2-D and 3-D Adipocyte Cell Culture

Total Page:16

File Type:pdf, Size:1020Kb

2-D and 3-D Adipocyte Cell Culture 2-D and 3-D Adipocyte Cell Culture Promising Tools for Basic Research and Approaches towards Clinical Therapies Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät Chemie und Pharmazie der Universität Regensburg vorgelegt von Anna Katharina Seitz aus Neumarkt i.d.OPf. im Juni 2010 Diese Doktorarbeit entstand in der Zeit von März 2006 bis Juni 2010 am Lehrstuhl Pharmazeutische Technologie der Universität Regensburg. Die Arbeit wurde von Prof. Dr. Achim Göpferich angeleitet. Promotionsgesuch eingereicht am: 21.06.2010 Mündliche Prüfung am: 30.07.2010 Prüfungsausschuss: Prof. Dr. S. Elz (Vorsitzender) Prof. Dr. A. Göpferich (Erstgutachter) Prof. Dr. T. Blunk (Zweitgutachter) Prof. Dr. E. Tamm (Drittprüfer) Meinen Eltern in Liebe und Dankbarkeit 2-D and 3-D Adipocyte Cell Culture Table of Contents 2-D and 3-D Adipocyte Cell Culture - Promising Tools for Basic Research and Approaches towards Clinical Therapies…………………………………………... 1 Chapter 1 Introduction……………………………………………….................... 3 1. Characteristics of adipose tissue………………………………… 4 1.1. Structure of adipose tissue………………………………………. 4 1.2. Functions of adipose tissue……………………………………… 4 1.3. Adipocyte differentiation………………………………………... 6 1.4. Adipocyte metabolism………………………………………….... 8 2. The adipocyte extracellular matrix…………………………….... 10 2.1. The extracellular matrix composition of adipose tissue………… 10 2.2. Extracellular matrix dynamics during adipogenesis……………. 14 2.3. Novel culture systems for the investigation of the extracellular matrix……………………………………………… 16 3. Adipocyte culture in reconstructive and plastic surgery………… 17 3.1. Injection lipolysis………………..………………………………. 17 3.2. Adipose tissue engineering………………………………………. 19 Chapter 2 Goals of the Thesis……………………………………………………. 41 Chapter 3 Human Adipose-derived Stem Cells as an in vitro Model for Human Adipogenesis - Evaluation of Culture Conditions………… 47 Chapter 4 In vitro Studies of the Lipolytic Effect of Therapeutic Substances Used for Injection Lipolysis…………………………………………... 71 Chapter 5 Effect of a Prolyl Hydroxylase Inhibitor on Adipogenesis in 2-D and 3-D Culture………………………………………………….......... 101 Chapter 6 Collagen Type XVI is Regulated during in vitro Adipogenesis of 3T3-L1……………………………………………………………….... 133 -v- 2-D and 3-D Adipocyte Cell Culture Chapter 7 Poly(ethylene glycol)-based Hydrogels for Adipose Tissue Engineering……………………………………………………. 165 Chapter 8 Summary and Conclusions………………………………………….… 187 Appendices …………………………………………………………………………. 195 I) List of Abbreviations…………………………………………...... 196 II) Curriculum Vitae…………………………………………............ 201 III) List of Publications………………………………………………. 203 IV) Eidesstattliche Erklärung………………………………………... 205 V) Acknowledgments………………………………………….......... 207 -vi- 2-D and 3-D Adipocyte Cell Culture Promising Tools for Basic Research and Approaches towards Clinical Therapies You must have a plan, if you don´t have a plan, you´ll become part of somebody else´s plan. (Terence McKenna) - 1 - Chapter 1 Introduction - 3 - Chapter 1 Introduction 1. Characteristics of adipose tissue 1.1. Structure of adipose tissue Adipose tissue represents a loose connective tissue mainly consisting of mature lipid-filled adipocytes and, a variety of other cell types such as stromal vascular cells including blood cells, endothelial cells, pericytes, adipose precursor cells, and fibroblasts as well as immune cells [1-3]. The mature adipocytes are closely arranged within the tissue resulting in a hexagonal configuration. Spaces between the cells are filled by a specific fiber network referred to as extracellular matrix (ECM) which is interspersed with capillaries. Not only due to its color, adipose tissue is classified into two subtypes, white adipose tissue (WAT) and brown adipose tissue (BAT), which differ in their abundance and function in humans [4]. BAT is principally found in neonates and only marginally in the adult body and is specialized for heat production by adaptive non-shivering thermogenesis [4-6]. The BAT is extremely well vascularized and the adipocytes are characterized by densely packed mitochondria as well as by the accumulation of triglycerides (TGs) in multiple small lipid droplets [4,7]. However, this work focuses only on WAT as it is the major object of the current adipose research. WAT is the predominant type of fat tissue in adult humans and is widely distributed in multiple depots in the body. The total fat mass is locally classified into subcutaneous (~ 80%) and internal (~ 20%) adipose compartments. The internal fat depots include visceral and nonvisceral fat as well as other small fat depots [4]. White fat acts as the major energy reservoir by storing TGs in periods of energy excess and releasing free fatty acids during energy deprivation. The growth of WAT results from increased adipocyte number (hyperplasia) and, respectively, adipocyte size (hypertrophy) [2]. Due to the accumulation of lipids, adipocytes reach sizes ranging from 20 µm to 200 µm in diameter [4]. The mature unilocular adipocyte contains a large single droplet surrounded by a thin rim of cytoplasm, and a nucleus located peripherally which gives the cell a so called signet-ring form [8]. However, developing adipocytes temporarily contain multiple lipid droplets, before these finally coalesce into a single large droplet. Multilocular appearance is also present at periods of nutrient deprivation due to mobilization of TGs. 1.2. Functions of adipose tissue Until the 1980s, the most important functions of fat seemed to be heat insulation, mechanical cushion, and of course, a source of energy. Adipose tissue stores energy in times of nutritional excess in the form of TGs and release free fatty acids and glycerol when energy is required - 4 - Chapter 1 Introduction [9,10]. However, during the last two decades, particularly through the identification of leptin in 1994 [11], it became increasingly clear that the fat tissue also has active roles in physiological processes by mediating endocrine, paracrine, and autocrine signals. Aside from the primary function as energy reservoir, the WAT is also described as a highly active metabolic and endocrine organ secreting a large number of protein factors and signals termed as adipokines [5,12,13]. Adipokines and other adipocyte-secreted factors include leptin, adiponectin, resistin, visfatin, apelin, and inflammatory cytokines like tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor protein (PAI) as well as growth factors, enzymes, complement factors, and matrix proteins [4,6]. These factors act as mediators for multiple physiological processes, i.e., energy homeostasis, insulin sensitivity, lipid metabolism, inflammatory and immunological responses, angiogenesis, blood pressure, and reproductive function [14,15]. A large body of evidence indicates that many factors secreted by adipocytes are dysregulated in obesity contributing to hyperglycemia, hyperlipidemia, chronic inflammation, and insulin resistance [9,16-18]. Thus, WAT dysfunction is involved in the pathogenesis of type 2 diabetes and other metabolic diseases, such as atherosclerosis. Particularly leptin, a hormone that is primarily synthesized and secreted by mature adipocytes is elevated in human obesity and in animal models of obesity. Different roles of leptin are suggested including regulation of body fat mass, modulation of insulin action in liver, production of steroids in ovary, and direct effects on adrenocortical steroidogenesis. Another adipokine, the cytokine TNF-α, is upregulated in obesity which contributes to insulin resistance by the inhibition of the insulin receptor signalling through the insulin receptor substrate 1 (IRS-1) [19,20]. The two vascular function-related proteins angiotensinogen and plasminogen activator inhibitor type I (PAI-1) are responsible for mediating vasoregulatory functions of adipose tissue such as blood supply and fatty acid efflux from fat [21]. Angiotensin II, the cleavage product of angiotensinogen, increases lipogenesis in adipocytes and, thus, angiotensin II may play a role in the control of adiposity through regulation of lipid synthesis and storage in adipocytes [22]. Higher levels of PAI-1, a fibrinolytic protein, have been reported in obesity. Therefore, PAI-1 is assumed to be involved in the development of cardiovascular diseases associated with obesity [23,24]. Taken together, multiple studies from literature have clearly shown that adipose tissue can be regarded as endocrine organ which is involved in various physiological processes in addition to its main role in regulation of energy balance. - 5 - Chapter 1 Introduction 1.3. Adipocyte differentiation The adipose lineage arises from a pluripotent stem cell population of mesodermal origin which has the capacity to differentiate into various cell types such as adipocytes, chondrocytes, osteoblasts, and myocytes [9]. These multipotential precursor cells reside in the stromal vascular compartment of adipose tissue and undergo a commitment step, in which cells become restricted to the adipocyte lineage. Figure 1 illustrates an overview of the different stages of adipocyte development [9]. Figure 1: Overview of the adipocyte development (from Gregoire et al. [9]). Abbreviations: C/EBP=CCAAT/enhancer binding protein, PPAR=peroxisome proliferator-activated receptor, pref-1=preadipocyte factor 1, ECM=extracellular matrix. Adipocyte differentiation is induced on the molecular level by a coordinated transcriptional
Recommended publications
  • Adipose Derived Mesenchymal Stem Cell Differentiation Into Adipogenic and Osteogenic Stem Cells
    vv ISSN: 2641-3000 DOI: https://dx.doi.org/10.17352/sscrt LIFE SCIENCES GROUP Hassan IH El Sayyad1*, Mohamed A Sobh2, Soad A Khalifa1 and Omnia KR Research Article 3 El-Sayyad Adipose Derived Mesenchymal Stem 1Zoology Department, Faculty of Science, Egypt 2Urology & Nephrology Center, Research Center, Egypt Cell Differentiation into Adipogenic 3Pediatric Mansoura University Hospital, Mansoura University, Egypt and Osteogenic Stem Cells Dates: Received: 08 December, 2016; Accepted: 23 December, 2016; Published: 29 December, 2016 *Corresponding author: Hassan IH El-Sayyad, Depart- Abstract ment of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt, Tel: 0020502254850; Objective: Lipoaspiration of human breast fats are important source of adipocyte stem cells E-mail: (hAMSCs) which play a great role in regenerative medicine. The present study illustrates its capability of its transformation and characterization of adipocyte, osteogenic or chondrogenic cells. https://www.peertechz.com Methods and results: The hAMSCs were positive for CD13, CD29, CD105 and CD90 and negative CD34 and CD 14. The hAMSCs were cultured in adipogenic or osteogenic culture for 4,7,14 & 21 days. Gene expression for adipogenic (PCR of leptin, peroxisome proliferator-activated receptor-γ and lipoprotein lipase) and osteogenic (osteocalcin) cells were carried out. Biochemical assessments of adipogenic (lipoprotein lipase enzyme and glycerol-3-phosphate dehydrogenase) and osteogenic (alkaline phosphatase, B-galactosidase and calcium content) markers. Also, light and transmission electron microscopic investigation of adipocyte stem cell culture were investigated at 4,7,14 & 21 days in both two models. Adipocyte derived from hAMSCs displayed fi broblastic morphology and confl uency at 7 days and fl at-shape with positive oil red staining at 14 &21 days.
    [Show full text]
  • Altered Adipose Tissue and Adipocyte Function in the Pathogenesis of Metabolic Syndrome
    Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn, … , Guoxiao Wang, Kevin Y. Lee J Clin Invest. 2019;129(10):3990-4000. https://doi.org/10.1172/JCI129187. Review Series Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis. Find the latest version: https://jci.me/129187/pdf REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME The Journal of Clinical Investigation Series Editor: Philipp E. Scherer Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn,1 Guoxiao Wang,1 and Kevin Y.
    [Show full text]
  • Adipose Tissue: SHH and Dermal Adipogenesis
    RESEARCH HIGHLIGHTS Nature Reviews Endocrinology | Published online 18 Nov 2016; doi:10.1038/nrendo.2016.192 ADIPOSE TISSUE SHH and dermal adipogenesis In the dermis, adipose tissue adipogenesis. SHH is secreted from overexpression increased skin thick- expands in sync with the growth of HF-TACs; by knocking out this ness, which was also associated with hair follicles, but the mechanism that protein specifically in HF-TACs of increased Pparg expression. couples the growth of the two tissues mice, the dermal adipose layer failed Hsu and his colleagues hope is unclear. In new research, investiga- to expand. that their findings will eventually tors have found that sonic hedgehog This effect was specific to SHH help to mitigate the adverse effects (SHH) secreted from hair follicle secreted from HF-TACs and not of chemotherapy, such as thinning transit-amplifying cells (HF-TACs) from hair follicles, as in mice with of the skin, hair loss and increased is required for expansion of both hair follicles lacking smoothened susceptibility to infections. “Some dermal adipocytes and hair follicles. (Smo), a protein that mediates the of these symptoms might be a con- “TACs are stem cell progeny downstream effect of SHH, dermal sequence of a compromised ability responsible for generating a large adipogenesis was unaffected but of HF-TACs to direct changes amount of downstream cell types the follicles are shorter. Moreover, in dermal adipocytes, which are directly,” explains Ya-Chieh Hsu by deleting Smo in different skin important for skin thickening and who led the study. “TACs might be cell types, Hsu and his colleagues innate immunity,” concludes Hsu.
    [Show full text]
  • Shockwaves Suppress Adipocyte Differentiation Via Decrease in Pparγ
    cells Article Shockwaves Suppress Adipocyte Differentiation via Decrease in PPARγ Wonkyoung Cho y, SeoYeon Kim y, Myeongsook Jeong and Young Mi Park * Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 03760, Korea; [email protected] (W.C.); [email protected] (S.K.); [email protected] (M.J.) * Correspondence: [email protected]; Tel.: +82-2-6986-6269 These authors contributed equally to this work. y Received: 25 October 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Adipogenesis is a crucial cellular process that contributes to the expansion of adipose tissue in obesity. Shockwaves are mechanical stimuli that transmit signals to cause biological responses. The purpose of this study is to evaluate the effects of shockwaves on adipogenesis. We treated 3T3L-1 cells and human primary preadipocytes for differentiation with or without shockwaves. Western blots and quantitative real-time reverse transcriptase PCR (qRT-PCR) for adipocyte markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPα) were performed. Extracellular adenosine triphosphate (ATP) and intracellular cyclic adenosine monophosphate (cAMP) levels, which are known to affect adipocyte differentiation, were measured. Shockwave treatment decreased intracellular lipid droplet accumulation in primary human preadipocytes and 3T3-L1 cells after 11–12 days of differentiation. Levels of key adipogenic transcriptional factors PPARγ and/or C/EBPα were lower in shockwave-treated human primary preadipocytes and 3T3L-1 cells after 12–13 days of differentiation than in shockwave-untreated cells. Shockwave treatment induced release of extracellular ATP from preadipocytes and decreased intracellular cAMP levels. Shockwave-treated preadipocytes showed a higher level of β-catenin and less PPARγ expression than shockwave-untreated cells.
    [Show full text]
  • Adipocyte-Based Cell Therapy in Oncology: the Role of Cancer-Associated Adipocytes and Their Reinterpretation As Delivery Platforms
    pharmaceutics Review Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms 1, 1, 1 1 Raluca Munteanu y , Anca Onaciu y, Cristian Moldovan , Alina-Andreea Zimta , Diana Gulei 1 , Angelo V. Paradiso 2, Vladimir Lazar 3 and Ioana Berindan-Neagoe 1,4,5,* 1 Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; [email protected] (R.M.); [email protected] (A.O.); [email protected] (C.M.); [email protected] (A.-A.Z.); [email protected] (D.G.) 2 Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy; [email protected] 3 Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France; [email protected] 4 Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania 5 Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania * Correspondence: [email protected] These authors have contributed equally to the work. y Received: 2 April 2020; Accepted: 23 April 2020; Published: 28 April 2020 Abstract: Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy.
    [Show full text]
  • A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet
    nutrients Article A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet Albert Gibert-Ramos 1,* , Miguel Z. Martín-González 1, Anna Crescenti 2,* and M. Josepa Salvadó 1 1 Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, 43007 Tarragona, Spain; [email protected] (M.Z.M.-G.); [email protected] (M.J.S.) 2 Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain * Correspondence: [email protected] (A.G.-R.); [email protected] (A.C.); Tel.: +34-97-7558-465 (A.G.-R.); +34-97-7752-965 (A.C.) Received: 24 August 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 0.91 g) compared to VH treatment (21.19 1.59 g), and the calorimetry results ± ± indicated a significant increase in energy expenditure and fat oxidation.
    [Show full text]
  • Retinoids and Adipose Tissues: Metabolism, Cell Differentiation and Gene Expression
    International Journal of Obesity (1999) 23, 1±6 ß 1999 Stockton Press All rights reserved 0307±0565/99 $12.00 http://www.stockton-press.co.uk/ijo Retinoids and adipose tissues: metabolism, cell differentiation and gene expression F Villarroya*1, M Giralt1 and R Iglesias1 1Departament de BioquõÂmica i Biologia Molecular, Universitat de Barcelona, Barcelona, Spain Vitamin A derivatives (retinoids) play a key role in mammalian development and cell differentiation. Isomers of retinoic acid, the main active metabolite of vitamin A, activate retinoid receptors that act as ligand-dependent transcription factors and affect gene expression. White and brown adipose tissues are major sites of storage of vitamin A derivatives and they play an active role in whole body metabolism of retinoids. Moreover, adipose tissues are targets for the action of retinoic acid. In most cases retinoic acid impairs adipocyte differentiation although its ®nal effects on adipose tissue development depend on retinoic acid concentration, isomers availability and expression of retinoid receptor subtypes in the white or brown adipocyte. Retinoic acid (RA) has a speci®c effect on brown adipose tissue, because it activates transcription of the gene for uncoupling protein-1, responsible for brown fat thermogenesis. Keywords: vitamin A; retinoic; adipose tissue; uncoupling protein Introduction homodimer or as a heterodimer of RXR and some members of the nuclear receptor superfamily, for example, PPARs. In contrast, when RXR hetero- Vitamin A and its structural derivatives (retinoids) dimerizes with VDR and T3R, the action of 9-cis- exert profound effects on vision, embryonic develop- RA on the RXR moiety is suppressed. With respect to ment, reproduction, haematopoiesis, and the regula- RAR=RXR heterodimers, the ligand-induced tran- tion and differentiation of mammalian epithelial and scriptional activation for RXR remains controversial.
    [Show full text]
  • Tumor Necrosis Factor Mediates Apoptosis of Brown Adipocytes And
    Tumor necrosis factor ␣ mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity Enzo Nisoli*†, Luca Briscini*, Antonio Giordano‡, Cristina Tonello*, Sarah M. Wiesbrock§, K. Teoman Uysal§, Saverio Cinti‡, Michele O. Carruba*, and Go¨ khan S. Hotamisligil†§ *Center for Study and Research on Obesity, LITA Vialba, L. Sacco Hospital, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; ‡Institute of Normal Human Morphology-Anatomy, University of Ancona, Via Tronto 10͞A, 60020 Ancona, Italy; and §Division of Biological Sciences and Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 Edited by Roger H. Unger, University of Texas Southwestern Medical Center, Dallas, TX, and approved March 21, 2000 (received for review December 14, 1999) Severe quantitative and qualitative brown adipocyte defects are of these animals produced control OB͞OB and ob͞ob mice and common in obesity. To investigate whether aberrant expression of littermates with mutations at one or both TNFR (a detailed tumor necrosis factor ␣ (TNF-␣) in obesity is involved in functional description of these animals is reported in refs. 19–21). All of the brown fat atrophy, we have studied genetically obese (ob͞ob) animal experiments were carried out in accordance with the mice with targeted null mutations in the genes encoding the two highest standards of humane animal care. TNF receptors. The absence of both TNF receptors or p55 receptor alone resulted in a significant reduction in brown adipocyte apo- Terminal Deoxynucleotidyltransferase-Mediated UTP End Labeling ␤ ptosis and an increase in 3-adrenoreceptor and uncoupling pro- (TUNEL) Staining. In situ fragmentation of DNA was investigated tein-1 expression in obese mice.
    [Show full text]
  • White Adipocyte Plasticity in Physiology and Disease
    cells Review White Adipocyte Plasticity in Physiology and Disease Ewa Bielczyk-Maczynska Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; [email protected] Received: 19 October 2019; Accepted: 21 November 2019; Published: 25 November 2019 Abstract: Cellular plasticity is a transformation of a terminally differentiated cell into another cell type, which has been long known to occur in disease and regeneration. However, white adipocytes (fat cells) have only recently been observed to undergo different types of cellular plasticity. Adipocyte transdifferentiation into myofibroblasts and cancer-associated fibroblasts occurs in fibrosis and cancer, respectively. On the other hand, reversible adipocyte dedifferentiation into adipocyte progenitor cells (preadipocytes) has been demonstrated in mammary gland and in dermal adipose tissue. Here we discuss the research on adipocyte plasticity, including the experimental approaches that allowed to detect and study it, the current state of the knowledge, major research questions which remain to be addressed, and the advances required to stimulate adipocyte plasticity research. In the future, the knowledge of the molecular mechanisms of adipocyte plasticity can be utilized both to prevent adipocyte plasticity in disease and to stimulate it for use in regenerative medicine. Keywords: cell plasticity; adipocytes; fat; cell dedifferentiation; cell transdifferentiation; cell differentiation 1. Introduction In the traditional view of cell differentiation, cells follow a differentiation trajectory in discrete developmental stages, beginning with stem cells and culminating with a terminally differentiated state [1]. The terminally differentiated state is thought to be permanent as the cells can no longer transfer into other cell fates. However, in many systems the phenomenon of cellular plasticity, which is a transformation of a cellular phenotype beginning with a terminally differentiated cell, has been described not only in pathologies like cancer, but also during physiological processes [2].
    [Show full text]
  • Dermal Drivers of Injury-Induced Inflammation: Contribution
    International Journal of Molecular Sciences Review Dermal Drivers of Injury-Induced Inflammation: Contribution of Adipocytes and Fibroblasts Paula O. Cooper † , MaryEllen R. Haas † , Satish kumar R. Noonepalle and Brett A. Shook * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; [email protected] (P.O.C.); [email protected] (M.R.H.); [email protected] (S.k.R.N.) * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Irregular inflammatory responses are a major contributor to tissue dysfunction and ineffi- cient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subse- quent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this re- view, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair. Keywords: inflammation; adipocyte; fibroblast; wound healing; diabetes; aging Citation: Cooper, P.O.; Haas, M.R.; Noonepalle, S.k.R.; Shook, B.A. Dermal Drivers of Injury-Induced Inflammation: Contribution of 1.
    [Show full text]
  • Sorting out Adipocyte Precursors and Their Role in Physiology and Disease
    Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Sorting out adipocyte precursors and their role in physiology and disease Chelsea Hepler, Lavanya Vishvanath, and Rana K. Gupta Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA The ability to maintain and expand the pool of adipocytes glucose and lipid homeostasis (Seale et al. 2011; Kajimura in adults is integral to the regulation of energy balance, tis- et al. 2015; Shao et al. 2016). sue/stem cell homeostasis, and disease pathogenesis. For Interest in adipocyte biology has increased dramatically decades, our knowledge of adipocyte precursors has relied over the last 20 years, coincident with the global obesity on cellular models. The identity of native adipocyte pre- epidemic and the realization that adipocytes play a broad- cursors has remained unclear. Recent studies have identi- er role in physiology than envisioned previously (Rosen fied distinct adipocyte precursor populations that are and Spiegelman 2014). The field has witnessed great pro- physiologically regulated and contribute to the develop- gress in revealing the many functions of adipocytes in ment, maintenance, and expansion of adipocyte pools in physiology; however, the basic developmental biology of mice. With new tools available, the properties of adipo- adipose tissue has lagged behind. Below, we highlight re- cyte precursors can now be defined, and the regulation cent efforts to identify native adipose precursor popula- and function of adipose plasticity in development and tions that contribute to adipose development and the physiology can be explored. physiological recruitment of white, brown, and beige adi- pocytes in postnatal animals.
    [Show full text]
  • Adipocyte Differentiation Is Affected by Media Height Above the Cell Layer
    International Journal of Obesity (2014) 38, 315–320 & 2014 Macmillan Publishers Limited All rights reserved 0307-0565/14 www.nature.com/ijo TECHNICAL REPORT Adipocyte differentiation is affected by media height above the cell layer X Sheng1, J Tucci1, J Malvar2 and SD Mittelman1,3,4,5,6 BACKGROUND: 3T3-L1 cells have been widely used as a model for adipogenesis. However, despite its popularity, differentiation of this cell line has been reported to be inconsistent with low efficiency. OBJECTIVE: To investigate the effect of media height during adipocyte differentiation on lipid accumulation and adipokine secretion in mature adipocytes. METHODS: Three cell lines (3T3-L1, OP9 and ChubS7) were used to test the influence of media volume on adipogenesis. Total lipid content and lipid droplet size and number were quantified. Adipocyte related gene expressions were quantified during the course of differentiation. Secretion of leptin and adiponectin from mature adipocytes were measured using enzyme-linked immunosorbent assays. The influence of oxygen partial pressure on adipogenesis was investigated using three oxygen percentages: 5, 21 and 30%. Insulin sensitivity was measured by insulin inhibition of isoproterenol-induced lipolysis and phosphorylation of insulin receptor substrate-1. RESULTS: A lower media height during adipogenesis increased total lipid accumulation, NEFA release and leptin and adiponectin secretion in mature adipocytes. Insulin sensitivity was not affected by media height during differentiation. CONCLUSION: Media height during
    [Show full text]