Materials and Elasticity Lecture M17: Engineering Elastic Constants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
10-1 CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams And
EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy CHAPTER 10 DEFORMATION 10.1 Stress-Strain Diagrams and Material Behavior 10.2 Material Characteristics 10.3 Elastic-Plastic Response of Metals 10.4 True stress and strain measures 10.5 Yielding of a Ductile Metal under a General Stress State - Mises Yield Condition. 10.6 Maximum shear stress condition 10.7 Creep Consider the bar in figure 1 subjected to a simple tension loading F. Figure 1: Bar in Tension Engineering Stress () is the quotient of load (F) and area (A). The units of stress are normally pounds per square inch (psi). = F A where: is the stress (psi) F is the force that is loading the object (lb) A is the cross sectional area of the object (in2) When stress is applied to a material, the material will deform. Elongation is defined as the difference between loaded and unloaded length ∆푙 = L - Lo where: ∆푙 is the elongation (ft) L is the loaded length of the cable (ft) Lo is the unloaded (original) length of the cable (ft) 10-1 EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy Strain is the concept used to compare the elongation of a material to its original, undeformed length. Strain () is the quotient of elongation (e) and original length (L0). Engineering Strain has no units but is often given the units of in/in or ft/ft. ∆푙 휀 = 퐿 where: is the strain in the cable (ft/ft) ∆푙 is the elongation (ft) Lo is the unloaded (original) length of the cable (ft) Example Find the strain in a 75 foot cable experiencing an elongation of one inch. -
Static Analysis of Isotropic, Orthotropic and Functionally Graded Material Beams
Journal of Multidisciplinary Engineering Science and Technology (JMEST) ISSN: 2458-9403 Vol. 3 Issue 5, May - 2016 Static analysis of isotropic, orthotropic and functionally graded material beams Waleed M. Soliman M. Adnan Elshafei M. A. Kamel Dep. of Aeronautical Engineering Dep. of Aeronautical Engineering Dep. of Aeronautical Engineering Military Technical College Military Technical College Military Technical College Cairo, Egypt Cairo, Egypt Cairo, Egypt [email protected] [email protected] [email protected] Abstract—This paper presents static analysis of degrees of freedom for each lamina, and it can be isotropic, orthotropic and Functionally Graded used for long and short beams, this laminated finite Materials (FGMs) beams using a Finite Element element model gives good results for both stresses and deflections when compared with other solutions. Method (FEM). Ansys Workbench15 has been used to build up several models to simulate In 1993 Lidstrom [2] have used the total potential different types of beams with different boundary energy formulation to analyze equilibrium for a conditions, all beams have been subjected to both moderate deflection 3-D beam element, the condensed two-node element reduced the size of the of uniformly distributed and transversal point problem, compared with the three-node element, but loads within the experience of Timoshenko Beam increased the computing time. The condensed two- Theory and First order Shear Deformation Theory. node system was less numerically stable than the The material properties are assumed to be three-node system. Because of this fact, it was not temperature-independent, and are graded in the possible to evaluate the third and fourth-order thickness direction according to a simple power differentials of the strain energy function, and thus not law distribution of the volume fractions of the possible to determine the types of criticality constituents. -
Constitutive Relations: Transverse Isotropy and Isotropy
Objectives_template Module 3: 3D Constitutive Equations Lecture 11: Constitutive Relations: Transverse Isotropy and Isotropy The Lecture Contains: Transverse Isotropy Isotropic Bodies Homework References file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture11/11_1.htm[8/18/2014 12:10:09 PM] Objectives_template Module 3: 3D Constitutive Equations Lecture 11: Constitutive relations: Transverse isotropy and isotropy Transverse Isotropy: Introduction: In this lecture, we are going to see some more simplifications of constitutive equation and develop the relation for isotropic materials. First we will see the development of transverse isotropy and then we will reduce from it to isotropy. First Approach: Invariance Approach This is obtained from an orthotropic material. Here, we develop the constitutive relation for a material with transverse isotropy in x2-x3 plane (this is used in lamina/laminae/laminate modeling). This is obtained with the following form of the change of axes. (3.30) Now, we have Figure 3.6: State of stress (a) in x1, x2, x3 system (b) with x1-x2 and x1-x3 planes of symmetry From this, the strains in transformed coordinate system are given as: file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20Mohite/CompositeMaterials/lecture11/11_2.htm[8/18/2014 12:10:09 PM] Objectives_template (3.31) Here, it is to be noted that the shear strains are the tensorial shear strain terms. For any angle α, (3.32) and therefore, W must reduce to the form (3.33) Then, for W to be invariant we must have Now, let us write the left hand side of the above equation using the matrix as given in Equation (3.26) and engineering shear strains. -
Orthotropic Material Homogenization of Composite Materials Including Damping
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Lirias Orthotropic material homogenization of composite materials including damping A. Nateghia,e, A. Rezaeia,e,, E. Deckersa,d, S. Jonckheerea,b,d, C. Claeysa,d, B. Pluymersa,d, W. Van Paepegemc, W. Desmeta,d a KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300B box 2420, 3001 Heverlee, Belgium. E-mail: [email protected]. b Siemens Industry Software NV, Digital Factory, Product Lifecycle Management – Simulation and Test Solutions, Interleuvenlaan 68, B-3001 Leuven, Belgium. c Ghent University, Department of Materials Science & Engineering, Technologiepark-Zwijnaarde 903, 9052 Zwijnaarde, Belgium. d Member of Flanders Make. e SIM vzw, Technologiepark Zwijnaarde 935, B-9052 Ghent, Belgium. Introduction In the multiscale analysis of composite materials obtaining the effective equivalent material properties of the composite from the properties of its constituents is an important bridge between different scales. Although, a variety of homogenization methods are already in use, there is still a need for further development of novel approaches which can deal with complexities such as frequency dependency of material properties; which is specially of importance when dealing with damped structures. Time-domain methods Frequency-domain method Material homogenization is performed in two separate steps: Wave dispersion based homogenization is performed to a static step and a dynamic one. provide homogenized damping and material -
2.1.5 Stress-Strain Relation for Anisotropic Materials
,/... + -:\ 2.1.5Stress-strain Relation for AnisotropicMaterials The generalizedHook's law relatingthe stressesto strainscan be writtenin the form U2, 13,30-32]: o,=C,,€, (i,i =1,2,.........,6) Where: o, - Stress('ompttnents C,, - Elasticity matrix e,-Straincomponents The material properties (elasticity matrix, Cr) has thirty-six constants,stress-strain relations in the materialcoordinates are: [30] O1 LI CT6 a, l O2 03_ a, -t ....(2-6) T23 1/ )1 T32 1/1l 'Vt) Tt2 C16 c66 I The relations in equation (3-6) are referred to as characterizing anisotropicmaterials since there are no planes of symmetry for the materialproperties. An alternativename for suchanisotropic material is a triclinic material. If there is one plane of material property symmetry,the stress- strainrelations reduce to: -'+1-/ ) o1 c| ct2 ct3 0 0 crc €l o2 c12 c22 c23 0 0 c26 a: ct3 C23 ci3 0 0 c36 o-\ o3 ....(2-7) 723 000cqqc450 y)1 T3l 000c4sc5s0 Y3l T1a ct6 c26 c36 0 0 c66 1/t) Where the plane of symmetryis z:0. Such a material is termed monoclinicwhich containstfirfen independentelastic constants. If there are two brthogonalplanes of material property symmetry for a material,symmetry will existrelative to a third mutuallyorthogonal plane. The stress-strainrelations in coordinatesaligned with principal material directionswhich are parallel to the intersectionsof the three orthogonalplanes of materialsymmetry, are'. Ol ctl ct2ctl000 tl O2 Ct2 c22c23000 a./ o3 ct3 c23c33000 * o-\ ....(2-8) T23 0 00c4400 y)1 yll 731 0 000css0 712 0 0000cr'e 1/1) 'lt"' -' , :t i' ,/ Suchmaterial is calledorthotropic material.,There is no interaction betweennormal StreSSeS ot r 02, 03) andanisotropic materials. -
Lecture 13: Earth Materials
Earth Materials Lecture 13 Earth Materials GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Hooke’s law of elasticity Force Extension = E × Area Length Hooke’s law σn = E εn where E is material constant, the Young’s Modulus Units are force/area – N/m2 or Pa Robert Hooke (1635-1703) was a virtuoso scientist contributing to geology, σ = C ε palaeontology, biology as well as mechanics ij ijkl kl ß Constitutive equations These are relationships between forces and deformation in a continuum, which define the material behaviour. GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Shear modulus and bulk modulus Young’s or stiffness modulus: σ n = Eε n Shear or rigidity modulus: σ S = Gε S = µε s Bulk modulus (1/compressibility): Mt Shasta andesite − P = Kεv Can write the bulk modulus in terms of the Lamé parameters λ, µ: K = λ + 2µ/3 and write Hooke’s law as: σ = (λ +2µ) ε GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Young’s Modulus or stiffness modulus Young’s Modulus or stiffness modulus: σ n = Eε n Interatomic force Interatomic distance GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Shear Modulus or rigidity modulus Shear modulus or stiffness modulus: σ s = Gε s Interatomic force Interatomic distance GNH7/GG09/GEOL4002 EARTHQUAKE SEISMOLOGY AND EARTHQUAKE HAZARD Hooke’s Law σij and εkl are second-rank tensors so Cijkl is a fourth-rank tensor. For a general, anisotropic material there are 21 independent elastic moduli. In the isotropic case this tensor reduces to just two independent elastic constants, λ and µ. -
Analysis of Deformation
Chapter 7: Constitutive Equations Definition: In the previous chapters we’ve learned about the definition and meaning of the concepts of stress and strain. One is an objective measure of load and the other is an objective measure of deformation. In fluids, one talks about the rate-of-deformation as opposed to simply strain (i.e. deformation alone or by itself). We all know though that deformation is caused by loads (i.e. there must be a relationship between stress and strain). A relationship between stress and strain (or rate-of-deformation tensor) is simply called a “constitutive equation”. Below we will describe how such equations are formulated. Constitutive equations between stress and strain are normally written based on phenomenological (i.e. experimental) observations and some assumption(s) on the physical behavior or response of a material to loading. Such equations can and should always be tested against experimental observations. Although there is almost an infinite amount of different materials, leading one to conclude that there is an equivalently infinite amount of constitutive equations or relations that describe such materials behavior, it turns out that there are really three major equations that cover the behavior of a wide range of materials of applied interest. One equation describes stress and small strain in solids and called “Hooke’s law”. The other two equations describe the behavior of fluidic materials. Hookean Elastic Solid: We will start explaining these equations by considering Hooke’s law first. Hooke’s law simply states that the stress tensor is assumed to be linearly related to the strain tensor. -
Efficient Hydraulic Fluids Compressibility Is Still One of the Most Critically Important Factors
WORLDWIDE R. David Whitby Efficient hydraulic fluids Compressibility is still one of the most critically important factors. ydraulic fluids transmit power as a hydraulic system con- while phosphate and vegetable-oil esters have compressibilities H verts mechanical energy into fluid energy and subsequently similar to that of water. Polyalphaolefins are more compressible to mechanical work. To achieve this conversion efficiently, hydrau- than mineral oils. Water-glycol fluids are intermediate between lic fluids need to be relatively incompressible. Hydraulic fluids mineral oils and water. must also minimize wear, reduce friction, provide cooling and pre- Mineral oils are relatively incompressible, but volume reduc- vent rust and corrosion, be compatible with system components tions can be approximately 0.5% for pressures ranging from 6,900 and help keep the system free of deposits. kPa (1,000 psi) up to 27,600 kPa (4,000 psi). Compressibility in- Compressibility measures the rela- creases with pressure and temperature tive change in volume of a fluid or solid and has significant effects on high-pres- as a response to a change in pressure and sure fluid systems. Hydraulic oils typi- is the reciprocal of the volume-elastic cally contain 6% to 10% of dissolved air, modulus or bulk modulus of elasticity. which has no measurable effect on bulk Bulk modulus defines the pressure in- modulus provided it stays in solution. crease needed to cause a given relative Bulk modulus is an inherent property decrease in volume. of the hydraulic fluid and, therefore, is The bulk modulus of a fluid is nonlin- an inherent inefficiency of the hydraulic ear. -
Velocity, Density, Modulus of Hydrocarbon Fluids
Velocity, Density and Modulus of Hydrocarbon Fluids --Data Measurement De-hua Han*, HARC; M. Batzle, CSM Summary measured with pressure up to 55.2 Mpa (8000 Psi) and temperature up to 100 °C. Density and ultrasonic velocity of numerous hydrocarbon fluids (oil, oil based mud filtrate, hydrocarbon gases and Velocity of Dead Oil miscible CO2-oil) were measured at in situ conditions of pressure up to 50 Mpa and temperatures up to100 °C. Initial measurements were on the gas-free or ‘dead’ oils at Dynamic moduli are derived from velocities and densities. pressure and temperature (see Fig. 1). We used the Newly measured data refine correlations of velocity and following model to fit data: density to API gravity, Gas Oil ratio (GOR), Gas gravity and in situ pressure and temperature. Gas in solution is Vp (m/s) = A – B * T + C * P + D * T * P (1) largely responsible for reducing the bulk modulus of the live oil. Phase changes, such as exsolving gas during Here A is a pseudo velocity at 0 °C and room pressure (0 production, can dramatically lower velocities and modulus, Mpa, gauge), B is temperature gradient, C is pressure but is dependent on pressure conditions. Distinguish gas gradient and D is coefficient of coupled temperature and from liquid phase may not be possible at a high pressure. pressure effects. Fluids are often supercritical. With increasing pressure, a gas-like fluid can begin to behave like a liquid Dead & live oil of #1 B.P. = 1900 psi at 60 C Introduction 1800 1600 Hydrocarbon fluids are the primary targets of the seismic exploration. -
Crack Tip Elements and the J Integral
EN234: Computational methods in Structural and Solid Mechanics Homework 3: Crack tip elements and the J-integral Due Wed Oct 7, 2015 School of Engineering Brown University The purpose of this homework is to help understand how to handle element interpolation functions and integration schemes in more detail, as well as to explore some applications of FEA to fracture mechanics. In this homework you will solve a simple linear elastic fracture mechanics problem. You might find it helpful to review some of the basic ideas and terminology associated with linear elastic fracture mechanics here (in particular, recall the definitions of stress intensity factor and the nature of crack-tip fields in elastic solids). Also check the relations between energy release rate and stress intensities, and the background on the J integral here. 1. One of the challenges in using finite elements to solve a problem with cracks is that the stress field at a crack tip is singular. Standard finite element interpolation functions are designed so that stresses remain finite a everywhere in the element. Various types of special b c ‘crack tip’ elements have been designed that 3L/4 incorporate the singularity. One way to produce a L/4 singularity (the method used in ABAQUS) is to mesh L the region just near the crack tip with 8 noded elements, with a special arrangement of nodal points: (i) Three of the nodes (nodes 1,4 and 8 in the figure) are connected together, and (ii) the mid-side nodes 2 and 7 are moved to the quarter-point location on the element side. -
Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems
NfST Nisr National institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 946 Guide to Rheological Nomenclature: Measurements in Ceramic Particulate Systems Vincent A. Hackley and Chiara F. Ferraris rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.