Nymphalidae: Ithomiini) Butterflies from North-Eastern Peru

Total Page:16

File Type:pdf, Size:1020Kb

Nymphalidae: Ithomiini) Butterflies from North-Eastern Peru Zoological Journal of the Linnean Society, 2016. With 4 figures Ecology, life history, and genetic differentiation in Neotropical Melinaea (Nymphalidae: Ithomiini) butterflies from north-eastern Peru MELANIE MCCLURE* and MARIANNE ELIAS Institut de Systematique, Evolution, Biodiversite, ISYEB – UMR 7205 – CNRS, MNHN, UPMC, EPHE, Museum National d’Histoire Naturelle, Sorbonne Universites, 57 rue Cuvier, CP50, F-75005 Paris, France Received 22 December 2015; revised 11 March 2016; accepted for publication 16 March 2016 Butterflies of the genus Melinaea have conspicuous warning colours and are thought to be the prime distasteful models in many cases of mimicry in the Neotropics. Colour pattern variability has made systematics challenging and previous studies have found little to no genetic differentiation. This paper provides detailed descriptions of the immature stages of seven Melinaea taxa from north-eastern Peru, including distribution and host plant use, in addition to measures of genetic differentiation using microsatellite markers and mitochondrial sequences. Development time and immature stages were similar, making it difficult to elucidate taxonomy based on larval morphological characters. All taxa used Juanulloa as a host plant (Solanaceae), except Melinaea ‘marsaeus’ mothone, which occurs at higher elevations and used Trianaea (Solanaceae). The seven taxa show virtually no mitochondrial divergence, suggesting a recent radiation. Microsatellite markers, however, revealed distinct genetic clusters and evidence of admixture, demonstrating a complex diversification history. Ecological and genetic differentiation observed for Mel. ‘marsaeus’ mothone prompts for a taxonomic status revision to Melinaea mothone mothone and the taxonomic status of Melinaea ‘satevis’ tarapotensis remains unclear. Clearly, further work is needed to clarify the systematics and to shed light on the processes driving speciation in this genus. © 2016 The Linnean Society of London, Zoological Journal of the Linnean Society, 2016 doi: 10.1111/zoj.12433 ADDITIONAL KEYWORDS: aposematic – Danainae – development – distribution – host plants – Lepi- doptera – mimicry – morphology – Solanaceae – taxonomy. and mimicry (Whinnett et al., 2005; Dasmahapatra INTRODUCTION et al., 2010), and offer an excellent system to study Mullerian€ mimicry, where multiple unpalatable spe- the mechanisms underlying diversification. These cies possess the same warning signal, reduces the butterflies are large, possess conspicuous aposematic negative impact of predation on each species by shar- warning colours, and are distributed across much of ing the cost of educating predators. Mimetic butter- the Neotropics. They are also extensively involved in flies are well suited for studies on speciation, as mimicry rings, including with ‘tiger-patterned’ species often consist of multiple subspecies diverging (black, orange, and yellow) Heliconius, and are for a number of adaptive traits, such as colour pat- thought to drive mimicry in many other Lepidoptera tern, which can then cause reproductive isolation (Brown & Benson, 1974; Beccaloni, 1997). However, through sexual selection and higher hybrid mortality their colour pattern variability and the lack of mor- (Jiggins et al., 2001; Merrill et al., 2012). Butterflies phological differentiation have presented taxonomical in the genus Melinaea (Nymphalidae: Ithomiini) challenges, and consequently the systematics of this have undergone rapid radiation for warning patterns genus remains unclear (Brown, 1977). Previous stud- ies using mitochondrial and nuclear markers have *Corresponding author. E-mail: [email protected] found little to no genetic differences amongst many © 2016 The Linnean Society of London, Zoological Journal of the Linnean Society, 2016 1 2 M. MCCLURE AND M. ELIAS species of Melinaea, and it is postulated that they general, are extremely difficult to keep and breed in have only recently diverged (Whinnett et al., 2005; cages, owing to specific ecological requirements such Elias et al., 2007; Dasmahapatra et al., 2010). as shaded habitat and plants that provide precursors In other groups of aposematic and mimetic butter- of sexual pheromones. Therefore, mating behaviour flies, detailed descriptions of the life history and of is poorly documented in these species. the immature stages have revealed distinguishing The few scattered records of host-plant use that ecological and morphological characteristics useful exist suggest that Melinaea species are oligophagous for resolving such taxonomic issues (Brown & Fre- on the family Solanaceae, subclade Juanulloeae (see itas, 1994; Hill et al., 2012). Yet, despite Melinaea Table 1). For example, Melinaea lilis has been butterflies being the prime distasteful models in recorded on Merinthopodium neuranthum and Mar- many cases of mimicry and interesting organisms for kea (Dyssochroma) viridiflora in Costa Rica, and on the study of speciation, general biological and life- Juanulloa mexicana in both Costa Rica and Mexico history information for this genus are still lacking. (see Brown & Freitas, 1994; Drummond & Brown, Reasons for the paucity of life-history information 1987). Melinaea menophilus has been recorded on include the difficulty of finding the host-plants of Markea (Hawkesiophyton) ulei in Brazil (Drummond Melinaea species, which are mostly epiphytes & Brown, 1987; Brown & Freitas, 1994), and on Mar- (Knapp, Persson & Blackmore, 1997). In addition, kea sp. (Willmott & Mallet, 2004), J. mexicana Melinaea species, and ithomiine butterflies in (Drummond & Brown, 1987), and Juanulloa Table 1. Records of host plants for Melinaea, including the country and the altitude at which it was recorded, when available, and the reference from where it was taken. Melinaea species Host plant Locality Altitude References Melinaea mneme mneme Markea coccinea Brazil 50–100 m Drummond & Brown (1987) Melinaea mneme mauensis Markea coccinea Brazil 10 m Drummond & Brown (1987) Melinaea ludovica ludovica Markea sp. Brazil 20 m Drummond & Brown (1987) Melinaea ludovica paraiya Markea (Dyssochroma) Brazil Sea level–800 m, Drummond & Brown viridiflora 20–300 m (1987) Melinaea lilis imitata Juanulloa mexicana Mexico, 200–1600 m, sea Drummond & Brown Costa Rica level–1600 m (1987) Melinaea lilis imitata Merinthopodium Costa Rica Sea level–1600 m Drummond & Brown neuranthum (1987) Melinaea lilis imitata Solandra grandiflora Costa Rica Sea level–1600 m Drummond & Brown (1987) Melinaea lilis parallelis Markea (Schultesianthus) Panama Sea level–2000 m Drummond & Brown leucantha (1987) Melinaea marsaeus pothete Markea (Hawkesiophyton) Brazil 200–600 m Drummond & Brown ulei (1987) Melinaea menophilus Juanulloa mexicana Ecuador 280 m Drummond & Brown menophilus (1987) Melinaea menophilus Markea (Hawkesiophyton) Brazil 200–600 m Drummond & Brown ssp. nov. ulei (1987) Melinaea lilis Juanulloa mexicana Mexico Brown & Freitas (1994) Melinaea menophilus Markea (Hawkesiophyton) Brazil Brown & Freitas (1994) ulei Melinaea ludovica paraiya Markea (Dyssochroma) Brazil Brown & Freitas (1994) viridiflora Melinaea ethra Markea (Dyssochroma) Brazil Brown & Freitas (1994) viridiflora Melinaea menophilus Juanulloa ochracea Ecuador K. Willmott, pers. comm. Melinaea mneme mauensis Markea formicarum French 50–100 m M. McClure, pers. observ.; Guiana Fig. S2 Melinaea menophilus zaneka Markea sp. Ecuador Montane Willmott & Mallet (2004) © 2016 The Linnean Society of London, Zoological Journal of the Linnean Society, 2016 DIFFERENTIATION IN MELINAEA BUTTERFLIES 3 ochracea (K. Willmott, pers. comm.; see Fig. S1E) in collected in proximity to streams and water, confirm- Ecuador. Similarly, Melinaea mneme has been ing Melinaea’s association with humid habitats. Host recorded on Markea coccinea in Brazil (Drummond & plants were also frequently encountered in very Brown, 1987), and M. M. has also successfully reared humid habitats, often near streams and rivers, and Melinaea mneme mauensis on the ant-garden epi- eggs and larvae were found on those plants that were phyte Markea formicarum in French Guiana, despite accessible. Host plants were photographed and botan- it never having been observed to be used in the field ical samples were collected and then dried in silica gel (M. McClure, pers. observ., see Fig. S2). Shifts in or pressed before identification. host-plant usage have been shown to be a major Gravid wild-caught females were placed in cause of diversification in butterflies (Janz, Nylin & 2 9 2 9 2 m outdoor insectaries in Tarapoto, San Wahlberg, 2006; Nylin, Slove & Niklas, 2014). As Martın, where all rearing was carried out. These switches in host plants may be accompanied by cages were in the shade of nearby trees and made of changes in microhabitats and mimicry rings (Will- shade cloth that blocked 50% of sunlight, so as to mott & Mallet, 2004; Willmott & Freitas, 2006), they reflect understorey conditions, and cages were may also cause reproductive isolation and thus watered and sprayed multiple times each day so as potentially lead to speciation. to keep humidity levels high. Butterflies were pro- This paper aims to provide new morphological and vided nourishment in the form of sugar water solu- ecological information that will help clarify the taxo- tion (at approximately 20% sugar concentration) in nomic relationships and the reproductive barriers small suspended cups filled with segments of red that occur in this genus, thereby providing insights straws so as to imitate flowers. Commercially avail- on the mechanisms of speciation. We
Recommended publications
  • Alfred Russel Wallace and the Darwinian Species Concept
    Gayana 73(2): Suplemento, 2009 ISSN 0717-652X ALFRED RUSSEL WALLACE AND THE Darwinian SPECIES CONCEPT: HIS paper ON THE swallowtail BUTTERFLIES (PAPILIONIDAE) OF 1865 ALFRED RUSSEL WALLACE Y EL concepto darwiniano DE ESPECIE: SU TRABAJO DE 1865 SOBRE MARIPOSAS papilio (PAPILIONIDAE) Jam ES MA LLET 1 Galton Laboratory, Department of Biology, University College London, 4 Stephenson Way, London UK, NW1 2HE E-mail: [email protected] Abstract Soon after his return from the Malay Archipelago, Alfred Russel Wallace published one of his most significant papers. The paper used butterflies of the family Papilionidae as a model system for testing evolutionary hypotheses, and included a revision of the Papilionidae of the region, as well as the description of some 20 new species. Wallace argued that the Papilionidae were the most advanced butterflies, against some of his colleagues such as Bates and Trimen who had claimed that the Nymphalidae were more advanced because of their possession of vestigial forelegs. In a very important section, Wallace laid out what is perhaps the clearest Darwinist definition of the differences between species, geographic subspecies, and local ‘varieties.’ He also discussed the relationship of these taxonomic categories to what is now termed ‘reproductive isolation.’ While accepting reproductive isolation as a cause of species, he rejected it as a definition. Instead, species were recognized as forms that overlap spatially and lack intermediates. However, this morphological distinctness argument breaks down for discrete polymorphisms, and Wallace clearly emphasised the conspecificity of non-mimetic males and female Batesian mimetic morphs in Papilio polytes, and also in P.
    [Show full text]
  • Strikingly Variable Divergence Times Inferred Across an Amazonian Butterfly ‘Suture Zone’ Alaine Whinnett1,2,†, Marie Zimmermann1,†, Keith R
    Proc. R. Soc. B (2005) 272, 2525–2533 doi:10.1098/rspb.2005.3247 Published online 27 September 2005 Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’ Alaine Whinnett1,2,†, Marie Zimmermann1,†, Keith R. Willmott2,3, Nimiadina Herrera4, Ricardo Mallarino4, Fraser Simpson1, Mathieu Joron1,5, Gerardo Lamas6 and James Mallet1,* 1Galton Laboratory, University College London, 4 Stephenson Way, London NW1 2HE, UK 2The Natural History Museum, Cromwell Road, London SW7 5BD, UK 3The McGuire Center for Lepidoptera, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA 4Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panama 5Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, UK 6Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru ‘Suture zones’ are areas where hybrid and contact zones of multiple taxa are clustered. Such zones have been regarded as strong evidence for allopatric divergence by proponents of the Pleistocene forest refugia theory, a vicariance hypothesis frequently used to explain diversification in the Amazon basin. A central prediction of the refugia and other vicariance theories is that the taxa should have a common history so that divergence times should be coincident among taxa. A suture zone for Ithomiinae butterflies near Tarapoto, NE Peru, was therefore studied to examine divergence times of taxa in contact across the zone. We sequenced 1619 bp of the mitochondrial COI/COII region in 172 individuals of 31 species from across the suture zone. Inferred divergence times differed remarkably, with divergence between some pairs of widespread species (each of which may have two or more subspecies interacting in the zone, as in the genus Melinaea) being considerably less than that between hybridizing subspecies in other genera (for instance in Oleria).
    [Show full text]
  • Lepidopterofauna (Papilionoidea E Hesperioidea) Do Parque Estadual Do Chandless E Arredores, Acre, Brasil
    Biota Neotrop., vol. 10, no. 4 Lepidopterofauna (Papilionoidea e Hesperioidea) do Parque Estadual do Chandless e arredores, Acre, Brasil Olaf Hermann Hendrik Mielke1,2, Eduardo Carneiro¹ & Mirna Martins Casagrande¹ ¹Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná – UFPR, CP 19020, CEP 81531-980, Curitiba, PR, Brasil 2Autor para correspondência: Olaf Hermann Hendrik Mielke, e-mail: [email protected] MIELKE, O.H.H., CARNEIRO, E. & CASAGRANDE, M.M. Lepidopterofauna (Papilionoidea e Hesperioidea) of the Parque Estadual do Chandless and surroundings, Acre, Brazil. Biota Neotrop. 10(4): http://www. biotaneotropica.org.br/v10n4/en/abstract?inventory+bn03210042010. Abstract: Given the absence of Lepidoptera inventories in the State of Acre and its scarcity in the Brazilian Amazon forest, this study aimed to list the species of Hesperioidea and Papilionoidea present in the Parque Estadual do Chandless and surroundings. The access to the region is complicated and it has no infrastructure for scientific research. During 14 days, the butterflies were collected with entomological nets, traps and Ahrenholz’s technique in different environments in the park and its surroundings. A total of 482 species were identified, none of them present in red lists of endangered species. It is expected a significantly greater number of species after the addition of new collections in other seasons, as the Jacknife 1 estimate does not reach its asymptote, or as compared to inventories in nearby areas that list nearly 1700 species after a greater sampling effort. Keywords: amazonian forest, butterflies, inventory, protected area. MIELKE, O.H.H., CARNEIRO, E. & CASAGRANDE, M.M. Lepidopterofauna (Papilionoidea e Hesperioidea) do Parque Estadual do Chandless e arredores, Acre, Brasil.
    [Show full text]
  • Developmental, Cellular and Biochemical Basis of Transparency in Clearwing Butterflies Aaron F
    © 2021. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2021) 224, jeb237917. doi:10.1242/jeb.237917 RESEARCH ARTICLE Developmental, cellular and biochemical basis of transparency in clearwing butterflies Aaron F. Pomerantz1,2,*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8 and Nipam H. Patel1,2,6,* ABSTRACT INTRODUCTION The wings of butterflies and moths (Lepidoptera) are typically covered The wings of butterflies and moths (Lepidoptera) have inspired with thousands of flat, overlapping scales that endow the wings with studies across a variety of scientific fields, including evolutionary colorful patterns. Yet, numerous species of Lepidoptera have evolved biology, ecology and biophysics (Beldade and Brakefield, 2002; highly transparent wings, which often possess scales of altered Prum et al., 2006; Gilbert and Singer, 1975). Lepidopteran wings morphology and reduced size, and the presence of membrane are generally covered with rows of flat, partially overlapping surface nanostructures that dramatically reduce reflection. Optical scales that endow the wings with colorful patterns. Adult scales are properties and anti-reflective nanostructures have been characterized chitin-covered projections that serve as the unit of color for the wing. for several ‘clearwing’ Lepidoptera, but the developmental processes Each scale can generate color through pigmentation via molecules underlying wing transparency are unknown. Here, we applied that selectively absorb certain wavelengths of light, structural confocal and electron microscopy to create a developmental time coloration, which results from light interacting with the physical series in the glasswing butterfly, Greta oto, comparing transparent nanoarchitecture of the scale; or a combination of both pigmentary and non-transparent wing regions.
    [Show full text]
  • Nymphalidae (Lepidoptera)
    Estación de Biología Tropical Los Tuxtlas, Veracruz, México 1 Nymphalidae (Lepidoptera) Martha Madora Astudillo, Rosamond Coates, Mario A. Alvarado-Mota y Dioselina Díaz-Sánchez Fotos: Martha Madora Astudillo. © Martha Madora Astudillo [[email protected]]. Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México. Agradecimientos: Al Dr. Fernando Hernández-Baz (Universidad Veracruzana), por la determinación de los ejemplares. [fieldguides.fieldmuseum.org] [942] versión 1 9/2017 1 Adelpha diazi 2 Adelpha felderi 3 Adelpha leuceria 4 Adelpha leucerioides Beutelspacher, 1975 (Boisduval, 1870) (H. Druce, 1874) Beutelspacher, 1975 5 Adelpha lycorias melanthe 6 Adelpha milleri 7 Adelpha naxia naxia 8 Adelpha phylaca phylaca (H. Bates, 1864) Beutelspacher, 1976 (C. Felder & R. Felder, 1867) (H. Bates, 1866) 9 Adelpha serpa celerio 10 Aeria eurimedia pacifica 11 Altinote ozomene nox 12 Anartia fatima fatima (H. Bates, 1864) Godman & Salvin, 1879 (H. Bates, 1864) (Fabricius, 1793) 13 Anartia jatrophae luteipicta 14 Anthanassa ptolyca ptolyca 15 Archaeoprepona a. amphiktion 16 Archaeoprepona demophon centralis Fruhstorfer, 1907 (H. Bates, 1864) Fruhstorfer, 1916 Fruhstorfer, 1904 17 Biblis hyperia aganisa 18 Caligo telamonius memnon 19 Caligo uranus 20 Callicore lyca lyca Boisduval, 1836 (C. Felder y R. Felder, 1867) Herrich-Schäffer, 1850 (Doubleday & Hewitson, 1847) Estación de Biología Tropical Los Tuxtlas, Veracruz, México 2 Nymphalidae (Lepidoptera) Martha Madora Astudillo, Rosamond Coates, Mario A. Alvarado-Mota y Dioselina Díaz-Sánchez Fotos: Martha Madora Astudillo. © Martha Madora Astudillo [[email protected]]. Estación de Biología Tropical Los Tuxtlas, Instituto de Biología, Universidad Nacional Autónoma de México. Agradecimientos: Al Dr. Fernando Hernández-Baz (Universidad Veracruzana), por la determinación de los ejemplares.
    [Show full text]
  • Developmental, Cellular, and Biochemical
    Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto Aaron Pomerantz, Radwanul Siddique, Elizabeth Cash, Yuriko Kishi, Charline Pinna, Kasia Hammar, Doris Gomez, Marianne Elias, Nipam Patel To cite this version: Aaron Pomerantz, Radwanul Siddique, Elizabeth Cash, Yuriko Kishi, Charline Pinna, et al.. Devel- opmental, cellular, and biochemical basis of transparency in the glasswing butterfly Greta oto. 2020. hal-03012452 HAL Id: hal-03012452 https://hal.archives-ouvertes.fr/hal-03012452 Preprint submitted on 18 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.183590; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Developmental, cellular, and biochemical basis of transparency in the glasswing butterfly 3 Greta oto 4 5 Authors 6 Aaron F. Pomerantz1,2*, Radwanul H. Siddique3,4, Elizabeth I. Cash5, Yuriko Kishi6,7, 7 Charline Pinna8, Kasia Hammar2, Doris Gomez9, Marianne Elias8, Nipam H.
    [Show full text]
  • Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
    CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • A Molecular Phylogeny of the Solanaceae
    TAXON 57 (4) • November 2008: 1159–1181 Olmstead & al. • Molecular phylogeny of Solanaceae MOLECULAR PHYLOGENETICS A molecular phylogeny of the Solanaceae Richard G. Olmstead1*, Lynn Bohs2, Hala Abdel Migid1,3, Eugenio Santiago-Valentin1,4, Vicente F. Garcia1,5 & Sarah M. Collier1,6 1 Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A. *olmstead@ u.washington.edu (author for correspondence) 2 Department of Biology, University of Utah, Salt Lake City, Utah 84112, U.S.A. 3 Present address: Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 4 Present address: Jardin Botanico de Puerto Rico, Universidad de Puerto Rico, Apartado Postal 364984, San Juan 00936, Puerto Rico 5 Present address: Department of Integrative Biology, 3060 Valley Life Sciences Building, University of California, Berkeley, California 94720, U.S.A. 6 Present address: Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, U.S.A. A phylogeny of Solanaceae is presented based on the chloroplast DNA regions ndhF and trnLF. With 89 genera and 190 species included, this represents a nearly comprehensive genus-level sampling and provides a framework phylogeny for the entire family that helps integrate many previously-published phylogenetic studies within So- lanaceae. The four genera comprising the family Goetzeaceae and the monotypic families Duckeodendraceae, Nolanaceae, and Sclerophylaceae, often recognized in traditional classifications, are shown to be included in Solanaceae. The current results corroborate previous studies that identify a monophyletic subfamily Solanoideae and the more inclusive “x = 12” clade, which includes Nicotiana and the Australian tribe Anthocercideae. These results also provide greater resolution among lineages within Solanoideae, confirming Jaltomata as sister to Solanum and identifying a clade comprised primarily of tribes Capsiceae (Capsicum and Lycianthes) and Physaleae.
    [Show full text]
  • Evolutionary Routes to Biochemical Innovation Revealed by Integrative
    RESEARCH ARTICLE Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway Gaurav D Moghe1†, Bryan J Leong1,2, Steven M Hurney1,3, A Daniel Jones1,3, Robert L Last1,2* 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States; 2Department of Plant Biology, Michigan State University, East Lansing, United States; 3Department of Chemistry, Michigan State University, East Lansing, United States Abstract The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome- localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species. Our results reveal hundreds of acylsugars produced across the Solanaceae family and even within a single plant, built on simple sugar cores. The relatively short biosynthetic pathway experienced repeated cycles of *For correspondence: [email protected] innovation over the last 100 million years that include gene duplication and divergence, gene loss, evolution of substrate preference and promiscuity. This study provides mechanistic insights into the † Present address: Section of emergence of plant chemical novelty, and offers a template for investigating the ~300,000 non- Plant Biology, School of model plant species that remain underexplored. Integrative Plant Sciences, DOI: https://doi.org/10.7554/eLife.28468.001 Cornell University, Ithaca, United States Competing interests: The authors declare that no Introduction competing interests exist.
    [Show full text]
  • Molecular Phylogenetics of the Neotropical Butterfly Subtribe Oleriina
    Molecular Phylogenetics and Evolution 55 (2010) 1032–1041 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogenetics of the neotropical butterfly subtribe Oleriina (Nymphalidae: Danainae: Ithomiini) Donna Lisa de-Silva a,*, Julia J. Day a, Marianne Elias b,c, Keith Willmott d, Alaine Whinnett a, James Mallet a a Department of Genetics, Evolution and Environment, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK b Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK c CNRS, UMR 7205, Muséum National d’Histoire Naturelle, 45 Rue Buffon, CP50, 75005 Paris, France d McGuire Center for Lepidoptera, Florida Museum of Natural History, University of Florida, P.O. Box 112710, Gainesville, FL 32611-2710, USA article info abstract Article history: The Oleriina is one of the most speciose subtribes of the neotropical nymphalid butterfly tribe Ithomiini. Received 9 September 2009 They are widely distributed across the Andes and Amazonian lowlands and like other ithomiines they are Revised 22 December 2009 involved in complex mimicry rings. This subtribe is of particular interest because it contains the most Accepted 9 January 2010 diverse ithomiine genus, Oleria, as well as two genera, Megoleria and Hyposcada, that feed on hostplants Available online 15 January 2010 not utilized elsewhere in the tribe. Here we present the first comprehensive species-level phylogeny for the Oleriina, representing 83% of recognised species in the group, and based on 6698 bp from eight mito- Keywords: chondrial (mt) and nuclear (nc) genes. Topologies are largely congruent for ncDNA and the concatenated Lepidoptera dataset and the genera Oleria, Hyposcada and Megoleria are recovered and well-supported, although Speciation Phylogeny strongly discordant genealogy between mtDNA and ncDNA suggest possible introgression among Hypos- Hybridization cada and Megoleria.
    [Show full text]
  • Effects of Land Use on Butterfly (Lepidoptera: Nymphalidae) Abundance and Diversity in the Tropical Coastal Regions of Guyana and Australia
    ResearchOnline@JCU This file is part of the following work: Sambhu, Hemchandranauth (2018) Effects of land use on butterfly (Lepidoptera: Nymphalidae) abundance and diversity in the tropical coastal regions of Guyana and Australia. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5bd8e93df512e Copyright © 2018 Hemchandranauth Sambhu The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] EFFECTS OF LAND USE ON BUTTERFLY (LEPIDOPTERA: NYMPHALIDAE) ABUNDANCE AND DIVERSITY IN THE TROPICAL COASTAL REGIONS OF GUYANA AND AUSTRALIA _____________________________________________ By: Hemchandranauth Sambhu B.Sc. (Biology), University of Guyana, Guyana M.Sc. (Res: Plant and Environmental Sciences), University of Warwick, United Kingdom A thesis Prepared for the College of Science and Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy James Cook University February, 2018 DEDICATION ________________________________________________________ I dedicate this thesis to my wife, Alliea, and to our little girl who is yet to make her first appearance in this world. i ACKNOWLEDGEMENTS ________________________________________________________ I would like to thank the Australian Government through their Department of Foreign Affairs and Trade for graciously offering me a scholarship (Australia Aid Award – AusAid) to study in Australia. From the time of my departure from my home country in 2014, Alex Salvador, Katherine Elliott and other members of the AusAid team have always ensured that the highest quality of care was extended to me as a foreign student in a distant land.
    [Show full text]