Report ITU-R S.2199 (11/2010)

Total Page:16

File Type:pdf, Size:1020Kb

Report ITU-R S.2199 (11/2010) Report ITU-R S.2199 (11/2010) Studies on compatibility of broadband wireless access systems and fixed-satellite service networks in the 3 400-4 200 MHz band S Series Fixed satellite service ii Rep. ITU-R S.2199 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1. Electronic Publication Geneva, 2011 ITU 2011 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without written permission of ITU. Rep. ITU-R S.2199 1 REPORT ITU-R S.2199 Studies on compatibility of broadband wireless access systems and fixed-satellite service networks in the 3 400-4 200 MHz band1 (2010) TABLE OF CONTENTS Page Executive summary .................................................................................................................. 4 1 Introduction .................................................................................................................... 6 2 Regulatory status of the services having allocations in the 3 400-4 200 MHz band ...... 6 2.1 Definitions .......................................................................................................... 6 2.2 Table of frequency allocations ............................................................................ 7 2.3 Coordination contours to protect FSS receive earth station ............................... 9 3 FSS systems in the 3 400-4 200 MHz band ................................................................... 11 3.1 Examples of FSS deployments ........................................................................... 11 3.2 Types of FSS receive earth stations .................................................................... 12 3.3 Unregistered earth stations ................................................................................. 13 3.4 Conclusions on satellite system use of the 3 400-4 200 MHz band ................... 13 4 Broadband wireless access systems in the 3 400-4 200 MHz band ............................... 13 5 Possible types of interference to the FSS ....................................................................... 14 6 Sharing and compatibility studies and results ................................................................ 15 6.1 Sharing between FSS and BWA (Co-frequency emission problem) .................. 15 6.2 Compatibility of FSS with interference resulting from unwanted BWA emissions (Unwanted emission problem) ........................................................... 15 6.3 FSS receiver overload (FSS Receiver “saturation” problem) ........................... 16 7 Methods and techniques to enhance sharing and compatibility ..................................... 16 7.1 Individually licensed/registered FSS earth stations at specific locations ........... 16 7.2 BWA stations and/or FSS earth stations deployed in a ubiquitous manner and/or without individual licensing or registration ............................................. 16 1 The characteristics of BWA can be fixed, mobile or nomadic. 2 Rep. ITU-R S.2199 Page 7.3 Possible techniques to avoid LNB saturation ..................................................... 16 7.4 Example of National Regulatory/Technical solutions ........................................ 17 8 Conclusions .................................................................................................................... 17 Annex A – FSS and BWA system parameters ......................................................................... 19 Attachment 1 to Annex A – Spectrum masks for BWA base stations ..................................... 26 Attachment 2 to Annex A – Spectrum emission mask for terminal station equipment operating in the band 3 400-3 800 MHz ......................................................................... 27 Annex B – Description of studies ............................................................................................ 28 1 Introduction .................................................................................................................... 28 Attachment 1 to Annex B – Study A – Compatibility between BWA systems and FSS earth stations ............................................................................................................................ 28 1 Introduction .................................................................................................................... 28 2 Compatibility study’s methodology and assumptions .................................................... 28 2.1 FSS system parameters ....................................................................................... 29 2.2 FSS earth station maximum permissible interference ........................................ 29 2.3 FSS ES antenna pattern ...................................................................................... 30 2.4 BWA system parameters .................................................................................... 30 2.5 BWA base station antenna pattern ...................................................................... 31 2.6 BWA terminal station antenna pattern ............................................................... 31 2.7 BWA base station and terminal station out-of-band emission ........................... 31 2.8 Propagation models ............................................................................................ 32 3 Results ............................................................................................................................ 33 3.1 BWA rural BS interfering with 32 m FSS ES .................................................... 33 3.2 BWA rural BS interfering with 8 m FSS ES ...................................................... 36 3.3 BWA rural BS interfering with 1.2 m FSS ES ................................................... 38 3.4 BWA urban BS interfering with 32 m FSS ES ................................................... 41 3.5 BWA urban BS interfering with 8 m FSS ES ..................................................... 42 3.6 BWA urban BS interfering with 1.2 m FSS ES .................................................. 43 3.7 BWA fixed-outdoor TS interfering with 32 m FSS ES ...................................... 44 3.8 BWA fixed-outdoor TS interfering with 8 m FSS ES ........................................ 45 3.9 BWA fixed-outdoor TS interfering with 1.2 m FSS ES ..................................... 47 Rep. ITU-R S.2199 3 Page 3.10 BWA fixed-indoor TS interfering with 32 m FSS ES ........................................ 48 3.11 BWA fixed-indoor TS interfering with 8 m FSS ES .......................................... 48 3.12 BWA fixed-indoor TS interfering with 1.2 m FSS ES ....................................... 49 4 Conclusions .................................................................................................................... 49 Attachment 2 to Annex B – Description of Study B – Evaluation of Study A with BWA antenna patterns and propagation model parameters ...................................................... 51 1 Introduction .................................................................................................................... 51 2 Evaluation of parameters used in Recommendation ITU-R P.452-13 ........................... 51 3 Set-up of simulations ...................................................................................................... 53 4 Results of simulation ...................................................................................................... 56 4.1 Scenario 1 (BWA sectoral antenna, smooth earth) ............................................. 56 4.2 Scenario 2 (BWA sectoral antenna, actual terrain data) ..................................... 58 4.3 Scenario 3 (BWA omnidirectional antenna, smooth earth) ................................ 62 4.4 Scenario 4 (BWA omnidirectional antenna, actual terrain data) .......................
Recommended publications
  • Study of Radiation Patterns Using Modified Design of Yagi-Uda Antenna G
    Adv. Eng. Tec. Appl. 5, No. 1, 7-9 (2016) 7 Advanced Engineering Technology and Application An International Journal http://dx.doi.org/10.18576/aeta/050102 Study of Radiation Patterns Using Modified Design of Yagi-Uda Antenna G. M. Thakur1, V. B. Sanap2,* and B. H. Pawar1. PI, Wireless section, DPW &Adl DG office, Pune (M.S.), India. Yeshwantrao Chavan College, Sillod Dist Aurangabad (M.S.), India. Received: 8 Aug. 2015, Revised: 20 Oct. 2015, Accepted: 28 Oct. 2015. Published online: 1 Jan. 2016. Abstract: Antenna is very important in wireless communication system. Among the most prevalent antennas, Yagi-Uda antenna is widely used. To improve the antenna gain and directivity, design of antenna is always important. In this paper, the Yagi Uda antenna is modified by adding two more reflectors instead of single and the gain, directivity & radiation pattern were studied. This antenna is designed to give better gain in one particular direction as well as somewhat reduced gain in other directions. The direction of "reduced gain" and gain at particular direction are not controllable in Yagi Uda. This paper provides a design which modifies radiation pattern of Yagi as per user requirement. The experiment is carried out at 157 MHz and all readings are taken for vertical polarization, with the help of Radio Communication Monitor. Keywords: Wireless communication, Yagi-Uda, Communication Service Monitor, Vertical polarization. 1 Introduction three) are used. The said antenna is designed with following set of parameters, Antennas have numerous advantages such as they can be Type:- Yagi-Uda antenna with additional two suitably used for wide range of applications such as reflectors wireless communications, satellite communications, pattern Input :- FM modulated signal of 157 MHz, with stability combining and antenna arrays.
    [Show full text]
  • Radiometry and the Friis Transmission Equation Joseph A
    Radiometry and the Friis transmission equation Joseph A. Shaw Citation: Am. J. Phys. 81, 33 (2013); doi: 10.1119/1.4755780 View online: http://dx.doi.org/10.1119/1.4755780 View Table of Contents: http://ajp.aapt.org/resource/1/AJPIAS/v81/i1 Published by the American Association of Physics Teachers Related Articles The reciprocal relation of mutual inductance in a coupled circuit system Am. J. Phys. 80, 840 (2012) Teaching solar cell I-V characteristics using SPICE Am. J. Phys. 79, 1232 (2011) A digital oscilloscope setup for the measurement of a transistor’s characteristic curves Am. J. Phys. 78, 1425 (2010) A low cost, modular, and physiologically inspired electronic neuron Am. J. Phys. 78, 1297 (2010) Spreadsheet lock-in amplifier Am. J. Phys. 78, 1227 (2010) Additional information on Am. J. Phys. Journal Homepage: http://ajp.aapt.org/ Journal Information: http://ajp.aapt.org/about/about_the_journal Top downloads: http://ajp.aapt.org/most_downloaded Information for Authors: http://ajp.dickinson.edu/Contributors/contGenInfo.html Downloaded 07 Jan 2013 to 153.90.120.11. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission Radiometry and the Friis transmission equation Joseph A. Shaw Department of Electrical & Computer Engineering, Montana State University, Bozeman, Montana 59717 (Received 1 July 2011; accepted 13 September 2012) To more effectively tailor courses involving antennas, wireless communications, optics, and applied electromagnetics to a mixed audience of engineering and physics students, the Friis transmission equation—which quantifies the power received in a free-space communication link—is developed from principles of optical radiometry and scalar diffraction.
    [Show full text]
  • Handbookhandbook Mobile-Satellite Service (MSS) Handbook
    n International Telecommunication Union Mobile-satellite service (MSS) HandbookHandbook Mobile-satellite service (MSS) Handbook *00000* Edition 2002 Printed in Switzerland Geneva, 2002 ISBN 92-61-09951-3 Radiocommunication Bureau Edition 2002 THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Web: www.itu.int/itu-r Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ITU 2002 All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU. International Telecommunication Union HandbookHandbook Mobile-satellite service (MSS) Radiocommunication Bureau Edition 2002 - iii - FOREWORD In today’s world, people have become increasingly mobile in both their work and play.
    [Show full text]
  • 25. Antennas II
    25. Antennas II Radiation patterns Beyond the Hertzian dipole - superposition Directivity and antenna gain More complicated antennas Impedance matching Reminder: Hertzian dipole The Hertzian dipole is a linear d << antenna which is much shorter than the free-space wavelength: V(t) Far field: jk0 r j t 00Id e ˆ Er,, t j sin 4 r Radiation resistance: 2 d 2 RZ rad 3 0 2 where Z 000 377 is the impedance of free space. R Radiation efficiency: rad (typically is small because d << ) RRrad Ohmic Radiation patterns Antennas do not radiate power equally in all directions. For a linear dipole, no power is radiated along the antenna’s axis ( = 0). 222 2 I 00Idsin 0 ˆ 330 30 Sr, 22 32 cr 0 300 60 We’ve seen this picture before… 270 90 Such polar plots of far-field power vs. angle 240 120 210 150 are known as ‘radiation patterns’. 180 Note that this picture is only a 2D slice of a 3D pattern. E-plane pattern: the 2D slice displaying the plane which contains the electric field vectors. H-plane pattern: the 2D slice displaying the plane which contains the magnetic field vectors. Radiation patterns – Hertzian dipole z y E-plane radiation pattern y x 3D cutaway view H-plane radiation pattern Beyond the Hertzian dipole: longer antennas All of the results we’ve derived so far apply only in the situation where the antenna is short, i.e., d << . That assumption allowed us to say that the current in the antenna was independent of position along the antenna, depending only on time: I(t) = I0 cos(t) no z dependence! For longer antennas, this is no longer true.
    [Show full text]
  • WDP.2458.25.4.B.02 Linear Polarization Wifi Dual Bands Patch
    SPECIFICATION PATENT PENDING Part No. : WDP.2458.25.4.B.02 Product Name : Wi-Fi Dual-band 2.4/5 GHz Embedded Ceramic Patch Antenna 6dBi+ at 2.4GHz 6dBi+ on 5 to 6 GHz Features : 25mm*25mm*4mm 2400MHz to 2500MHz/5150MHz to 5850MHz Pin Type Supports IEEE 802.11 Dual-band Wi-Fi systems Dual linear polarization Tuned for 70x70mm ground plane RoHS & REACH Compliant SPE-14-8-039/B/WY Page 1 of 14 1. Introduction This unique patent pending high gain, high efficiency embedded ceramic patch antenna is designed for professional Wi-Fi dual-band IEEE 802.11 applications. It is mounted via pin and double-sided adhesive. The passive patch offers stable high gain response from 4 dBi to 6dBi on the 2.4GHz band and from 5dBi to 8dBi on the 5 ~6 GHz band. Efficiency values are impressive also across the bands with on average 60%+. The WDP.25’s high gain, high efficiency performance is the perfect solution for directional dual-band WiFi application which need long range but which want to use small compact embedded antennas. The much higher gain and efficiency of the WDP.25 over smaller less efficient more omni-directional chip antennas (these typically have no more than 2dBi gain, 30% efficiencies) means it can deliver much longer range over a wide sector. Typical applications are • Access Points • Tablets • High definition high throughput video streaming routers • High data MIMO bandwidth routers • Automotive • Home and industrial in-wall WiFi automation • Drones/Quad-copters • UAV • Long range WiFi remote control applications The WDP patch antenna has two distinct linear polarizations, on the 2.4 and 5GHz bands, increasing isolation between bands.
    [Show full text]
  • Executive Summary of the ICAO Position for ITU WRC-15 Radio
    Executive Summary of the ICAO Position for ITU WRC-15 Radio frequency spectrum is a scarce natural resource with finite capacity for which demand is constantly increasing. The requirements of civil aviation as well as other spectrum users continue to grow at a fast pace, thus creating an ever-increasing pressure to an already stretched resource. International competition between radio services obliges all spectrum users, aeronautical and non- aeronautical alike, to continually defend and justify retention of existing or addition of new frequency bands. The ICAO Position aims at protecting aeronautical frequency spectrum for all radiocommunication and radionavigation systems used for ground facilities and on board aircraft. The ICAO Position addresses all radioregulatory aspects on aeronautical matters on the agenda for the WRC-15. The items of main concern to aviation include the following: identification of additional frequency bands for the International Mobile Telecommunications (IMT). Under this agenda item, the telecommunications industry is seeking up to 1200 MHz of additional spectrum in the 300 MHz to 6 GHz range for mobile and broadband applications. It is expected that a number of aeronautical frequency bands will come under pressure for potential repurposing, especially some of the Primary Surveillance Radar (PSR) bands. Existing frequency allocations which are vital for the operation of aeronautical very small aperture terminal (VSAT) ground-ground communication networks, especially in tropical regions, are also expected to come under pressure. Due to decisions made by a previous WRC, this has already become a problematic issue in Africa. WRC-15 agenda items 1.1 and 9.1.5 refer; potential radioregulatory means to facilitate the use of non-safety satellite service frequency bands for a very safety-critical application, the command and control link for remotely piloted aircraft systems (RPAS) in non-segregated airspace.
    [Show full text]
  • Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT
    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Development of Earth Station Receiving Antenna and Digital Filter Design Analysis for C-Band VSAT Su Mon Aye, Zaw Min Naing, Chaw Myat New, Hla Myo Tun Abstract: This paper describes the performance improvement of C-band VSAT receiving antenna. In this work, the gain and efficiency of C-band VSAT have been evaluated and then the reflector design is developed with the help of ICARA and MATLAB environment. The proposed design meets the good result of antenna gain and efficiency. The typical gain of prime focus parabolic reflector antenna is 30 dB to 40dB. And the efficiency is 60% to 80% with the good antenna design. By comparing with the typical values, the proposed C-band VSAT antenna design is well optimized with gain of 38dB and efficiency of 78%. In this paper, the better design with compromise gain performance of VSAT receiving parabolic antenna using ICARA software tool and the calculation of C-band downlink path loss is also described. The particular prime focus parabolic reflector antenna is applied for this application and gain of antenna, radiation pattern with far field, near field and the optimized antenna efficiency is also developed. The objective of this paper is to design the downlink receiving antenna of VSAT satellite ground segment with excellent gain and overall antenna efficiency. The filter design analysis is base on Kaiser window method and the simulation results are also presented in this paper. Index Terms: prime focus parabolic reflector antenna, satellite, efficiency, gain, path loss, VSAT.
    [Show full text]
  • Design and Application of a New Planar Balun
    DESIGN AND APPLICATION OF A NEW PLANAR BALUN Younes Mohamed Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2014 APPROVED: Shengli Fu, Major Professor and Interim Chair of the Department of Electrical Engineering Hualiang Zhang, Co-Major Professor Hyoung Soo Kim, Committee Member Costas Tsatsoulis, Dean of the College of Engineering Mark Wardell, Dean of the Toulouse Graduate School Mohamed, Younes. Design and Application of a New Planar Balun. Master of Science (Electrical Engineering), May 2014, 41 pp., 2 tables, 29 figures, references, 21 titles. The baluns are the key components in balanced circuits such balanced mixers, frequency multipliers, push–pull amplifiers, and antennas. Most of these applications have become more integrated which demands the baluns to be in compact size and low cost. In this thesis, a new approach about the design of planar balun is presented where the 4-port symmetrical network with one port terminated by open circuit is first analyzed by using even- and odd-mode excitations. With full design equations, the proposed balun presents perfect balanced output and good input matching and the measurement results make a good agreement with the simulations. Second, Yagi-Uda antenna is also introduced as an entry to fully understand the quasi-Yagi antenna. Both of the antennas have the same design requirements and present the radiation properties. The arrangement of the antenna’s elements and the end-fire radiation property of the antenna have been presented. Finally, the quasi-Yagi antenna is used as an application of the balun where the proposed balun is employed to feed a quasi-Yagi antenna.
    [Show full text]
  • Federal Communications Commission FCC 02-23
    Federal Communications Commission FCC 02-23 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of ) ) Amendment of Parts 2, 25 and 97 of the ) Commission's Rules with Regard to the ) ET Docket No. 98-142 Mobile-Satellite Service Above 1 GHz ) REPORT AND ORDER Adopted: January 28, 2002 Released: February 7, 2002 By the Commission: TABLE OF CONTENTS Paragraph I. INTRODUCTION............................................................................................................................ 1 II. EXECUTIVE SUMMARY............................................................................................................... 2 III. BACKGROUND .............................................................................................................................. 6 IV. DISCUSSION ................................................................................................................................ 11 A. NGSO MSS Feeder Uplinks at 5091-5250 MHz ........................................................................11 1. Current Use.........................................................................................................................11 2. Proposal..............................................................................................................................13 3. Comments...........................................................................................................................14 4. Decision..............................................................................................................................16
    [Show full text]
  • 187 Part 87—Aviation Services
    Federal Communications Commission Pt. 87 the ship aboard which the ship earth determination purposes under the fol- station is to be installed and operated. lowing conditions: (b) A station license for a portable (1) The radio transmitting equipment ship earth station may be issued to the attached to the cable-marker buoy as- owner or operator of portable earth sociated with the ship station must be station equipment proposing to furnish described in the station application; satellite communication services on (2) The call sign used for the trans- board more than one ship or fixed off- mitter operating under the provisions shore platform located in the marine of this section is the call sign of the environment. ship station followed by the letters ``BT'' and the identifying number of [52 FR 27003, July 17, 1987, as amended at 54 the buoy. FR 49995, Dec. 4, 1989] (3) The buoy transmitter must be § 80.1187 Scope of communication. continuously monitored by a licensed radiotelegraph operator on board the Ship earth stations must be used for cable repair ship station; and telecommunications related to the (4) The transmitter must operate business or operation of ships and for under the provisions in § 80.375(b). public correspondence of persons on board. Portable ship earth stations are authorized to meet the business, oper- PART 87ÐAVIATION SERVICES ational and public correspondence tele- communication needs of fixed offshore Subpart AÐGeneral Information platforms located in the marine envi- Sec. ronment as well as ships. The types of 87.1 Basis and purpose. emission are determined by the 87.3 Other applicable rule parts.
    [Show full text]
  • Federal Communications Commission § 80.110
    SUBCHAPTER D—SAFETY AND SPECIAL RADIO SERVICES PART 80—STATIONS IN THE 80.71 Operating controls for stations on land. MARITIME SERVICES 80.72 Antenna requirements for coast sta- tions. Subpart A—General Information 80.74 Public coast station facilities for a te- lephony busy signal. GENERAL 80.76 Requirements for land station control Sec. points. 80.1 Basis and purpose. 80.2 Other regulations that apply. STATION REQUIREMENTS—SHIP STATIONS 80.3 Other applicable rule parts of this chap- 80.79 Inspection of ship station by a foreign ter. Government. 80.5 Definitions. 80.80 Operating controls for ship stations. 80.7 Incorporation by reference. 80.81 Antenna requirements for ship sta- tions. Subpart B—Applications and Licenses 80.83 Protection from potentially hazardous RF radiation. 80.11 Scope. 80.13 Station license required. OPERATING PROCEDURES—GENERAL 80.15 Eligibility for station license. 80.17 Administrative classes of stations. 80.86 International regulations applicable. 80.21 Supplemental information required. 80.87 Cooperative use of frequency assign- 80.25 License term. ments. 80.31 Cancellation of license. 80.88 Secrecy of communication. 80.37 One authorization for a plurality of 80.89 Unauthorized transmissions. stations. 80.90 Suspension of transmission. 80.39 Authorized station location. 80.91 Order of priority of communications. 80.41 Control points and dispatch points. 80.92 Prevention of interference. 80.43 Equipment acceptable for licensing. 80.93 Hours of service. 80.45 Frequencies. 80.94 Control by coast or Government sta- 80.47 Operation during emergency. tion. 80.49 Construction and regional service re- 80.95 Message charges.
    [Show full text]
  • Southwest Region Spectrum Management Handbook
    ORDER SW 6050.12A SOUTHWEST REGION SPECTRUM MANAGEMENT HANDBOOK (Date of Order to be entered at time of ASW-400 signature) DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION Distribution: A-X-5; A-FAF/AT-0 (STD) Initiated By: ASW-473 RECORD OF CHANGES DIRECTIVE NO. SW 6050.12A CHANGE SUPPLEMENTS OPTIONAL CHANGE SUPPLEMENTS OPTIONAL TO TO BASIC BASIC 12/12/01 SW 6050.12A FOREWORD The radio frequency spectrum is a finite, vital, and very limited natural resource available to all countries of the world. This international resource serves mankind in innumerable ways, and each country exercises its own sovereign rights in the use of the electromagnetic waves. Because the radio spectrum knows no bounds, its use cannot be restricted to individual countries. Requirements for use of this resource generally exceed the amount available; therefore, it is necessary that international, national, and regional spectrum management be rigidly practiced. The purpose of this spectrum management order is to present radio frequency spectrum information, guidance, and policy to those organizations using or administrating the radio frequency spectrum within the Southwest Region. Marcos Costilla Manager, Airway Facilities Division Page i (and ii) SW 6050.12A 12/12/01 Page ii 12/12/01 SW 6050.12A TABLE OF CONTENTS CHAPTER 1. ORGANIZATION, AUTHORITY AND RESPONSIBILITY 1. Purpose..................................................................................................................................................................... 1 2. Distribution..............................................................................................................................................................
    [Show full text]