Why Leaves Turn Red

Total Page:16

File Type:pdf, Size:1020Kb

Why Leaves Turn Red Why Leaves Turn Red Pigments called anthocyanins probably protect leaves from light damage by direct shielding and by scavenging free radicals David W. Lee and Kevin S. Gould any forests, like those spread the forest’s 70 percent of tree species gave them their name, deriving antho- Mthroughout New England, have that contain anthocyanin pigments cyanin from the Greek anthos, meaning just changed color in a spectacular (which produce colors ranging from flower, and kyanos, meaning blue. way, as they do each fall. The phenom- brown to red, depending on how Many long-standing misconceptions enon is familiar as well as dramatic, yet much chlorophyll the leaves retain), about anthocyanin function date from why it should happen has been a long- the story is quite different. For exam- these early observations, notably that standing enigma. When we were in ple, the brilliant fall foliage of the red these pigments arise from the break- school, the standard textbooks said oak (Quercus rubra) results from the ac- down of chlorophyll during autumn. that foliage changes color because the cumulation of anthocyanin in the vac- Given how striking and attractive breakdown of green chlorophyll mole- uoles (large, fluid-filled cavities) of red foliage is, it may seem baffling that cules unmasks other pigments, like the cells lying just under the leaves’ upper botanists remained ignorant about the yellow-to-orange xanthophylls and the epidermis layer. phenomenon for so long. There are red-or-blue anthocyanins, which, we Anthocyanins are elaborate pigment various reasons for this. First, because were told, serve no particular function molecules, widespread among land anthocyanins are responsible for the during the autumn senescence of plants. They account not only for the colors of fruits and flowers as well as of leaves. Now botanists know better. autumn hues of temperate woodlands, leaves, it was natural to concentrate on Indeed, a completely new apprecia- but also for the flushes of developing pigmentation in the former economi- tion for these colorful pigments has de- red foliage seen in tropical forests, on cally important organs, for which the veloped over the past decade or so, in the undersurface of shaded leaves and function of anthocyanin seems obvi- part from our studies of trees in the in crop plants suffering drought or nu- ous—to attract animals for pollination Harvard Forest, a nature sanctuary in trient deficiency. But plants can also and seed dispersal. Second, because central Massachusetts maintained for have other red pigments. Carotenoids, the discoveries of Richard Willstätter scientific research. There, during Sep- often rhodoxanthin, produce red color and his colleagues about the molecu- tember and October, one sees the in the senescing leaves of some conifers lar structure of anthocyanins from 1912 leaves on dozens of woody species as well as in the common box (Buxus to 1916 were made shortly after the re- changing color. In some plants, such as sempervirens), which decorates many discovery of Mendel’s laws of inheri- the witch hazel (Hamamelis virginiana), suburban lawns. Betalain pigments tance, the anthocyanins became an ear- it is indeed the loss of chlorophyll that color leaves red in a single order of ly subject of research in molecular reveals yellow carotenoid pigments, flowering plants, and a few other mis- genetics, rather than physiology. just as the textbooks say. However, for cellaneous pigments produce bur- (Mendel’s peas had distinctively col- gundy hues in very rare cases. But of ored flowers because of anthocyanins.) David Lee is a professor in the Department of Bio- all the red pigments, the anthocyanins Third, the discovery that light can in- logical Sciences at Florida International Universi- are the most widespread. duce anthocyanin production inspired ty and Research Collaborator at Fairchild Tropical We have collaborated in studying an- molecular biologists to study how light Garden in Miami. He has studied leaf color and thocyanin pigments since 1993 and are exposure activates genes involved in function since 1973. He received his Ph.D. in beginning to develop some working anthocyanin synthesis, again at the ex- botany from Rutgers University in 1970. Kevin hypotheses about their function. It’s cu- pense of research into anthocyanin Gould is an associate professor in the School of Bi- rious that an understanding has been function. ological Sciences at the University of Auckland in so long in coming, given the fact these Botanists of the late 19th-century, most New Zealand. He received his Ph.D. in botany red pigments have been subjected to notably the Germans who studied plant from the University of Manchester in 1985. He has applied his background in plant cell and devel- scientific scrutiny for nearly 200 years. anatomy and physiology, noticed that opmental biology to the mysteries of the functional anthocyanin production rises when a ecology of New Zealand’s diverse plants. Address The Discovery of Anthocyanins plant is subjected to low temperatures for Lee: Department of Biological Sciences, Florida Anthocyanins had been observed for and high light conditions. This observa- International University, Miami, FL 33199. Inter- centuries as “colored cell sap.” In 1835 tion led to the popular explanations that net: [email protected] the German botanist Ludwig Marquart anthocyanins protect the photosynthetic ©Sigma Xi, The Scientific Research Society. Reproduction with 524 American Scientist, Volume 90 permission only. Contact [email protected]. Figure 1. Anthocyanins are common in the autumn leaves of mid-latitude trees, but these pigments also add flashes of red color to the foliage of tropical forests and to crop plants exposed to drought or nutrient deficiency. Occasionally, anthocyanins are present in leaves year-round, as in the variegated leaves of Horopito (Pseudowintera colorata), a common tree in New Zealand forests (above). The patterns of coloration in this species make the leaves ideal for studying the antioxidant properties of these intriguing molecules. (Except where noted, all photographs by the authors.) structures against intense sunlight and Red Sunscreen variety of factors can contribute to help to warm leaves by increasing their When surroundings are bright and photoinhibition: intense sunlight; low rates of metabolism. These scientists cold, photosynthetic efficiency often temperature; acclimation of leaves to lacked the instrumentation and detailed declines. The phenomenon, known as extreme shade with a subsequent ex- knowledge of photosynthesis to test their photoinhibition, has been attributed in posure to high light; and inadequate ideas. In the mid-20th century, investiga- part to impairment in one of the func- phosphorus, which is important in the tors became aware that ultraviolet (UV) tional elements of photosynthesis. Nor- production of two energy-rich com- radiation could induce anthocyanin syn- mally, two units consisting of pig- pounds crucial for photosynthesis— thesis, leading to the hypothesis that an- ments, proteins and electron-transfer adenosine triphosphate (ATP) and the thocyanins protect plant tissues against molecules—known as photosystems I reduced form of nicotinamide adenine UV damage. But, as it turns out, antho- and II—absorb light energy. Photoinhi- dinucleotide phosphate (NADPH). cyanins absorb rather weakly in the UV- bition apparently involves a block in When chloroplasts are overwhelmed B region of the spectrum (wavelengths photosystem II. Unchecked, this im- with energy, the excess causes chemical of 285–320 nanometers), which is most pairment can permanently damage and, ultimately, physical damage. responsible for damage to biological tis- chloroplasts, cells and tissues. Plants have evolved several strate- sues; other colorless flavonoid pigments Investigators can observe photoinhi- gies to prevent photoinhibitory damage that are equally, or more, abundant in the bition because when photosynthetic tis- from intense light, in particular the in- leaves absorb UV-B much more strongly. sues receive a pulse of intense light, terconversion of certain xanthophyll Furthermore, anthocyanins are most they immediately emit a pulse of visi- pigments as a way of quenching the commonly produced in the interiors of ble light—that is, they fluoresce. De- overload of energy. Anthocyanins also leaves and hence are poorly placed to tailed analysis of this flash reveals efficiently protect against photoinhibi- protect leaves from the widespread ef- much about photosynthetic function. tion because they soak up radiant ener- fects of UV-B. These weaknesses were re- New techniques to measure this fluo- gy at wavelengths poorly absorbed by futed by one of us (Lee) in 1987. So what rescence have helped investigators test other accessory pigments, such as in good are anthocyanins to a leaf? Two re- the efficiency of the light reaction of the green waveband at around 530 cent discoveries have shed light on the photosynthesis under different condi- nanometers. In intact tissues, the range mystery. tions and to detect photoinhibition. A of absorbance also extends into shorter ©Sigma Xi, The Scientific Research Society. Reproduction with permission only. Contact [email protected]. 2002 November–December 525 Figure 2. Some senescing autumn leaves, such as the witch hazel (Hamamelis virginiana, left) are yellow. A transverse section of a leaf (right) shows that the yellow pigments are clustered exclusively in the chloroplasts, which are degrading. The loss of chlorophyll reveals
Recommended publications
  • A Combined Experimental and Computational Study of Chrysanthemin As a Pigment for Dye-Sensitized Solar Cells
    molecules Article A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells Atoumane Ndiaye 1,2 , Alle Dioum 1, Corneliu I. Oprea 2 , Anca Dumbrava 3,* , Jeanina Lungu 2, Adrian Georgescu 2, Florin Moscalu 2, Mihai A. Gîr¸tu 2,* , Aboubaker Chedikh Beye 1 and Issakha Youm 1,* 1 Department of Physics, Cheikh Anta Diop University of Dakar, 5005 Dakar-Fann, Senegal; [email protected] (A.N.); [email protected] (A.D.); [email protected] (A.C.B.) 2 Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania; [email protected] (C.I.O.); [email protected] (J.L.); [email protected] (A.G.); fl[email protected] (F.M.) 3 Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania * Correspondence: [email protected] (A.D.); [email protected] (M.A.G.); [email protected] (I.Y.) Abstract: The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin Citation: Ndiaye, A.; Dioum, A.; and the extracts with various pH values were tested in DSSCs.
    [Show full text]
  • Determination of Major Anthocyanin
    02_benmeziane_05b-tomazic 13/10/16 13:03 Page125 DETERMINATION OF MAJOR ANTHOCYANIN PIGMENTS AND FLAVONOLS IN RED GRAPE SKIN OF SOME TABLE GRAPE VARIETIES ( VITIS VINIFERA SP.) BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY–PHOTODIODE ARRAY DETECTION (HPLC-DAD) Farida BENMEZIANE 1* , Yves CADOT 2, Rachid DJAMAI 3 and Lynda DJERMOUN 4 1: Department of Agronomy, University of El-Tarf, PB 73, El-Tarf 36000, Algeria 2: Institut de Recherche en Horticulture et Semences UMR1345 (INRA / Agrocampus-Ouest / Université d’Angers), 42 rue Georges Morel BP 60057, 49071 Beaucouzé Cedex, France 3: Department of Biology, University of Badji-Mokhtar, Annaba, PB 12, Annaba 23000, Algeria 4: University A. Mira of Bejaia, Faculty of Sciences of Nature and Life, Department of Food Science, 3BS Laboratory, Bejaia 06000, Algeria Abstract Aim : The aim of this study was the investigation of the anthocyanin and flavonol content in grape skin extracts. Five prevalent anthocyanin-types and four flavonol-types were determined in the skin of three red table grape varieties widely cultivated in El- Tarf (Algeria). Methods and results : The identification of the compounds was performed by HPLC-DAD based on C-18 reversed phase column separation. Results from HPLC analysis showed that malvidin and petunidin-3- O-glucoside were the major anthocyanin glucoside, whereas quercetin-3- O-glucoside was the major flavonol among the four identified. Conclusion : The content of anthocyanins and flavonols in the grape skin of three grapevine ( Vitis vinifera ) varieties exhibits notable differences among the cultivars studied, confirming their importance in the varietal characterization. The highest concentrations of total anthocyanins and flavonols corresponded to the Gros noir variety.
    [Show full text]
  • Could Purple Tomatoes Help Us Be Healthier?
    Caroline Wood Could purple tomatoes Key words genetic engineering cancer help us be healthier? superfoods ne of the greatest global health challenges just three crops – rice, wheat and maize – provide an BMI (body mass we face is the obesity epidemic. In 2014, estimated 60% of the world’s energy intake. Yet as index) is mass (in Othe World Health Organisation (WHO) our dietary repertoire has shrunk, levels of obesity kg) / height (in m) estimated that worldwide 39% of adults over 18 and its associated diseases have rapidly climbed. squared years were overweight (with a BMI of 25+) and 13% In fact, a lack of fruit and vegetables is ranked as were obese (with a BMI of 30+). This has led to a the second highest risk factor for cancer in men, dramatic surge in the levels of non-communicable and the fifth highest in women in the UK Figure( 2). diseases such as type II diabetes, cardiovascular This is thought to be because plants produce many heart disease (CVD) and certain cancers. We’ve all products as part of their natural metabolism that heard that certain ‘superfoods’ contain compounds are beneficial for our health. that can help combat these diseases, but these are often expensive and not accessible to everyone. If only everyday foods could be engineered to have these enhanced health effects… but thanks to genetic engineering, scientists have started to do just that, giving us purple tomatoes! Our changing diet Andrew Davis, John Innes Centre When humans lived as hunter-gatherers, we would have consumed a much wider range of fruit and vegetables, whereas today our diets are heavily Figure 1 A comparison between what our hunter-gatherer ancestors may have ! based on cereal crops (Figure 1).
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • Gardenergardener
    TheThe AmericanAmerican GARDENERGARDENER TheThe MagazineMagazine ofof thethe AAmericanmerican HorticulturalHorticultural SocietySociety January/February 2005 new plants for 2005 Native Fruits for the Edible Landscape Wildlife-Friendly Gardening Chanticleer: A Jewel of a Garden The Do’s andand Don’tsDon’ts ofof Planting Under Trees contents Volume 84, Number 1 . January / February 2005 FEATURES DEPARTMENTS 5 NOTES FROM RIVER FARM 6 MEMBERS’ FORUM 8 NEWS FROM AHS AHS’s restored White House gates to be centerpiece of Philadelphia Flower Show entrance exhibit, The Growing Connection featured during United Nations World Food Day events, Utah city’s volunteer efforts during America in Bloom competition earned AHS Community Involvement Award, Great Southern Tree Conference is newest AHS partner. 14 AHS PARTNERS IN PROFILE page 22 The Care of Trees brings passion and professionalism to arboriculture. 44 GARDENING BY DESIGN 16 NEW FOR 2005 BY RITA PELCZAR Forget plants—dream of design. A preview of the exciting and intriguing new plant introductions. 46 GARDENER’S NOTEBOOK Gardening trends in 2005, All-America 22 CHANTICLEER BY CAROLE OTTESEN Selections winners, Lenten rose is perennial of the year, wildlife This Philadephia-area garden is being hailed as one of the finest gardening courses small public gardens in America. online, new Cornell Web site allows rating of 26 NATIVE FRUITS BY LEE REICH vegetable varieties, Add beauty and flavor to your landscape with carefree natives like Florida gardens recover from hurricane damage, page 46 beach plum, persimmon, pawpaw, and clove currant. gardeners can help with national bird count. 31 TURNING A GARDEN INTO A COMMUNITY BY JOANNE WOLFE 50 In this first in a series of articles on habitat gardening, learn how to GROWING THE FUTURE create an environment that benefits both gardener and wildlife.
    [Show full text]
  • Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention
    biomedicines Review Anthocyanins, Vibrant Color Pigments, and Their Role in Skin Cancer Prevention 1,2, , 2,3, 4,5 3 Zorit, a Diaconeasa * y , Ioana S, tirbu y, Jianbo Xiao , Nicolae Leopold , Zayde Ayvaz 6 , Corina Danciu 7, Huseyin Ayvaz 8 , Andreea Stanilˇ aˇ 1,2,Madˇ alinaˇ Nistor 1,2 and Carmen Socaciu 1,2 1 Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; [email protected] (A.S.); [email protected] (M.N.); [email protected] (C.S.) 2 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănă¸stur3-5, 400372 Cluj-Napoca, Romania; [email protected] 3 Faculty of Physics, Babes, -Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania; [email protected] 4 Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau 999078, China; [email protected] 5 International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China 6 Faculty of Marine Science and Technology, Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey; [email protected] 7 Victor Babes University of Medicine and Pharmacy, Department of Pharmacognosy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania; [email protected] 8 Department of Food Engineering, Engineering Faculty, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey; [email protected] * Correspondence: [email protected]; Tel.: +40-751-033-871 These authors contributed equally to this work. y Received: 31 July 2020; Accepted: 25 August 2020; Published: 9 September 2020 Abstract: Until today, numerous studies evaluated the topic of anthocyanins and various types of cancer, regarding the anthocyanins’ preventative and inhibitory effects, underlying molecular mechanisms, and such.
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • Naturally Occurring Anthocyanin, Structure, Functions And
    iochemis t B try n & la P P h f y o s l i Journal of o a l n o r g Pervaiz et al., J Plant Biochem Physiol 2017, 5:2 u y o J DOI: 10.4172/2329-9029.1000187 ISSN: 2329-9029 Plant Biochemistry & Physiology Review Article Open Access Naturally Occurring Anthocyanin, Structure, Functions and Biosynthetic Pathway in Fruit Plants Tariq Pervaiz1,2, Jiu Songtao1, Faezeh Faghihi3, Muhammad Salman Haider1 and Jinggui Fang1* 1Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, PR China 2Department of Agriculture and Food Technology, Karakoram International University Gilgit, Pakistan 3Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran *Corresponding author: Jinggui Fang, Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, PR China, E-mail: [email protected] Received Date: April 25, 2017; Accepted Date: April 29, 2017; Published Date: May 06, 2017 Copyright: © 2017 Pervaiz T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Anthocyanins are naturally occurring compounds, member of the flavonoid groups of photochemical, involved in defense against the damaging effects of UV irradiation in plants and protect from many oxidants. The anthocyanins, group of pigments are relatively small and diverse flavonoid family in nature, and responsible for the attractive colors, red and purple to blue in many plants. Presence of pigments in flowers and fruits seems to provide attraction for pollination and aiding seed distribution, it also provides antiviral and antimicrobial activities, however their occurrence in the vacuoles remains ambiguous.
    [Show full text]
  • Notification of Access Arrangement for MP 41279, Mt Te Kuha
    Attachment C Draft Terrestrial Ecology Report 106 VEGETATION AND FAUNA OF THE PROPOSED TE KUHA MINE SITE Prepared for Te Kuha Limited Partnership October 2013 EXECUTIVE SUMMARY The Te Kuha mining permit is located predominantly within the Westport Water Conservation Reserve (1,825 ha), which is a local purpose reserve administered by the Buller District Council. The coal deposit is situated outside the water catchment within an area of approximately 490 ha of Brunner Coal Measures vegetation approximately 5 km southwest of Mt Rochfort. Access would be required across conservation land to reach the coal resource. The Te Kuha site was recommended as an area for protection by the Protected Natural Areas Programme surveys in the 1990s on the basis that in the event it was removed from the local purpose reserve for any reason, addition to the public conservation estate would increase the level of protection of coal measures habitats which, although found elsewhere (principally in the Mt Rochfort Conservation Area), were considered inadequately protected overall. The proposal to create an access road and an opencast mine at the site would affect twelve different vegetation types to varying degrees. The habitats present at the proposed mine site are overwhelmingly indigenous and have a very high degree of intactness reflecting their lack of human disturbance. Previous surveys have shown that some trees in the area are more than 500 years old. Habitats affected by the proposed access road are less intact and include exotic pasture as well as regenerating shrubland and forest. Te Kuha is not part of the Department of Conservation’s Buller Coal Plateaux priority site and is unlikely to receive management for that reason.
    [Show full text]
  • October 1961 , Volume 40, Number 4 305
    TIIE .A:M:ERICA.N ~GAZINE AMERICAN HORTICULTURAL SOCIETY A union of the Amej'ican HOTticu~tural Society and the AmeTican HOTticultural Council 1600 BLADENSBURG ROAD, NORTHEAST. WASHINGTON 2, D. C. For United Horticulture *** to accumulate, increase, and disseminate horticultural intOTmation B. Y. MORRISON, Editor Directors Terms Expiring 1961 JAMES R. HARLOW, Managing Editor STUART M. ARMSTRONG Maryland Editorial Committee JOH N L. CREECH . Maryland W. H . HODGE, Chairman WILLIAM H. FREDERICK, JR. Delaware JOH N L. CREECH FRANCIS PATTESON-KNIGHT FREDERIC P. LEE Virginia DONALD WYMAN CONRAD B. LINK Massachusetts CURTIS MAY T erms Expiring 1962 FREDERICK G . MEYER FREDERIC P. LEE WILBUR H . YOUNGMAN Maryland HENRY T . SKINNER District of Columbia OfJiceTS GEORGE H. SPALDING California PRESIDENT RICHARD P. WHITE DONAlJD WYMAN Distj'ict of Columbia Jamaica Plain, Massachusetts ANNE WERTSNER WOOD Pennsylvania FIRST VICE· PRESIDENT Ternu Expiring 1963 ALBERT J . IRVING New l'm'k, New York GRETCHEN HARSHBARGER Iowa SECOND VICE-PRESIDENT MARY W. M. HAKES Maryland ANNE WERTSNER W ' OOD FREDERIC HEUTTE Swarthmore, Pennsylvania Virginia W . H. HODGE SECRETARY-TREASURER OLIVE E. WEATHERELL ALBERT J . IRVING Washington, D, C. New York The Ame"ican Horticultural Magazine is the official publication of the American Horticultural Society and is issued four times a year during the quarters commencing with January, April, July and October. It is devoted to the dissemination of knowledge in the science and art of growing ornamental plants, fruits, vegetables, and related subjects. Original papers increasing the historical, varietal, and cultural knowledges of plant materials of economic and aesthetic importance are welcomed and will be published as early as possible.
    [Show full text]
  • Anthocyanins Standards (Cyanidin-3-O-Glucoside
    Ciência e Tecnologia de Alimentos ISSN 0101-2061 Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC Original Isolamento de padrões de antocianinas (cianidina-3-O-glucosídeo e cianidina -3-O-rutinosídeo) de açaí liofilizado (Euterpe oleraceae Mart.) por CLAE Ana Cristina Miranda Senna GOUVÊA1*, Manuela Cristina Pessanha de ARAUJO2, Daniel Filisberto SCHULZ3, Sidney PACHECO2, Ronoel Luis de Oliveira GODOY2, Lourdes Maria Corrêa CABRAL2 Abstract Availability of analytical standards is a critical aspect in developing methods for quantitative analysis of anthocyanins. The anthocyanins cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were isolated from samples of freeze-dried açaí (Euterpe oleraceae Mart.), which is a round and purple well-known palm fruit in Brazil, and then used as standards. The isolation of the anthocyanins was performed by High Performance Liquid Chromatography (HPLC), using an adapted six-channel selection valve. The identification of anthocyanin pigments in açaí was based on mass spectrometric data for molecular ions and MS-MS product ions and on previous published data. After the collection procedure, standards with a high purity grade were obtained and an external standard curve of each anthocyanin was plotted. Keywords: anthocyanins; standard; isolation; açaí; Euterpe oleraceae Mart.; HPLC. Resumo Disponibilidade de padrões analíticos é um aspecto crítico no desenvolvimento de métodos de análises quantitativas de antocianinas. Para a obtenção dos padrões isolados de antocianinas cianidina-3-O-glicosídeo e cianidina-3-O-rutinosídeo foram utilizadas amostras liofilizadas de açaí (Euterpe oleraceae Mart.), que é um conhecido fruto de palmeiras no Brasil de forma arredondada e roxo.
    [Show full text]
  • 1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 30 DECEMBER 1992 New Zealand Botanical Society President: Dr Eric Godley Secretary/Treasurer: Anthony Wright Committee: Sarah Beadel, Ewen Cameron, Colin Webb, Carol West Address: New Zealand Botanical Society C/- Auckland Institute & Museum Private Bag 92018 AUCKLAND Subscriptions The 1993 ordinary and institutional subs are $14 (reduced to $10 if paid by the due date on the subscription invoice). The 1993 student sub, available to full-time students, is $7 (reduced to $5 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each - from Number 1 (August 1985) to Number 30 (December 1992). Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February of each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next year's subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the March 1993 issue (Number 31) is 26 February 1993. Please forward contributions to: Bruce & Beverley Clarkson, Editors NZ Botanical Society Newsletter 7 Lynwood Place HAMILTON Cover illustration Asplenium pauperequitum (Aspleniaceae). Drawn by Lesley Alexander from specimens and photographs taken on the Poor Knights Islands. Lesley is completing a BA Hons Graphic Design at Middlesex Polytechnic, England, specialising in scientific illustration.
    [Show full text]