Fat Bodies and Liver Mass Cycles in Sceloporus Grammicus (Squamata: Phrynosomatidae) from Southern Hidalgo, México

Total Page:16

File Type:pdf, Size:1020Kb

Fat Bodies and Liver Mass Cycles in Sceloporus Grammicus (Squamata: Phrynosomatidae) from Southern Hidalgo, México Herpetological Conservation and Biology 4(2):164-170 Submitted: 23 August 2008; Accepted: 10 May 2009 FAT BODIES AND LIVER MASS CYCLES IN SCELOPORUS GRAMMICUS (SQUAMATA: PHRYNOSOMATIDAE) FROM SOUTHERN HIDALGO, MÉXICO AURELIO RAMÍREZ-BAUTISTA1,3, DANIEL HERNÁNDEZ-RAMOS1, ALBERTO ROJAS MARTINEZ1, AND JONATHON C. MARSHALL2 1Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, A.P. 1-69 Plaza Juárez, C.P. 42001, Pachuca, Hidalgo, México 2Department of Zoology, Weber State University, Ogden, Utah 84408, USA 3e-mail: [email protected] ABSTRACT.—We describe changes in liver and fat body mass of males and females of the viviparous lizard, Sceloporus grammicus from southeastern Hidalgo, México. The changes in the masses of the liver and fat bodies of males and females are usually asynchronous. Typically, reproductively active males and females deplete fat body reserves and experience increased liver mass. However, we observed maximum fat body and liver masses during spermatogenesis (July-August) and vitellogenesis (July-November). In females, the liver and fat body masses decreased while carrying developing embryos. This pattern demonstrates the ability of these lizards to bolster energy reserves during reproductive activity and the high energetic cost associated with embryo development. Also, this response pattern is similar to other populations of this species and to some other species of temperate lizards. Key Words.—fat body; liver body; Mesquite Lizard; reproductive cycle; Sceloporus grammicus. INTRODUCTION Anolis nebulosus (Ramírez-Bautista and Vitt 1997), Cnemidophrous (= Aspidoscelis; Reeder et al. 2002) Fat bodies and liver masses in lizards store energy for communis (Ramírez-Bautista and Pardo-De la Rosa use during times of high energetic demand such as the 2002), C. lineatissimus (Ramírez-Bautista et al. 2000), breeding season (Selcer 1987). Amphibians and reptiles and S. jarrovii (Ramírez-Bautista et al. 2002), male and have within the peritoneal cavity pairs of solid fat bodies female fat body and liver mass cycles correlate either anchored to the kidneys or near the rectum. These negatively with reproductive activity (Ramírez-Bautista are important resource storehouses needed for and Vitt 1997; Ramírez-Bautista et al. 2000, 2002). In hibernation and breeding (Ramírez-Bautista 1995). another example, males of Urosaurus bicarinatus Although the liver of lizards serves an immunological showed the same pattern as above but females did not role, another major function is glucose metabolism (Ramírez-Bautista and Vitt 1998). Rather, vitellogenesis (DeMarco and Guillette 1992). The liver removes correlated positively with an increase in fat body and surplus glucose from the blood and stores it as glycogen liver mass, indicating little energetic costs for female (Ramírez-Bautista 1995), and lizards adopt feeding reproduction. Within the species S. grammicus, strategies that store energy within these structures in the variations of this pattern have even been noted between most efficient manner (Ramírez-Bautista 1995). Lizards different populations of the same species (Ramírez- with higher foraging success store more energy in their Bautista et al. 2006). fat bodies and livers than poorly foraging individuals. In this study, we expand on the results of Ramírez- This promotes faster growth rates and ultimately greater Bautista et al. 2006 and describe the fat body and liver survivorship (Derickson 1976; Ramírez-Bautista 1995). glycogen cycles of S. grammicus in Hidalgo, Mexico. Studies on fat body and liver glycogen cycling exist We use these results to infer how these populations for the Anolis carolinensis (Dessauer 1955), Aspidoscelis manage resources throughout the year. This kind of life tigris (Goldberg and Lowe 1966), Sceloporus graciosus history information is vital for making wise conservation (Derickson 1974), and S. jarrovi (Goldberg 1972). and management decision (Bury 2006). Seasonal fat body and liver mass cycles generally correspond to seasonal changes in resource demand MATERIALS AND METHODS (Derickson 1976; Ramírez-Bautista et al. 2000, 2002). Several studies on fat-body and glycogen cycling We obtained 124 male and 164 female S. grammicus patterns target lizard species in the tropical and from the Colección Nacional de Anfibios y Reptiles temperate environments of México. For example, in (CNAR-IBH, n = 171) and Museo de Zoología, Facultad 164 Herpetological Conservation and Biology 20 20 (H) . 18 18 16 16 14 14 12 12 Photoperiod Temperature C) Photoperiod (H) . C) Photoperiod ( 10 10 Precipitation 8 8 PrecipitationPrecipitation (mm ) (mm ) 6 6 4 4 Temperature Temperature ( Temperature (°C) Photoperiod (H) 2 2 0 0 July June May April July May March August June January April October August February March January November October December September February November December September MonthMonth FIGURE 1. Monthly temperature, photoperiod, and precipitation based on 30-yr means recorded at the meteorological station of the Pachuca, Hidalgo, México (Garcia 1981). Photoperiod data were acquired from the Astronomical Almanac (1984). de Ciencias (MZFC; N = 117) both from Universidad width to obtain testicular, follicle, and eggs/embryo Nacional Autónoma de México. Specimens came from volumes (V), which we calculated using the formula for localities in southeastern section of the state of Hidalgo, the volume of an ellipsoid: V = 4/3πa2b, where a is one- México (19°59´20´´N, 98°27´57´´W, elevation = 2000– half the shorter diameter and b is one-half the longest 2648 m) during a 10 yr period from 1985 to 1995. diameter. Testicular and follicular volumes are indicators The climate of the study area is dry and temperate of reproductive activity (Ramírez-Bautista et al. 2002, with maximum temperatures and rainfall occurring in the 2006). The smallest females with vitellogenic follicles summer (June-August). Mean annual precipitation is in their reproductive tracts provided an estimation of the 427.4 mm (Garcia 1981; Fig. 1). The dominant plant minimum size (in SVL) at sexual maturity. We communities are mesquite, grassland, and oak-pine considered a male to be sexually mature if it had forest (Rzedowski 1978). We obtained climatic and enlarged testes with an enlarged and highly convoluted metereological data from 1950 to 1980 from the epididymide (Ramírez-Bautista et al. 2002). meteorological station of Pachuca. We procured Because organ mass may vary with SVL of the lizard, photoperiod data from the Astronomical Almanac we first calculated regressions of log10 – transformed (1984). organ mass data of males and females SVL (Ramírez- Because sample sizes were small for individual Bautista et al. 2000). For significant regressions, we months, we pooled data from all localities and all years calculated residuals from the regression of organ mass to describe monthly changes of fat body and liver mass on SVL to produce SVL-adjusted variables (Schulte- and gonads volume of males and females. We recorded Hostedde et al. 2005). We use these residuals to describe snout-vent length (SVL), length and width of testes, the monthly changes of the fat body and liver mass. We length and width of left and right vitellogenic follicles performed ANOVA to analyze statistically monthly (gonad volume), and width and length of ovulated eggs variation in organ masses. We included only months for or embryos (for egg/embryo volume). We recorded all which n ≥ 3. We used the Bonferroni-Dunn post hoc- measurements to the nearest 0.1 mm with calipers test to identify differences among months. In addition, (Ramírez-Bautista et al. 2002). We removed and took we used correlation analysis to identify associations masses of liver and fat bodies to the nearest 0.0001 g on among climate variables such as temperature, an electronic balance. We used gonadal length and precipitation, and photoperiod (Fig.1) and monthly mean 165 Rameriz-Bautista et al.—Fat bodies and liver mass cycles in Sceloporus grammicus FIGURE 2. Male and female fat bodies and liver cycles of Sceloporus grammicus from southeastern Hildago, México Data are mean (± 1 SE) residuals from a regression of log10 fat body mass (g) against SVL, and log10 liver mass (g). Samples sizes are given at each data point in both male and female fat body charts. Upper case characters label the respective month and lower case characters show statistical differences with other months. mass of fat bodies and livers (Ramírez-Bautista et al. following months: February versus July, and June versus 2002). We presented means ± SE unless otherwise July, October and November (Fig. 2). Liver masses indicated. We performed all statistical analyses with showed slight fluctuations from February to June, but Statview IV (Abacus Concepts, Inc., Berkeley, CA, from June to July they increased significantly, and 1992). We used α ≤ 0.05 to assign significance when continued to show significant differences until applying statistical decision theory. November (Fig. 2). Fat body mass differed significantly (Games-Howell P RESULTS = 0.003) between the following months: February versus May, July and November; May versus June, July, and Body Size and Sexual Maturity.—Sexually mature October; June versus July and November; July versus males ranged from 40 to 68 mm SVL (mean = 53.5 ± August and November, and October versus November 0.63 mm, n = 124), and females ranged from 40 to 67 (Fig. 2). Male liver mass cycle had a consistent seasonal mm (51.7 ± 0.47 mm, n = 164). Average adult male pattern, whereas
Recommended publications
  • Herpetological Information Service No
    Type Descriptions and Type Publications OF HoBART M. Smith, 1933 through June 1999 Ernest A. Liner Houma, Louisiana smithsonian herpetological information service no. 127 2000 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. Introduction Hobart M. Smith is one of herpetology's most prolific autiiors. As of 30 June 1999, he authored or co-authored 1367 publications covering a range of scholarly and popular papers dealing with such diverse subjects as taxonomy, life history, geographical distribution, checklists, nomenclatural problems, bibliographies, herpetological coins, anatomy, comparative anatomy textbooks, pet books, book reviews, abstracts, encyclopedia entries, prefaces and forwords as well as updating volumes being repnnted. The checklists of the herpetofauna of Mexico authored with Dr. Edward H. Taylor are legendary as is the Synopsis of the Herpetofalhva of Mexico coauthored with his late wife, Rozella B.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • )J Ieuican%Usellm
    )J ox4tatesieuican%usellm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N. Y. I0024 NUMBER 2450 FEBRUARY II, I971 Karyotypes of the Five Monotypic Species Groups of Lizards in the Genus Sceloporus BY CHARLES J. COLE INTRODUCTION Smith (1939) recognized 15 species groups in the large iguanid genus Sceloporus, which includes approximately 60 species. From one to 11 species are assigned to each group on the basis of relationships inferred from traits of external morphology. Five species of Sceloporus (some of them polytypic) are each sufficiently distinctive in external morphology to warrant assignment to monotypic species groups, implying that these five species appear to have no particularly close relatives extant. The present cytological investigation was undertaken to determine whether the karyo- types of these monotypic species groups are consistent with the data on external morphology, and whether the karyotypes suggest evolutionary relationships of these groups. The five species of Sceloporus that each comprise a monotypic group are: Sceloporus chrysostictus Cope, S. graciosus Baird and Girard, S. maculosus Smith, S. merriami Stejneger, and S. utiformis Cope. Each group is named for the species comprising it. My analysis of karyotypes from individuals of both sexes of each of these species forms the basis of the present report. METHODS Chromosome preparations were made by means of the colchicine, hypo- 1 Assistant Curator, Department of Herpetology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO. 2450 tonic citrate technique used by Patton (1967), slightly modified for liz- ards (Lowe, Wright, and Cole, 1966). I used bone marrow and testicular tissues, and examined chromosomes in approximately 340 dividing cells from 28 lizards (19 males, 9 females; see Specimens Examined).
    [Show full text]
  • N REPTILIA: SQUAMATA: SAURIA: PHRYNOSOMATIDAE PHRYNOSOMA Phrynosoma Modestum Girard
    630.1 n REPTILIA: SQUAMATA: SAURIA: PHRYNOSOMATIDAE PHRYNOSOMAMODESTUM Catalogue of American Amphibians and Reptiles. Whiting, M.J. and J.R. Dixon. 1996. Phrynosoma modestum. Phrynosoma modestum Girard Roundtail Homed Lizard Phrynosoma modesturn Girard, in Baird and Girard, 1852:69 (see Banta, 1971). Type-locality, "from the valley of the Rio Grande west of San Antonio .....and from between San Antonio and El Paso del Norte." Syntypes, National Mu- seum of Natural History (USNM) 164 (7 specimens), sub- Figure. Adult Phrynosoma modestum from Doha Ana County, adult male, adult male, and 5 adult females, USNM 165660, New Mexico. Photograph by Suzanne L. Collins, courtesy of an adult male, and Museum of Natural History, University The Center for North American Amphibians and Reptiles. of Illinois at Urbana-Champaign (UIMNH) 40746, an adult male, collected by J.H. lark in May or June 1851 (Axtell, 1988) (not examined by authors). See Remarks. Phrynosomaplatyrhynus: Hemck,Terry, and Hemck, 1899: 136. Doliosaurus modestus: Girard, 1858:409. Phrynosoma modestrum: Morafka, Adest, Reyes, Aguirre L., A(nota). modesta: Cope, 1896:834. and Lieberman, 1992:2 14. Lapsus. Content. No subspecies have been described. and Degenhardt et al. (1996). Habitat photographs appeared in Sherbrooke (1981) and Switak (1979). Definition. Phrynosoma modestum is the smallest horned liz- ard, with a maximum SVL of 66 mm in males and 71 mm in Distribution. Phrynosoma modestum occurs in southern and females (Fitch, 1981). It is the sister taxon to l? platyrhinos, western Texas, southern New Mexico, southeastern Arizona and and is part of the "northern radiation" (sensu Montanucci, 1987). north-central Mexico.
    [Show full text]
  • Sceloporus Merriami Stejneger, 1904:17
    227.1 REPTILIA: SQUAMATA: SAURIA: IGUANIDAE SCELOPORUS MERRIAMI Catalogue of American Amphibians and Reptiles. l. Sceloporus merriami merriami Stejneger OLSON,R. EARL. 1979. Sceloporus merriami. Sceloporus merriami Stejneger, 1904:17. See species account. Sceloporus merriami merriami: Smith, 1937:83. First use of tri• Sceloporus merriami Stejneger nomial. Canyon lizard • DEFINITION. More than 55 dorsal scales; anterior labio• mental wedged between first postmental and infralabials; throat Sceloporus merriami Stejneger, 1904:17. Type-locality, "East unbarred; no subcaudal bands; paravertebral spots small. Painted Cave, near mouth of Pecos River [Val Verde Coun• ty], Texas." Holotype, U.S. Nat. Mus. 33039, adult male, collected by W. Lloyd on 2 September 1890 (examined by 2. Sceloporus merriami annulatus Smith author). Sceloporus merriami annulatus Smith, 1937:83. Type-locality, • CONTENT. Four subspecies are recognized: annulatus, aus• "East slope of Chisos Mts., Brewster County, Texas." Ho• tralis, longipunctatus, and merriami. lotype, Univ. Illinois Mus. Nat. Hist. 25058, adult male, col• lected by E. H. Taylor and J. Wright in August 1931 (ex• • DEFINITION. Sceloporus merriami is a small (45-60 mm amined by author). snout-vent length) sceloporine lizard with granular lateral scales, a rudimentary gular fold, and lacking a postfemoral dermal pock• • DEFINITION.Fewer than 55 dorsal scales; broad, dark sub• et. The dorsum is light to dark brown with paravertebral rows of caudal bands; broad, dark, continuous throat bars; large para• dark spots, 7 to 10 in each row. Males have the throat marked vertebral spots; male belly patches usually in medial contact. with light blue to black transverse bars, or a central patch.
    [Show full text]
  • REPTILIA: SQUAMATA: PHRYNOSOMATIDAE Sceloporus Poinsettii
    856.1 REPTILIA: SQUAMATA: PHRYNOSOMATIDAE Sceloporus poinsettii Catalogue of American Amphibians and Reptiles. Webb, R.G. 2008. Sceloporus poinsettii. Sceloporus poinsettii Baird and Girard Crevice Spiny Lizard Sceloporus poinsettii Baird and Girard 1852:126. Type-locality, “Rio San Pedro of the Rio Grande del Norte, and the province of Sonora,” restricted to either the southern part of the Big Burro Moun- tains or the vicinity of Santa Rita, Grant County, New Mexico by Webb (1988). Lectotype, National Figure 1. Adult male Sceloporus poinsettii poinsettii (UTEP Museum of Natural History (USNM) 2952 (subse- 8714) from the Magdalena Mountains, Socorro County, quently recataloged as USNM 292580), adult New Mexico (photo by author). male, collected by John H. Clark in company with Col. James D. Graham during his tenure with the U.S.-Mexican Boundary Commission in late Au- gust 1851 (examined by author). See Remarks. Sceloporus poinsetii: Duméril 1858:547. Lapsus. Tropidolepis poinsetti: Dugès 1869:143. Invalid emendation (see Remarks). Sceloporus torquatus Var. C.: Bocourt 1874:173. Sceloporus poinsetti: Yarrow “1882"[1883]:58. Invalid emendation. S.[celoporus] t.[orquatus] poinsettii: Cope 1885:402. Seloporus poinsettiii: Herrick, Terry, and Herrick 1899:123. Lapsus. Sceloporus torquatus poinsetti: Brown 1903:546. Sceloporus poissetti: Král 1969:187. Lapsus. Figure 2. Adult female Sceloporus poinsettii axtelli (UTEP S.[celoporus] poinssetti: Méndez-De la Cruz and Gu- 11510) from Alamo Mountain (Cornudas Mountains), tiérrez-Mayén 1991:2. Lapsus. Otero County, New Mexico (photo by author). Scelophorus poinsettii: Cloud, Mallouf, Mercado-Al- linger, Hoyt, Kenmotsu, Sanchez, and Madrid 1994:119. Lapsus. Sceloporus poinsetti aureolus: Auth, Smith, Brown, and Lintz 2000:72.
    [Show full text]
  • Comparative Demography of the High-Altitude Lizard, Sceloporus Grammicus (Phrynosomatidae), on the Iztaccihuatl Volcano, Puebla, México
    Great Basin Naturalist Volume 58 Number 4 Article 7 10-12-1998 Comparative demography of the high-altitude lizard, Sceloporus grammicus (Phrynosomatidae), on the Iztaccihuatl Volcano, Puebla, México Julio A. Lemos-Espinal Proyecto Fauna Silvestre, CENID-COMEF/SARH, Viveros de Coyoacan, Mexico Royce E. Ballinger University of Nebraska–Lincoln, Lincoln Geoffrey R. Smith William Jewell College, Liberty, Missouri Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Lemos-Espinal, Julio A.; Ballinger, Royce E.; and Smith, Geoffrey R. (1998) "Comparative demography of the high-altitude lizard, Sceloporus grammicus (Phrynosomatidae), on the Iztaccihuatl Volcano, Puebla, México," Great Basin Naturalist: Vol. 58 : No. 4 , Article 7. Available at: https://scholarsarchive.byu.edu/gbn/vol58/iss4/7 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Creat Ba....in Natur.uist 58(4), €:I 1998. pp. 375-379 COMPARATIVE DEMOGRAPHY OF THE HIGH-ALTITUDE LIZARD, SCEWPORUS GRAMMICUS (PHRYNOSOMATIDAE),, ON THE IZTACCIHUATL VOLCANO, PUEBLA, MEXICO Julio A. Lemos-Espinall , Royce E. Ballinger2, and Geoffrey R. Smith3 ABSTRACT.-Population density, reproduction, and survivorship were compared between 2 populations of Sctdoporu5' gra.rll7nicus occurring at different altitudes (3700 m and 4400 m) on the eastern slopes of l:ttaceihuatl Volcano. Puehla, Mbdco. Lizards in both populatloM matured at the same l:lge (14-15 mon) and size (39--42 mm SLY). Population density was slightly greater at high altitude (131-163 per ha) than at low altitude (52-83 per ha).
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Class: Amphibia Amphibians Order
    CLASS: AMPHIBIA AMPHIBIANS ANNIELLIDAE (Legless Lizards & Allies) CLASS: AMPHIBIA AMPHIBIANS Anniella (Legless Lizards) ORDER: ANURA FROGS AND TOADS ___Silvery Legless Lizard .......................... DS,RI,UR – uD ORDER: ANURA FROGS AND TOADS BUFONIDAE (True Toad Family) BUFONIDAE (True Toad Family) ___Southern Alligator Lizard ............................ RI,DE – fD Bufo (True Toads) Suborder: SERPENTES SNAKES Bufo (True Toads) ___California (Western) Toad.............. AQ,DS,RI,UR – cN ___California (Western) Toad ............. AQ,DS,RI,UR – cN ANNIELLIDAE (Legless Lizards & Allies) Anniella ___Red-spotted Toad ...................................... AQ,DS - cN BOIDAE (Boas & Pythons) ___Red-spotted Toad ...................................... AQ,DS - cN (Legless Lizards) Charina (Rosy & Rubber Boas) ___Silvery Legless Lizard .......................... DS,RI,UR – uD HYLIDAE (Chorus Frog and Treefrog Family) ___Rosy Boa ............................................ DS,CH,RO – fN HYLIDAE (Chorus Frog and Treefrog Family) Pseudacris (Chorus Frogs) Pseudacris (Chorus Frogs) Suborder: SERPENTES SNAKES ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN COLUBRIDAE (Colubrid Snakes) ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN ___Pacific Chorus Frog ....................... AQ,DS,RI,DE – cN Arizona (Glossy Snakes) ___Pacific Chorus Frog ........................AQ,DS,RI,DE – cN BOIDAE (Boas & Pythons) ___Glossy Snake ........................................... DS,SA – cN Charina (Rosy & Rubber Boas) RANIDAE (True Frog Family)
    [Show full text]
  • Sprint Performance of Phrynosomatid Lizards, Measured on a High-Speed Treadmill, Correlates with Hindlimb Length
    J. Zool., Lond. (1999) 248, 255±265 # 1999 The Zoological Society of London Printed in the United Kingdom Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length Kevin E. Bonine and Theodore Garland, Jr Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706-1381, U.S.A. (Accepted 19 September 1998) Abstract We measured sprint performance of phrynosomatid lizards and selected outgroups (n = 27 species). Maximal sprint running speeds were obtained with a new measurement technique, a high-speed treadmill (H.S.T.). Animals were measured at their approximate ®eld-active body temperatures once on both of 2 consecutive days. Within species, individual variation in speed measurements was consistent between trial days and repeatabilities were similar to values reported previously for photocell-timed racetrack measure- ments. Multiple regression with phylogenetically independent contrasts indicates that interspeci®c variation in maximal speed is positively correlated with hindlimb span, but not signi®cantly related to either body mass or body temperature. Among the three phrynosomatid subclades, sand lizards (Uma, Callisaurus, Cophosaurus, Holbrookia) have the highest sprint speeds and longest hindlimbs, horned lizards (Phryno- soma) exhibit the lowest speeds and shortest limbs, and the Sceloporus group (including Uta and Urosaurus) is intermediate in both speed and hindlimb span. Key words: comparative method, lizard, locomotion, morphometrics, phrynosomatidae, sprint speed INTRODUCTION Fig. 1; Montanucci, 1987; de Queiroz, 1992; Wiens & Reeder, 1997) that exhibit large variation in locomotor Evolutionary physiologists and functional morpholo- morphology and performance, behaviour, and ecology gists emphasize the importance of direct measurements (Stebbins, 1985; Conant & Collins, 1991; Garland, 1994; of whole-animal performance (Arnold, 1983; Garland & Miles, 1994a).
    [Show full text]
  • The Evolution of Demographic Tactics in Lizards: a Test of Some Hypotheses Concerning Life History Evolution
    J. evol. biol. 11 (1998) 329–364 1010–061X/98/030329–36 $ 1.50+0.20/0 The evolution of demographic tactics in lizards: a test of some hypotheses concerning life history evolution J. Clobert,1 T. Garland Jr.2 and R. Barbault1 1Laboratoire d’Ecologie, Uni6ersite´ Pierre et Marie Curie, Baˆtiment A, Case 237, 7 quai Saint Bernard, 75252 Paris cedex 05, France 2Department of Zoology, 430 Lincoln Dri6e, Uni6ersity of Wisconsin, Madison, WI 53706-1381, USA Key words: Comparative methods; demographic tactics; life history; phylogeny; dimension numbers; lizards. Abstract We analyze, with an augmented data base, patterns of covariation of the three primary demographic parameters (age at maturity, fecundity, adult survival, all measured in the same unit of time) in lizards. This also constitutes a first attempt to use all three of these parameters for this group of species. We attempt to place these analyses in the framework of recent theories on life history evolution (Ferrie`re and Clobert, 1992; Charnov, 1993). Life history data were collected from the literature and from our original work, and a composite phylogeny was assembled, based on a variety of published sources. Using a phylogenetically based statistical method (independent contrasts), the allometric (log-log) relationship of fecundity (and of clutch size) in relation to snout-vent length was found to differ significantly between the two major clades of extant lizards, Iguania (43 species in our data set) and Scleroglossa (47 species). We therefore emphasize analyses done separately for the two clades. Without removing correlations with body size, the relationships between fecundity and survival, and between fecundity and age at maturity, were also found to differ between clades, which differs from Charnov’s (1993) predic- tions.
    [Show full text]