Integrated 'Omics' Characterization of Conserved Nectar Production

Total Page:16

File Type:pdf, Size:1020Kb

Integrated 'Omics' Characterization of Conserved Nectar Production Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Integrated ‘omics’ characterization of conserved nectar production mechanisms using floral and extrafloral eudicot nectaries Elizabeth Claire Chatt Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Agriculture Commons, and the Plant Sciences Commons Recommended Citation Chatt, Elizabeth Claire, "Integrated ‘omics’ characterization of conserved nectar production mechanisms using floral and extrafloral eudicot nectaries" (2019). Graduate Theses and Dissertations. 17154. https://lib.dr.iastate.edu/etd/17154 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Integrated ‘omics’ characterization of conserved nectar production mechanisms using floral and extrafloral eudicot nectaries by Elizabeth Claire Chatt A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Biology Program of Study Committee: Basil J. Nikolau, Major Professor Harry T. Horner Daniel S. Nettleton Jonathan F. Wendel Eve Syrkin Wurtele Marna D. Yandeau-Nelson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Elizabeth Claire Chatt, 2019. All rights reserved. ii TABLE OF CONTENTS ABSTRACT…………………………………………………………………………. iii CHAPTER 1. GENERAL INTRODUCTION………………………………………. 1 References……………………………………………………………………. 4 CHAPTER 2. SEX-DEPENDENT VARIATION OF PUMPKIN (CUCURBITA MAXIMA CV. BIG MAX) NECTAR AND NECTARIES AS DETERMINED BY PROTEOMICS AND METABOLOMICS………………………………………….. 9 Abstract………………………………………………………………………. 9 Introduction…………………………………………………………………... 10 Materials and Methods……………………………………………………….. 12 Results………………………………………………………………………... 19 Discussion……………………………………………………………………. 25 Conclusion…………………………………………………………………… 34 Author Contributions………………………………………………………… 34 Funding………………………………………………………………………. 34 Acknowledgements…………………………………………………………... 34 References……………………………………………………………………. 35 CHAPTER 3. COMPARATIVE TRANSCRIPTOMICS, METABOLOMICS, AND ULTRASTRUCTURAL ANALYSES CHARACTERIZE KEY MODULES OF NECTAR SYNTHESIS AND SECRETION OF COTTON (GOSSYPIUM HIRSUTUM) FLORAL AND EXTRAFLORAL NECTARIES……………………. 40 Introduction…………………………………………………………………... 40 Materials and Methods……………………………………………………….. 43 Results………………………………………………………………………... 52 Discussion……………………………………………………………………. 65 Author Contributions………………………………………………………… 75 Acknowledgements and Funding…………………………………………….. 76 References……………………………………………………………………. 76 Tables and Figures…………………………………………………………… 84 CHAPTER 4. METABOLOMIC PROFILING OF NICOTIANA SPP. NECTARS REVEALS THE INTERPLAY BETWEEN PLANT PHYLOGENETICS AND POLLINATORS IN SHAPING NECTAR DIVERSIFICATION…………………... 104 Abstract………………………………………………………………………. 104 Introduction…………………………………………………………………... 105 Materials and Methods……………………………………………………….. 107 Results………………………………………………………………………... 110 Discussion……………………………………………………………………. 115 Author Contributions………………………………………………………… 119 Acknowledgements…………………………………………………………... 120 Data Accessibility……………………………………………………………. 120 References……………………………………………………………………. 120 Tables and Figures…………………………………………………………… 126 CHAPTER 5. GENERAL CONCLUSION…………………………………………. 134 References……………………………………………………………………. 138 iii ABSTRACT Floral and extrafloral nectar, produced by nectaries, is offered as a reward to foster plant-animal mutualisms with pollinators and invertebrate predators. Attraction of pollinators through floral nectar improves fruit set in 87 out of 115 global food crops. Meanwhile extrafloral nectar, reported in 745 genera, attracts invertebrate predators, such as ants, as an indirect defense mechanism to reduce herbivory. Nectar quality (i.e. volume and composition) strongly correlates with the efficiency of these plant-animal mutualistic interactions, yet nectar composition has typically only been defined by targeted analyses of the two most predominant classes of metabolites, carbohydrates and amino acids. Other less abundant components of nectar are often unaccounted (i.e. vitamins, alkaloids, phenolics, terpenoids, lipids, metal ions, hormones, and proteins). Furthermore, molecular understanding of nectar synthesis and secretion is limited to a few reports of genes directly affecting the de novo production or quality of floral nectar. Comprehensive GC-MS based metabolomics techniques capable of quantifying trace components of nectar were used to characterize nectar composition from species, spanning three eudicot families (Cucurbitaceae, Malvaceae, and Solanaceae). This enabled examination of relationships between nectar composition and biological factors such as the sex of the flower, plant-animal mutualisms, and functional role of the nectar regarding plant reproductive success and defense (i.e. floral and extrafloral nectar). These analyses contributed the metabolomics portion of a comprehensive systems network-based project to define the conserved molecular mechanisms of nectar synthesis and secretion among floral and extrafloral nectaries of the core eudicots. Through the analysis of the transcriptomes and proteomes of nectaries from a broad range of phylogenetic plant clades, we identified core sets of genes conserved within eudicots required for nectary synthesis and secretion. These results also supply a foundation for targeted studies of nectar quality improvement, which will benefit pollinator health, promote plant reproductive success, and enhances biological control of crop pests. 1 CHAPTER 1: GENERAL INTRODUCTION Nectaries are specialized glandular tissues of plants first recognized by Linnaeus (1758) that function to produce and secrete nectars, sugar-rich solutions. Nectaries present on a recognized floral structure are referred to as floral nectaries, whereas nectaries developing outside of the flower (stems, petioles, leaves etc.) are referred to as extrafloral nectaries. The secreted nectars are presented as rewards to animal mutualists in exchange for the ecosystem service of pollination in the case of floral nectar and indirect resistance to herbivores by recruiting pugnacious predatory insects to the extrafloral nectar (Chamberlain and Rudgers, 2012; Mitchell et al., 2009; Ollerton, 2017; Wäckers et al., 2001). The patterns of nectar secretion vary between floral and extrafloral nectaries in order to optimize benefits while minimizing the energetic cost of producing nectar (Heil, 2011; Pleasants, 1983; Wäckers and Bonifay, 2004). The floral nectaries typically produce nectar during anthesis, whereas the extrafloral nectaries modulate nectar secretion based on environmental stressors such as insect herbivory (Heil, 2015; Wäckers et al., 2001). Nearly 75% of our global food crops depend on or benefit from animal-mediated pollination commonly facilitated by floral nectar which improves seed set and promotes outcrossing (Klein et al., 2007). Even in cotton, a largely self- pollinated crop, honey bee visitation facilitated by the floral nectar increases yield (Rhodes, 2002). In a variety of crops such as oilseed rape, sunflower, pumpkin, and tobacco, variations in nectar composition, viscosity, and volume directly influence the frequency of pollinator visitation (Carruthers et al., 2017; Mallinger and Prasifka, 2017; Nepi and Pacini, 1993; Raguso et al., 2003). More generally, nectar composition often reflects the feeding preferences 2 of the target animal-mutualist shaped by factors such as dietary requirements to sustain foraging and neuronal response to phagostimulatory metabolites. (Baker and Baker, 1983; Chen and Welch, 2014; Gardener and Gillman, 2002; Hendriksma et al., 2014; Waller, 1972). The most conserved classes of nectar metabolites are carbohydrates, predominately fructose, glucose, and sucrose, and amino acids which are present at concentrations a thousand-fold less than the carbohydrates (Lüttge, 1977; Nicolson and Thornburg, 2007). Thus, nectar ecology studies typically define nectar composition based upon targeted analyses of predominant sugars and occasionally the amino acids. The ratios of the predominate nectar sugars are the primary means of classifying nectars, into four categories: hexose-dominant, hexose-rich, sucrose-rich, and sucrose-dominant (Baker and Baker, 1983). In addition to carbohydrates and amino acids, nectars are complex solutions that contain some or all of the following constituents: vitamins, alkaloids, phenolics, terpenoids, lipids, metal ions, hormones, and proteins (Richardson et al., 2015; Roy et al., 2017). Global assessments of these ‘trace’ nectar metabolites using metabolomics techniques is a recent development (Bender et al., 2012, 2013; Kram et al., 2008; Noutsos et al., 2015). The hypothesized mechanisms of nectar production and secretion are historically based on ultrastructural analyses, which have generated two models: (1) merocrine also referred to as granulocrine and (2) eccrine (Fahn,
Recommended publications
  • Chec List What Survived from the PLANAFLORO Project
    Check List 10(1): 33–45, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution What survived from the PLANAFLORO Project: PECIES S Angiosperms of Rondônia State, Brazil OF 1* 2 ISTS L Samuel1 UniCarleialversity of Konstanz, and Narcísio Department C.of Biology, Bigio M842, PLZ 78457, Konstanz, Germany. [email protected] 2 Universidade Federal de Rondônia, Campus José Ribeiro Filho, BR 364, Km 9.5, CEP 76801-059. Porto Velho, RO, Brasil. * Corresponding author. E-mail: Abstract: The Rondônia Natural Resources Management Project (PLANAFLORO) was a strategic program developed in partnership between the Brazilian Government and The World Bank in 1992, with the purpose of stimulating the sustainable development and protection of the Amazon in the state of Rondônia. More than a decade after the PLANAFORO program concluded, the aim of the present work is to recover and share the information from the long-abandoned plant collections made during the project’s ecological-economic zoning phase. Most of the material analyzed was sterile, but the fertile voucher specimens recovered are listed here. The material examined represents 378 species in 234 genera and 76 families of angiosperms. Some 8 genera, 68 species, 3 subspecies and 1 variety are new records for Rondônia State. It is our intention that this information will stimulate future studies and contribute to a better understanding and more effective conservation of the plant diversity in the southwestern Amazon of Brazil. Introduction The PLANAFLORO Project funded botanical expeditions In early 1990, Brazilian Amazon was facing remarkably in different areas of the state to inventory arboreal plants high rates of forest conversion (Laurance et al.
    [Show full text]
  • Seedling Growth Responses to Phosphorus Reflect Adult Distribution
    Research Seedling growth responses to phosphorus reflect adult distribution patterns of tropical trees Paul-Camilo Zalamea1, Benjamin L. Turner1, Klaus Winter1, F. Andrew Jones1,2, Carolina Sarmiento1 and James W. Dalling1,3 1Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama; 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA; 3Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA Summary Author for correspondence: Soils influence tropical forest composition at regional scales. In Panama, data on tree com- Paul-Camilo Zalamea munities and underlying soils indicate that species frequently show distributional associations Tel: +507 212 8912 to soil phosphorus. To understand how these associations arise, we combined a pot experi- Email: [email protected] ment to measure seedling responses of 15 pioneer species to phosphorus addition with an Received: 8 February 2016 analysis of the phylogenetic structure of phosphorus associations of the entire tree commu- Accepted: 2 May 2016 nity. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species New Phytologist (2016) from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species doi: 10.1111/nph.14045 from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phos- Key words: phosphatase activity, phorus-use efficiency did not correlate with phosphorus associations; however, phosphatase phosphorus limitation, pioneer trees, plant activity was most strongly down-regulated in response to phosphorus addition in species from communities, plant growth, species high-phosphorus sites. distributions, tropical soil resources.
    [Show full text]
  • Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes
    Corchorus L. and Hibiscus L.: Molecular Phylogeny Helps to Understand Their Relative Evolution and Dispersal Routes Arif Mohammad Tanmoy1, Md. Maksudul Alam1,2, Mahdi Muhammad Moosa1,3, Ajit Ghosh1,4, Waise Quarni1,5, Farzana Ahmed1, Nazia Rifat Zaman1, Sazia Sharmin1,6, Md. Tariqul Islam1, Md. Shahidul Islam1,7, Kawsar Hossain1, Rajib Ahmed1 and Haseena Khan1* 1Molecular Biology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh. 2Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA. 3Graduate Studies in Biological Sciences, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India. 5Department of Pathology and Cell Biology, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA. 6Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan. 7Breeding Division, Bangladesh Jute Research Institute (BJRI), Dhaka 1207, Bangladesh. ABSTRACT: Members of the genera Corchorus L. and Hibiscus L. are excellent sources of natural fibers and becoming much important in recent times due to an increasing concern to make the world greener. The aim of this study has been to describe the molecular phylogenetic relationships among the important members of these two genera as well as to know their relative dispersal throughout the world. Monophyly of Corchorus L. is evident from our study, whereas paraphyletic occurrences have been identified in case of Hibiscus L.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Atlas of Pollen and Plants Used by Bees
    AtlasAtlas ofof pollenpollen andand plantsplants usedused byby beesbees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (organizadores) Atlas of pollen and plants used by bees Cláudia Inês da Silva Jefferson Nunes Radaeski Mariana Victorino Nicolosi Arena Soraia Girardi Bauermann (orgs.) Atlas of pollen and plants used by bees 1st Edition Rio Claro-SP 2020 'DGRV,QWHUQDFLRQDLVGH&DWDORJD©¥RQD3XEOLFD©¥R &,3 /XPRV$VVHVVRULD(GLWRULDO %LEOLRWHF£ULD3ULVFLOD3HQD0DFKDGR&5% $$WODVRISROOHQDQGSODQWVXVHGE\EHHV>UHFXUVR HOHWU¶QLFR@RUJV&O£XGLD,Q¬VGD6LOYD>HW DO@——HG——5LR&ODUR&,6(22 'DGRVHOHWU¶QLFRV SGI ,QFOXLELEOLRJUDILD ,6%12 3DOLQRORJLD&DW£ORJRV$EHOKDV3µOHQ– 0RUIRORJLD(FRORJLD,6LOYD&O£XGLD,Q¬VGD,, 5DGDHVNL-HIIHUVRQ1XQHV,,,$UHQD0DULDQD9LFWRULQR 1LFRORVL,9%DXHUPDQQ6RUDLD*LUDUGL9&RQVXOWRULD ,QWHOLJHQWHHP6HUYL©RV(FRVVLVWHPLFRV &,6( 9,7¯WXOR &'' Las comunidades vegetales son componentes principales de los ecosistemas terrestres de las cuales dependen numerosos grupos de organismos para su supervi- vencia. Entre ellos, las abejas constituyen un eslabón esencial en la polinización de angiospermas que durante millones de años desarrollaron estrategias cada vez más específicas para atraerlas. De esta forma se establece una relación muy fuerte entre am- bos, planta-polinizador, y cuanto mayor es la especialización, tal como sucede en un gran número de especies de orquídeas y cactáceas entre otros grupos, ésta se torna más vulnerable ante cambios ambientales naturales o producidos por el hombre. De esta forma, el estudio de este tipo de interacciones resulta cada vez más importante en vista del incremento de áreas perturbadas o modificadas de manera antrópica en las cuales la fauna y flora queda expuesta a adaptarse a las nuevas condiciones o desaparecer.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]
  • UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number
    [Show full text]
  • Staminodes: Their Morphological and Evolutionary Significance Author(S): L
    Staminodes: Their Morphological and Evolutionary Significance Author(s): L. P. Ronse Decraene and E. F. Smets Source: Botanical Review, Vol. 67, No. 3 (Jul. - Sep., 2001), pp. 351-402 Published by: Springer on behalf of New York Botanical Garden Press Stable URL: http://www.jstor.org/stable/4354395 . Accessed: 23/06/2014 03:18 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Botanical Review. http://www.jstor.org This content downloaded from 210.72.93.185 on Mon, 23 Jun 2014 03:18:32 AM All use subject to JSTOR Terms and Conditions THE BOTANICAL REVIEW VOL. 67 JULY-SEPTEMBER 2001 No. 3 Staminodes: Their Morphological and Evolutionary Signiflcance L. P. RONSEDECRAENE AND E. F. SMETS Katholieke UniversiteitLeuven Laboratory of Plant Systematics Institutefor Botany and Microbiology KasteelparkArenberg 31 B-3001 Leuven, Belgium I. Abstract........................................... 351 II. Introduction.................................................... 352 III. PossibleOrigin of Staminodes........................................... 354 IV. A Redefinitionof StaminodialStructures .................................. 359 A. Surveyof the Problem:Case Studies .............. .................... 359 B. Evolutionof StaminodialStructures: Function-Based Definition ... ......... 367 1. VestigialStaminodes ........................................... 367 2. FunctionalStaminodes ........................................... 368 C. StructuralSignificance of StaminodialStructures: Topology-Based Definition .
    [Show full text]
  • SABONET Report No 18
    ii Quick Guide This book is divided into two sections: the first part provides descriptions of some common trees and shrubs of Botswana, and the second is the complete checklist. The scientific names of the families, genera, and species are arranged alphabetically. Vernacular names are also arranged alphabetically, starting with Setswana and followed by English. Setswana names are separated by a semi-colon from English names. A glossary at the end of the book defines botanical terms used in the text. Species that are listed in the Red Data List for Botswana are indicated by an ® preceding the name. The letters N, SW, and SE indicate the distribution of the species within Botswana according to the Flora zambesiaca geographical regions. Flora zambesiaca regions used in the checklist. Administrative District FZ geographical region Central District SE & N Chobe District N Ghanzi District SW Kgalagadi District SW Kgatleng District SE Kweneng District SW & SE Ngamiland District N North East District N South East District SE Southern District SW & SE N CHOBE DISTRICT NGAMILAND DISTRICT ZIMBABWE NAMIBIA NORTH EAST DISTRICT CENTRAL DISTRICT GHANZI DISTRICT KWENENG DISTRICT KGATLENG KGALAGADI DISTRICT DISTRICT SOUTHERN SOUTH EAST DISTRICT DISTRICT SOUTH AFRICA 0 Kilometres 400 i ii Trees of Botswana: names and distribution Moffat P. Setshogo & Fanie Venter iii Recommended citation format SETSHOGO, M.P. & VENTER, F. 2003. Trees of Botswana: names and distribution. Southern African Botanical Diversity Network Report No. 18. Pretoria. Produced by University of Botswana Herbarium Private Bag UB00704 Gaborone Tel: (267) 355 2602 Fax: (267) 318 5097 E-mail: [email protected] Published by Southern African Botanical Diversity Network (SABONET), c/o National Botanical Institute, Private Bag X101, 0001 Pretoria and University of Botswana Herbarium, Private Bag UB00704, Gaborone.
    [Show full text]
  • Unknown and Cryptic Diversity in the Adelpha Serpa-Group Cassidi Rush University of the Pacific, [email protected]
    University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 2018 Unknown and Cryptic Diversity in the Adelpha serpa-group Cassidi Rush University of the Pacific, [email protected] Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Biology Commons Recommended Citation Rush, Cassidi. (2018). Unknown and Cryptic Diversity in the Adelpha serpa-group. University of the Pacific, Thesis. https://scholarlycommons.pacific.edu/uop_etds/3138 This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. 1 UNKNOWN AND CRYPTIC DIVERSITY IN THE ADELPHA SERPA-GROUP by Cassidi E. Rush A Thesis Submitted to the Graduate School In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Department of Biological Sciences University of the Pacific Stockton, CA 2018 2 UNKNOWN AND CRYPTIC DIVERSITY IN THE ADELPHA SERPA -GROUP by Cassidi E. Rush APPROVED BY: Thesis Advisor: Ryan Hill, Ph.D. Committee Member: Zach Stahlschmidt, Ph.D. Committee Member: Tara Thiemann, Ph.D. Department Chair: Craig Vierra, Ph.D. Dean of Graduate Studies: Thomas H. Naehr, Ph.D. 3 DEDICATION For my dad, who was proud of me. 4 ACKNOWLEDGMENTS My gratitude goes to Ryan Hill for his endless patience and diligence in pursuing this project, and for his critical guidance and advice. I thank O. Vargas and R. Aguilar F.
    [Show full text]
  • Wood Density Variation in Neotropical Forests Page 1
    Wood density variation in Neotropical forests Page 1 1 Regional and phylogenetic variation of wood density across 2,456 neotropical tree 2 species 3 4 Jérôme Chave1,*, Helene C. Muller-Landau2, Timothy R. Baker3, Tomás A. Easdale4,**, Hans 5 ter Steege5, Campbell O. Webb6 6 7 1 Laboratoire Evolution et Diversité Biologique, CNRS UMR5174, Université Paul Sabatier 8 Bâtiment 4R3, 31062 Toulouse, France 9 2 Dept of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford 10 Circle, St. Paul, MN 55108 USA 11 3 Earth and Biosphere Institute, School of Geography, University of Leeds, Leeds, LS2 9JT, 12 UK 13 4 Laboratorio de Investigaciones Ecológicas de las Yungas, Facultad de Ciencias Naturales, 14 Universidad Nacional de Tucumán, CC 34, CP 4107 Yerba Buena, Argentina 15 5 National Herbarium of the Netherlands NHN, Utrecht University branch, Heidelberglaan 2, 16 3584 CS Utrecht, The Netherlands. 17 6 Arnold Arboretum of Harvard University, 22 Divinity Ave, Cambridge, MA 02138, USA 18 19 * Corresponding author. Email: [email protected] 20 ** Present address: School of Agricultural and Forest Sciences, University of Wales, Bangor, 21 Gwynedd LL57 2UW, Wales, UK 22 23 Abstract length: 294 words. Wood density variation in Neotropical forests Page 2 24 Abstract 25 Wood density is a crucial variable in carbon accounting programs of both secondary and old- 26 growth tropical forests. It also is the best single descriptor of wood: it correlates with 27 numerous morphological, mechanical, physiological, and ecological properties. To explore 28 the extent to which wood density could be estimated for rare or poorly censused taxa, and 29 possible sources of variation in this trait, we analysed regional, taxonomic, and phylogenetic 30 variation in wood density among 2,456 tree species from Central and South America.
    [Show full text]
  • Descriptions of the Plant Types
    APPENDIX A Descriptions of the plant types The plant life forms employed in the model are listed, with examples, in the main text (Table 2). They are described in this appendix in more detail, including environmental relations, physiognomic characters, prototypic and other characteristic taxa, and relevant literature. A list of the forms, with physiognomic characters, is included. Sources of vegetation data relevant to particular life forms are cited with the respective forms in the text of the appendix. General references, especially descriptions of regional vegetation, are listed by region at the end of the appendix. Plant form Plant size Leaf size Leaf (Stem) structure Trees (Broad-leaved) Evergreen I. Tropical Rainforest Trees (lowland. montane) tall, med. large-med. cor. 2. Tropical Evergreen Microphyll Trees medium small cor. 3. Tropical Evergreen Sclerophyll Trees med.-tall medium seier. 4. Temperate Broad-Evergreen Trees a. Warm-Temperate Evergreen med.-small med.-small seier. b. Mediterranean Evergreen med.-small small seier. c. Temperate Broad-Leaved Rainforest medium med.-Iarge scler. Deciduous 5. Raingreen Broad-Leaved Trees a. Monsoon mesomorphic (lowland. montane) medium med.-small mal. b. Woodland xeromorphic small-med. small mal. 6. Summergreen Broad-Leaved Trees a. typical-temperate mesophyllous medium medium mal. b. cool-summer microphyllous medium small mal. Trees (Narrow and needle-leaved) Evergreen 7. Tropical Linear-Leaved Trees tall-med. large cor. 8. Tropical Xeric Needle-Trees medium small-dwarf cor.-scler. 9. Temperate Rainforest Needle-Trees tall large-med. cor. 10. Temperate Needle-Leaved Trees a. Heliophilic Large-Needled medium large cor. b. Mediterranean med.-tall med.-dwarf cor.-scler.
    [Show full text]