Only a Matter of Time: the Impact of Daily and Seasonal Rhythms on Phytochemicals

Total Page:16

File Type:pdf, Size:1020Kb

Only a Matter of Time: the Impact of Daily and Seasonal Rhythms on Phytochemicals Phytochem Rev https://doi.org/10.1007/s11101-019-09617-z (0123456789().,-volV)(0123456789().,-volV) Only a matter of time: the impact of daily and seasonal rhythms on phytochemicals Donna J. Liebelt . Juliette T. Jordan . Colleen J. Doherty Received: 1 February 2019 / Accepted: 11 June 2019 Ó Springer Nature B.V. 2019 Abstract Plants regulate molecular bioactivity in Graphic abstract Temporal regulation of phyto- response to daily and seasonal environmental fluctu- chemical composition. The phytochemical composi- ations in temperature, light, humidity, and precipita- tion of a plant is under complex control, affected by tion. These rhythms interconnect, overlap, and both external environmental factors and endogenous feedback both into each other and into the plant’s circadian rhythms. The environmental factors that endogenous circadian clock. The resulting regulatory directly affect phytochemical profiles and concentra- network tightly ensures that the overall phytochemical tions themselves vary across time of day and time of composition is highly adaptive to the plant’s needs at year. These cyclic environmental factors also entrain any point in time. Temporally coordinated control of the endogenous circadian clock which imposes addi- primary and secondary metabolism ensures phyto- tional regulation on the production and processing of chemicals are in tune with the demands of the many phytochemicals. This concerted effort to ensure environment and the available resources. As a conse- phytochemicals are exquisitely in tune with the quence, phytochemical composition varies throughout demands of the environment results in fluctuating the day and year. This variation in phytochemical phytochemical composition. Variation in phytochem- abundance and composition across time can affect ical abundance and composition across time can affect experimental results and conclusions. Understanding experimental results and conclusions. Failing to how phytochemical composition varies across time is consider the factors of time of day and year can result critical for uncovering the underlying regulatory in misleading or inconsistent estimations of the connections and ultimately improving the quality of potency and composition of phytochemical extrac- phytochemical products. Herein, we review the mech- tions. Integrating temporal factors will improve our anisms underlying diel and seasonal variations in understanding of the underlying regulatory connec- phytochemical composition and provide examples of tions and ultimately improve the quality of phyto- temporal regulation of specific compounds within chemical products. phenol, terpenoid, and alkaloid phytochemical classes. D. J. Liebelt Á J. T. Jordan Á C. J. Doherty (&) Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA e-mail: [email protected] 123 Phytochem Rev Keywords Diel Á Time of day Á Temporal between tea leaves grown in the sun versus shade regulation Á Circadian rhythms Á Photoperiod (Ahmed et al. 2010) or harvested during the monsoon responses Á Environmental regulation Á Specialized season versus the dry spring (Ahmed et al. 2014). metabolites Á Phenols Á Flavonoids Á Terpenoids Á Therefore, understanding how environmental factors Alkaloids impact the phytochemical composition can have profound consequences in breeding and agricultural production of specialty crops. Variation in primary metabolism throughout dif- Introduction ferent times of day or seasons of the year is well- established (Farre´ and Weise 2012). However, com- The properties that determine the perceived value of a paratively little is known on the temporal regulation of plant as a source for phytochemicals depend on the specialized metabolites. Temporal changes in metabo- composition, relative concentration, and potency of lite concentrations can alter the efficacy of nutraceu- these bioactive molecules. All of these factors can ticals. Daily or seasonal changes in the metabolic vary as highly plastic plant biochemistry responds profile of a plant can alter the toxicity or potency. dynamically to the environment. Research on spe- Moreover, understanding the temporal variation in cialty crops producing phytochemicals has shown that specialized metabolites can improve selection and value-added phenotypes from aesthetics to flavor and breeding strategies, increasing the consistency of texture vary with environmental changes. In turn, phytochemical production and research. In this these variations can impact shelf life, food safety, and review, we focus on the impact of recurring daily health benefits that determine the value and drive the and seasonal cycles on phytochemical biochemistry. consumer perception of quality (Ahmed and Stepp We provide a general overview of the mechanisms that 2016). Risks for food waste and financial harm to can drive daily and seasonal variation in phytochem- producers and retailers are enhanced as devalued or ical levels and then provide specific examples of unaesthetic products are discarded (Buzby et al. 2014). compounds in various phytochemical classes that For example, consumers can taste the difference show daily and seasonal variation. Finally, we discuss 123 Phytochem Rev how current trends are changing these rhythmic and processing of specialized metabolites (Bla¨sing environmental patterns and how these changes may et al. 2005). Finally, the physiological and molecular impact phytochemical research and production. responses to abiotic and biotic stresses are ‘gated’ so In several plant species, the regulatory and biosyn- that the potential for response is maximal when the thetic genes of specialized metabolite pathways show stress stimulus is most likely to occur. circadian, diel, or photoperiod driven rhythmic tran- script expression (Alabadı´ et al. 2002; Filichkin et al. Regulation of phytochemicals by changes in light 2011; Pavarini et al. 2012; Gyllenstrand et al. 2014; quality and temperature Soni et al. 2015; Fenske and Imaizumi 2016; Zeng et al. 2017; Greenham et al. 2017; Koda et al. 2017; For many phytochemicals, their accumulation levels Weiss et al. 2018; Yin et al. 2018; Yoshida and are directly affected by changes in light, temperature, Oyama-okubo 2018). The correlation between and water availability. As these environmental fea- changes in transcript and metabolite levels will depend tures vary both throughout the day and year, the on the environmental conditions and the specific impact of these environmental variables can result in pathway of interest. Therefore, in this review, where their altered accumulation depending on the time of possible, we focus on evidence of temporal variation day or year the plant is sampled. at the metabolite level. Light quality Daily cycles of environmental change drive The filtering effects of the atmosphere change as the variation in phytochemical production position of the sun in the sky changes throughout the and processing day and the year, altering the total light intensity. Additionally, since the atmospheric filtering is not Plants coordinate their molecular activities by time to consistent across all wavelengths, this change in the operate at optimum efficiency. Growth, stomatal angle of the sun also impacts the spectrum of light that opening, photosynthesis, metabolism, nutrient, and is available to plants. The accumulation of some water uptake are timed to coincide with the availabil- phytochemicals is directly impacted by changes in ity of resources; primarily light and water (Nozue and light quality, perhaps driving their daily and seasonal Maloof 2006; Harmer 2010). Throughout a 24 h variation in levels. period, there are changes in light intensity, light Blue light and other shorter wavelengths are quality, temperature, and humidity. These four factors strongly affected by Rayleigh scattering, resulting in have a direct impact on nutrient uptake and photosyn- a lower abundance of these wavelengths in winter as thesis and therefore impact the availability and well as dawn and dusk which leads to an increase in the distribution of carbon and nitrogen (Rufty et al. relative amount of the longer, red wavelengths. The 1989; Bla¨sing et al. 2005; Ruts et al. 2012). This ratio of the red to far-red wavelengths impacts cycling availability of carbon and nitrogen starting developmental transitions such as the transition to materials has consequences on the production and flowering. The mechanism for this sensitivity in processing of specialized metabolites. In addition to Arabidopsis is through the light-quality dependent modulating the availability of the building blocks switching of the phytochromes between active and necessary to generate specialized metabolites, these inactive states (Ulijasz and Vierstra 2011; Ushijima daily-changing environmental factors also directly et al. 2017; Sethe et al. 2017). The phytochromes in influence the pathways that regulate specialized Arabidopsis impact photosynthesis and primary meta- metabolites. Not only do temperature, humidity, light bolism (Yang et al. 2016a, b; Kreslavski et al. 2018). intensity, and quality directly influence specialized Loss of phytochromes alter the metabolic profiles with metabolite levels, these four factors also serve as cues increases in sugars and amino acids. These changes are to modulate the plant’s circadian clock so that it is in similar to those observed in plants under abiotic stress, sync with the local environment (McClung in particular, there is a large accumulation of proline 2006, 2008; Harmer 2010; Mwimba
Recommended publications
  • Activity of Selected Group of Monoterpenes in Alzheimer's
    International Journal of Molecular Sciences Review Activity of Selected Group of Monoterpenes in Alzheimer’s Disease Symptoms in Experimental Model Studies—A Non-Systematic Review Karolina Wojtunik-Kulesza 1,*, Monika Rudkowska 2, Kamila Kasprzak-Drozd 1,* , Anna Oniszczuk 1 and Kinga Borowicz-Reutt 2 1 Department of Inorganic Chemistry, Medical University of Lublin, Chod´zki4a, 20-093 Lublin, Poland; [email protected] 2 Independent Experimental Neuropathophysiology Unit, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; [email protected] (M.R.); [email protected] (K.B.-R.) * Correspondence: [email protected] (K.W.-K.); [email protected] (K.K.-D.) Abstract: Alzheimer’s disease (AD) is the leading cause of dementia and cognitive function im- pairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes—low-molecular compounds with anti-inflammatory, antioxidant, Citation: Wojtunik-Kulesza, K.; enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review Rudkowska, M.; Kasprzak-Drozd, K.; focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes Oniszczuk, A.; Borowicz-Reutt, K. and monoterpenoids for which possible mechanisms of action have been explained. The main body Activity of Selected Group of of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic Monoterpenes in Alzheimer’s and sleep-regulating effects as determined by in vitro and in silico tests—followed by validation in Disease Symptoms in Experimental in vivo models.
    [Show full text]
  • List of Union Reference Dates A
    Active substance name (INN) EU DLP BfArM / BAH DLP yearly PSUR 6-month-PSUR yearly PSUR bis DLP (List of Union PSUR Submission Reference Dates and Frequency (List of Union Frequency of Reference Dates and submission of Periodic Frequency of submission of Safety Update Reports, Periodic Safety Update 30 Nov. 2012) Reports, 30 Nov.
    [Show full text]
  • Download Supplementary
    Supplementary Materials: High throughput virtual screening to discover inhibitors of the main protease of the coronavirus SARS-CoV-2 Olujide O. Olubiyi1,2*, Maryam Olagunju1, Monika Keutmann1, Jennifer Loschwitz1,3, and Birgit Strodel1,3* 1 Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany 2 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria 3 Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany * Corresponding authors: [email protected], [email protected] List of Figures S1 Chemical fragments majorly featured in the top performing 9,515 synthetic com- pounds obtained from screening against the crystal structure of the SARS-CoV-2 main protease 3CLpro. .................................. 2 S2 Chemical fragments majorly featured in the top 2,102 synthetic compounds obtained from ensemble docking and application of cutoff values of ∆G ≤ −7.0 kcal/mol and ddyad ≤ 3.5 Å. ............................ 2 S3 The poses and 3CLpro–compound interactions of phthalocyanine and hypericin. 3 S4 The poses and 3CLpro–compound interactions of the four best non-FDA-approved and investigational drugs. ............................... 4 S5 The poses and 3CLpro–compound interactions of zeylanone and glabrolide. 5 List of Tables S1 Names and properties of the compounds binding best to the active site of 3CLpro. 6 1 Supporting Material: High throughput virtual screening for 3CLpro inhibitors Figure S1: Chemical fragments majorly featured in the top performing 9,515 synthetic com- pounds obtained from screening against the crystal structure of the SARS-CoV-2 main pro- tease 3CLpro. The numbers represent the occurrence in absolute numbers.
    [Show full text]
  • Horizon Scanning Status Report June 2019
    Statement of Funding and Purpose This report incorporates data collected during implementation of the Patient-Centered Outcomes Research Institute (PCORI) Health Care Horizon Scanning System, operated by ECRI Institute under contract to PCORI, Washington, DC (Contract No. MSA-HORIZSCAN-ECRI-ENG- 2018.7.12). The findings and conclusions in this document are those of the authors, who are responsible for its content. No statement in this report should be construed as an official position of PCORI. An intervention that potentially meets inclusion criteria might not appear in this report simply because the horizon scanning system has not yet detected it or it does not yet meet inclusion criteria outlined in the PCORI Health Care Horizon Scanning System: Horizon Scanning Protocol and Operations Manual. Inclusion or absence of interventions in the horizon scanning reports will change over time as new information is collected; therefore, inclusion or absence should not be construed as either an endorsement or rejection of specific interventions. A representative from PCORI served as a contracting officer’s technical representative and provided input during the implementation of the horizon scanning system. PCORI does not directly participate in horizon scanning or assessing leads or topics and did not provide opinions regarding potential impact of interventions. Financial Disclosure Statement None of the individuals compiling this information have any affiliations or financial involvement that conflicts with the material presented in this report. Public Domain Notice This document is in the public domain and may be used and reprinted without special permission. Citation of the source is appreciated. All statements, findings, and conclusions in this publication are solely those of the authors and do not necessarily represent the views of the Patient-Centered Outcomes Research Institute (PCORI) or its Board of Governors.
    [Show full text]
  • Crixivan® (Indinavir Sulfate) Capsules
    CRIXIVAN® (INDINAVIR SULFATE) CAPSULES DESCRIPTION CRIXIVAN* (indinavir sulfate) is an inhibitor of the human immunodeficiency virus (HIV) protease. CRIXIVAN Capsules are formulated as a sulfate salt and are available for oral administration in strengths of 100, 200, 333, and 400 mg of indinavir (corresponding to 125, 250, 416.3, and 500 mg indinavir sulfate, respectively). Each capsule also contains the inactive ingredients anhydrous lactose and magnesium stearate. The capsule shell has the following inactive ingredients and dyes: gelatin, titanium dioxide, silicon dioxide and sodium lauryl sulfate. The chemical name for indinavir sulfate is [1(1S,2R),5(S)]-2,3,5-trideoxy-N-(2,3-dihydro-2- hydroxy-1H-inden-1-yl)-5-[2-[[(1,1-dimethylethyl)amino]carbonyl]-4-(3-pyridinylmethyl)-1- piperazinyl]-2-(phenylmethyl)-D-erythro-pentonamide sulfate (1:1) salt. Indinavir sulfate has the following structural formula: Indinavir sulfate is a white to off-white, hygroscopic, crystalline powder with the molecular formula C36H47N5O4 • H2SO4 and a molecular weight of 711.88. It is very soluble in water and in methanol. MICROBIOLOGY Mechanism of Action: HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Antiretroviral Activity In Vitro: The in vitro activity of indinavir was assessed in cell lines of lymphoblastic and monocytic origin and in peripheral blood lymphocytes.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network
    pharmaceuticals Review Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network Chan Li 1,2, Bishan Huang 1 and Yuan-Wei Zhang 1,3,* 1 School of Life Sciences, Guangzhou University, Guangzhou 510006, China; [email protected] (C.L.); [email protected] (B.H.) 2 Department of Psychiatry, School of Medicine Yale University, New Haven, CT 06511, USA 3 Department of Pharmacology, School of Medicine Yale University, New Haven, CT 06511, USA * Correspondence: [email protected] Abstract: The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus– pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, im- munological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medica- tions for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed.
    [Show full text]
  • Crixivan® (Indinavir Sulfate) Capsules
    CRIXIVAN® (INDINAVIR SULFATE) CAPSULES DESCRIPTION CRIXIVAN® (indinavir sulfate) is an inhibitor of the human immunodeficiency virus (HIV) protease. CRIXIVAN Capsules are formulated as a sulfate salt and are available for oral administration in strengths of 200 and 400 mg of indinavir (corresponding to 250 and 500 mg indinavir sulfate, respectively). Each capsule also contains the inactive ingredients anhydrous lactose and magnesium stearate. The capsule shell has the following inactive ingredients and dyes: gelatin and titanium dioxide. The chemical name for indinavir sulfate is [1(1S,2R),5(S)]-2,3,5-trideoxy-N-(2,3-dihydro-2-hydroxy-1H- inden-1-yl)-5-[2-[[(1,1-dimethylethyl)amino]carbonyl]-4-(3-pyridinylmethyl)-1-piperazinyl]-2-(phenylmethyl)- D-erythro-pentonamide sulfate (1:1) salt. Indinavir sulfate has the following structural formula: Indinavir sulfate is a white to off-white, hygroscopic, crystalline powder with the molecular formula C36H47N5O4 • H2SO4 and a molecular weight of 711.88. It is very soluble in water and in methanol. MICROBIOLOGY Mechanism of Action: HIV-1 protease is an enzyme required for the proteolytic cleavage of the viral polyprotein precursors into the individual functional proteins found in infectious HIV-1. Indinavir binds to the protease active site and inhibits the activity of the enzyme. This inhibition prevents cleavage of the viral polyproteins resulting in the formation of immature non-infectious viral particles. Antiretroviral Activity In Vitro: The in vitro activity of indinavir was assessed in cell lines of lymphoblastic and monocytic origin and in peripheral blood lymphocytes. HIV-1 variants used to infect the different cell types include laboratory-adapted variants, primary clinical isolates and clinical isolates resistant to nucleoside analogue and nonnucleoside inhibitors of the HIV-1 reverse transcriptase.
    [Show full text]
  • Subject Index Proc
    13088 Subject Index Proc. Natl. Acad. Sci. USA 91 (1994) Apoptosis in substantia nigra following developmental striatal excitotoxic Brine shrimp injury, 8117 See Artemia Visualizing hippocampal synaptic function by optical detection of Ca2l Broccol entry through the N-methyl-D-aspartate channel, 8170 See Brassica Amygdala modulation of hippocampal-dependent and caudate Bromophenacyl bromide nucleus-dependent memory processes, 8477 Bromophenacyl bromide binding to the actin-bundling protein I-plastin Distribution of corticotropin-releasing factor receptor mRNA expression inhibits inositol trisphosphate-independent increase in Ca2l in human in the rat brain and pituitary, 8777 neutrophils, 3534 Brownian dynamics Preproenkephalin promoter yields region-specific and long-term Adhesion of hard spheres under the influence of double-layer, van der expression in adult brain after direct in vivo gene transfer via a Waals, and gravitational potentials at a solid/liquid interface, 3004 defective herpes simplex viral vector, 8979 Browsers Intravenous administration of a transferrin receptor antibody-nerve Thorn-like prickles and heterophylly in Cyanea: Adaptations to extinct growth factor conjugate prevents the degeneration of cholinergic avian browsers on Hawaii?, 2810 striatal neurons in a model of Huntington disease, 9077 Bruton agammaglobulinemia Axotomy induces the expression of vasopressin receptors in cranial and Genomic organization and structure of Bruton agammaglobulinemia spinal motor nuclei in the adult rat, 9636 tyrosine kinase: Localization
    [Show full text]
  • Rxoutlook® 4Th Quarter 2020
    ® RxOutlook 4th Quarter 2020 optum.com/optumrx a RxOutlook 4th Quarter 2020 While COVID-19 vaccines draw most attention, multiple “firsts” are expected from the pipeline in 1Q:2021 Great attention is being given to pipeline drugs that are being rapidly developed for the treatment or prevention of SARS- CoV-19 (COVID-19) infection, particularly two vaccines that are likely to receive emergency use authorization (EUA) from the Food and Drug Administration (FDA) in the near future. Earlier this year, FDA issued a Guidance for Industry that indicated the FDA expected any vaccine for COVID-19 to have at least 50% efficacy in preventing COVID-19. In November, two manufacturers, Pfizer and Moderna, released top-line results from interim analyses of their investigational COVID-19 vaccines. Pfizer stated their vaccine, BNT162b2 had demonstrated > 90% efficacy. Several days later, Moderna stated their vaccine, mRNA-1273, had demonstrated 94% efficacy. Many unknowns still exist, such as the durability of response, vaccine performance in vulnerable sub-populations, safety, and tolerability in the short and long term. Considering the first U.S. case of COVID-19 was detected less than 12 months ago, the fact that two vaccines have far exceeded the FDA’s guidance and are poised to earn EUA clearance, is remarkable. If the final data indicates a positive risk vs. benefit profile and supports final FDA clearance, there may be lessons from this accelerated development timeline that could be applied to the larger drug development pipeline in the future. Meanwhile, drug development in other areas continues. In this edition of RxOutlook, we highlight 12 key pipeline drugs with potential to launch by the end of the first quarter of 2021.
    [Show full text]
  • The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties
    molecules Review The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties Majid Tafrihi 1, Muhammad Imran 2, Tabussam Tufail 2, Tanweer Aslam Gondal 3, Gianluca Caruso 4,*, Somesh Sharma 5, Ruchi Sharma 5 , Maria Atanassova 6,*, Lyubomir Atanassov 7, Patrick Valere Tsouh Fokou 8,9,* and Raffaele Pezzani 10,11,* 1 Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran; [email protected] 2 University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54600, Pakistan; [email protected] (M.I.); [email protected] (T.T.) 3 School of Exercise and Nutrition, Deakin University, Victoria 3125, Australia; [email protected] 4 Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici (Naples), Italy 5 School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India; [email protected] (S.S.); [email protected] (R.S.) 6 Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria 7 Saint Petersburg University, 7/9 Universitetskaya Emb., 199034 St. Petersburg, Russia; [email protected] 8 Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda BP 39, Cameroon 9 Department of Biochemistry, Faculty of Science, University of Yaoundé, NgoaEkelle, Annex Fac. Sci., Citation: Tafrihi, M.; Imran, M.; Yaounde 812, Cameroon 10 Phytotherapy LAB (PhT-LAB), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Tufail, T.; Gondal, T.A.; Caruso, G.; Via Ospedale 105, 35128 Padova, Italy Sharma, S.; Sharma, R.; Atanassova, 11 AIROB, Associazione Italiana per la Ricerca Oncologica di Base, 35128 Padova, Italy M.; Atanassov, L.; Valere Tsouh * Correspondence: [email protected] (G.C.); [email protected] (M.A.); [email protected] (P.V.T.F.); Fokou, P.; et al.
    [Show full text]
  • Stress Susceptibility-Specific Phenotype Associated with Different
    Lisowski et al. BMC Neuroscience 2013, 14:144 http://www.biomedcentral.com/1471-2202/14/144 RESEARCH ARTICLE Open Access Stress susceptibility-specific phenotype associated with different hippocampal transcriptomic responses to chronic tricyclic antidepressant treatment in mice Pawel Lisowski1*, Grzegorz R Juszczak2, Joanna Goscik3, Adrian M Stankiewicz2, Marek Wieczorek4, Lech Zwierzchowski1 and Artur H Swiergiel5,6 Abstract Background: The effects of chronic treatment with tricyclic antidepressant (desipramine, DMI) on the hippocampal transcriptome in mice displaying high and low swim stress-induced analgesia (HA and LA lines) were studied. These mice displayed different depression-like behavioral responses to DMI: stress-sensitive HA animals responded to DMI, while LA animals did not. Results: To investigate the effects of DMI treatment on gene expression profiling, whole-genome Illumina Expres- sion BeadChip arrays and qPCR were used. Total RNA isolated from hippocampi was used. Expression profiling was then performed and data were analyzed bioinformatically to assess the influence of stress susceptibility-specific phe- notypes on hippocampal transcriptomic responses to chronic DMI. DMI treatment affected the expression of 71 genes in HA mice and 41 genes in LA mice. We observed the upregulation of Igf2 and the genes involved in neuro- genesis (HA: Sema3f, Ntng1, Gbx2, Efna5, and Rora; LA: Otx2, Rarb, and Drd1a) in both mouse lines. In HA mice, we observed the upregulation of genes involved in neurotransmitter transport, the termination of GABA and glycine ac- tivity (Slc6a11, Slc6a9), glutamate uptake (Slc17a6), and the downregulation of neuropeptide Y (Npy) and cortico- tropin releasing hormone-binding protein (Crhbp). In LA mice, we also observed the upregulation of other genes involved in neuroprotection (Ttr, Igfbp2, Prlr) and the downregulation of genes involved in calcium signaling and ion binding (Adcy1, Cckbr, Myl4, Slu7, Scrp1, Zfp330).
    [Show full text]