scotia by only a few species out of a total of 300. Page | 491 They are succulent herbaceous plants, bearing small yellow, white or pink flowers. Sepals and petals are five-merous; stamens number twice as many as the petals. Pistils 3–5; fruit is a follicle. Best-known as rock garden ornamentals, we have a single native species.(Key adapted from Go Botany). Key to genera A. Plants annual; aquatic or amphibious; flowers solitary; leaves connate around Crassula the stem. aa. Plants perennial; terrestrial; flowers usually in cymes; leaves not as above. B B. Leaves entire; plants matted with creeping stems. Sedum bb. Leaves toothed; plants with upright stems, which may be C decumbent at the base, or from stolons. C. Flowers unisexual, 4-merous; fertile stems from axils of Rhodiola brown scalelike leaves from fibrous roots. cc. Fowers bisexual, 5-merous; fertile stems from roots or D stolons. D. Plants mat-forming from creeping horizontal Phedimus stems; leaves opposite. dd. Plants not forming mats; leaves alternate, Hylotelephium opposite or whorled. Crassula L. Cosmopolitan in distribution, of the 250 species only one reaches NS. Most are succulent, their leaves opposite. One species of Africa known in horticulture as the Jade Plant, is a Crassula. Crassula aquatica (L.) Schonl. Pigmyweed; tillée aquatique A tiny tufted annual, it rarely exceeds 10cm in height. It is mat-forming with small sessile, linear and opposite leaves. Flowers are solitary and axillary, barely 1mm wide. Flowers from July to September. Habitat preferences are narrow: brackish muddy shores and Photo by Sean Blaney sand flats or borders of muddy ponds along the coast.
    [Show full text]
  • Phedimus, Succulents for Most Gardens Part 1 (Engl) Phedimus - Genus Écrit Par Ray Stephenson Vendredi, 13 Février 2009 12:54
    Phedimus, succulents for most gardens part 1 (engl) Phedimus - Genus Écrit par Ray Stephenson Vendredi, 13 Février 2009 12:54 Succulents for most gardens Part 1 Phedimus RAY STEPHENSON First publication in C.S.J. vol.77, N°3, 2005. Figure 1 Seeds of Phedimus stellatus have germinated in a crack near the base of a horse trough - here photographed in January surviving a temperature of 38°F. Figure 2 Phedimus spurius is mostly used as ground-cover. Here 'Fulda Glut' is seen in June. Throughout my life, lack of space in the greenhouse has prompted me to place succulents outdoors in summertime for as long as possible. I have always been envious of those living in areas mild enough to make possible the permanent planting of succulents outdoors. The purpose of this article is to share quarter of a century's experience of growing succulents outdoors in the equivalent of Zone 6 and knowing well that many of the species I am to discuss are hardy to Zone 3. By contrast, they are less likely to be successful in places as warm as Zone 8, but enthusiasts in these locales probably have a plethora of succulents in the landscape already. The name Phedimus RAFINESQUE may be new to many readers or one with which they are not very familiar, but I am sure most readers will have encountered at least one Phedimus species, perhaps unnamed or bearing a Sedum tag. Phedimus are Old World species comprising one Mediterranean purple-flowered annual, several purple- or white-flowering species from the Caucuses, and a handful of yellow-flowered species from across cold and temperate Asia.
    [Show full text]
  • Tracheophyte of Xiao Hinggan Ling in China: an Updated Checklist
    Biodiversity Data Journal 7: e32306 doi: 10.3897/BDJ.7.e32306 Taxonomic Paper Tracheophyte of Xiao Hinggan Ling in China: an updated checklist Hongfeng Wang‡§, Xueyun Dong , Yi Liu|,¶, Keping Ma | ‡ School of Forestry, Northeast Forestry University, Harbin, China § School of Food Engineering Harbin University, Harbin, China | State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China ¶ University of Chinese Academy of Sciences, Beijing, China Corresponding author: Hongfeng Wang ([email protected]) Academic editor: Daniele Cicuzza Received: 10 Dec 2018 | Accepted: 03 Mar 2019 | Published: 27 Mar 2019 Citation: Wang H, Dong X, Liu Y, Ma K (2019) Tracheophyte of Xiao Hinggan Ling in China: an updated checklist. Biodiversity Data Journal 7: e32306. https://doi.org/10.3897/BDJ.7.e32306 Abstract Background This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years. This paper presents an updated list of tracheophytes of Xiao Hinggan Ling. The list includes 124 families, 503 genera and 1640 species (Containing subspecific units), of which 569 species (Containing subspecific units), 56 genera and 6 families represent first published records for Xiao Hinggan Ling. The aim of the present study is to document an updated checklist by reviewing the existing literature, browsing the website of National Specimen Information Infrastructure and additional data obtained in our research over the past ten years.
    [Show full text]
  • Flora of China (1994-2013) in English, More Than 100 New Taxa of Chinese Plants Are Still Being Published Each Year
    This Book is Sponsored by Shanghai Chenshan Botanical Garden 上海辰山植物园 Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences 中国科学院上海辰山植物科学研究中心 Special Fund for Scientific Research of Shanghai Landscaping & City Appearance Administrative Bureau (G182415) 上海市绿化和市容管理局科研专项 (G182415) National Specimen Information Infrastructure, 2018 Special Funds 中国国家标本平台 2018 年度专项 Shanghai Sailing Program (14YF1413800) 上海市青年科技英才扬帆计划 (14YF1413800) Chinese Plant Names Index 2000-2009 DU Cheng & MA Jin-shuang Chinese Plant Names Index 2000-2009 中国植物名称索引 2000-2009 DU Cheng & MA Jin-shuang Abstract The first two volumes of the Chinese Plant Names Index (CPNI) cover the years 2000 through 2009, with entries 1 through 5,516, and 2010 through 2017, with entries 5,517 through 10,795. A unique entry is generated for the specific name of each taxon in a specific publication. Taxonomic treatments cover all novelties at the rank of family, genus, species, subspecies, variety, form and named hybrid taxa, new name changes (new combinations and new names), new records, new synonyms and new typifications for vascular plants reported or recorded from China. Detailed information on the place of publication, including author, publication name, year of publication, volume, issue, and page number, are given in detail. Type specimens and collections information for the taxa and their distribution in China, as well as worldwide, are also provided. The bibliographies were compiled from 182 journals and 138 monographs or books published worldwide. In addition, more than 400 herbaria preserve type specimens of Chinese plants are also listed as an appendix. This book can be used as a basic material for Chinese vascular plant taxonomy, and as a reference for researchers in biodiversity research, environmental protection, forestry and medicinal botany.
    [Show full text]
  • Crassulaceae) in Iran
    Turkish Journal of Botany Turk J Bot (2020) 44: 281-294 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1912-32 Comparative anatomical studies in relation to taxonomy of Sedum s.l. (Crassulaceae) in Iran 1, 1 2 Maryam MOHAMMADI SHAHRESTANI *, Marzieh BEYGOM FAGHIR , Mostafa ASSADI 1 Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran 2 Research Institute of Forests and Rangelands, Tehran, Iran Received: 24.12.2019 Accepted/Published Online: 18.03.2020 Final Version: 06.05.2020 Abstract: This study aimed to characterize the stem, peduncle, and leaf anatomy of 22 species ofSedum senso lato distributed in Iran. The results showed that the presence of tanniniferous storage cells in stems and leaves, distinct xylem vessels in stems, and the shape of peduncle cross sections, were taxonomically informative evidence, and isolated Phedimus from the other studied taxa of Sedum s.l., whereas hairy leaves and peduncles containing starch storage cells were identified asPrometheum and Hylotelephium respectively. In addition, the current anatomical evidence confirmed the alliance of 2 sections ofSedum and Epeteium within Sedum sensu stricto. The result of numerical analysis (including 31 qualitative and quantitative anatomical characters) supported complete separation of the fourallied genera and revealed significant influence of anatomical traitsin taxonomy ofSedum s.l. Key words: Sedum s.l., anatomy, taxonomy, Phedimus, Prometheum, numerical analysis 1.Introduction Mauyzumi and Ohba, 2004; Gontcharova and Gontcharov, Sedum L., comprising ca. 420 species, is the most species- 2009; Carrillo-Reyes et al., 2009). According to Jansson rich member of the family Crassulaceae (Thiede and Eggli, and Rechinger (1970), in Iran, the genus is represented 2007; Nikulin et al., 2016).
    [Show full text]