Adipocyte Fate Improves Insulin Sensitivity in Obese Mice 3

Total Page:16

File Type:pdf, Size:1020Kb

Adipocyte Fate Improves Insulin Sensitivity in Obese Mice 3 1 Directing Visceral White Adipocyte Precursors to a Thermogenic 2 Adipocyte Fate Improves Insulin Sensitivity in Obese Mice 3 4 Chelsea Hepler, Mengle Shao, Jonathan Y. Xia, Alexandra L. Ghaben, Mackenzie J. 5 Pearson, Lavanya Vishvanath, Ankit X. Sharma, Thomas S. Morley, William L. Holland, 6 Rana K. Gupta 7 Touchstone Diabetes Center, Department of Internal Medicine, University of Texas 8 Southwestern Medical Center, Dallas, Texas 75390, USA 9 10 Correspondence should be addressed to: 11 Rana K. Gupta 12 Touchstone Diabetes Center 13 Department of Internal Medicine 14 UT Southwestern Medical Center 15 5323 Harry Hines Blvd. 16 K5.240 17 Dallas, TX 75390-8549 18 Phone: 214-648-8721 19 Email: [email protected] 20 Conflicting interests statement. The authors declare that they have no competing 21 financial interests. 22 23 Abstract 24 Visceral adiposity confers significant risk for developing metabolic disease in obesity 25 whereas preferential expansion of subcutaneous white adipose tissue (WAT) appears 26 protective. Unlike subcutaneous WAT, visceral WAT is resistant to adopting a protective 27 thermogenic phenotype characterized by the accumulation of Ucp1+ beige/BRITE 28 adipocytes (termed “browning”). In this study, we investigated the physiological 29 consequences of browning murine visceral WAT by selective genetic ablation of Zfp423, 30 a transcriptional suppressor of the adipocyte thermogenic program. Zfp423 deletion in 31 fetal visceral adipose precursors (Zfp423loxP/loxP; Wt1-Cre), or adult visceral white 32 adipose precursors (PdgfrbrtTA; TRE-Cre; Zfp423loxP/loxP), results in the accumulation of 33 beige-like thermogenic adipocytes within multiple visceral adipose depots. Thermogenic 34 visceral WAT improves cold tolerance and prevents and reverses insulin resistance in 35 obesity. These data indicate that beneficial visceral WAT browning can be engineered 36 by directing visceral white adipocyte precursors to a thermogenic adipocyte fate, and 37 suggest a novel strategy to combat insulin resistance in obesity. 38 39 1 40 Introduction 41 Adipocytes are critical regulators of energy balance and nutrient homeostasis. 42 White adipocytes serve as the principle site for energy storage in mammals. These cells 43 are characterized by a large unilocular lipid droplet and have the capacity to store or 44 release energy depending on metabolic demand. White adipocytes also produce and 45 secrete numerous cytokines and hormones that impact several aspects of physiology 46 (Rosen and Spiegelman, 2014). Eutherian mammals also contain a second major class 47 of adipocytes that function to catabolize stored lipids and produce heat. These 48 thermogenic adipocytes, consisting of brown and beige/BRITE adipocytes, are 49 characterized by their multilocular lipid droplet appearance, high mitochondrial content, 50 and expression of uncoupling protein 1 (Ucp1) (Cohen and Spiegelman, 2015; Harms 51 and Seale, 2013). Brown/beige adipocytes have promising therapeutic potential as their 52 activation in the setting of obesity has a profound impact on metabolic health. 53 White adipose depots are broadly categorized as either subcutaneous or visceral 54 adipose tissue, reflecting their anatomical location. Adipose tissue distribution is a 55 strong predictor of metabolic outcome in obese individuals (Karpe and Pinnick, 2015; 56 Lee et al., 2013). Visceral adiposity strongly correlates with the development of insulin 57 resistance, diabetes, and cardiovascular disease (Kissebah et al., 1982; Krotkiewski et 58 al., 1983; Ohlson et al., 1985; Vague, 1956). Preferential expansion of subcutaneous 59 depots is associated with sustained insulin sensitivity (Manolopoulos et al., 2010). 60 Engineered rodent models highlight the protective role of subcutaneous adipose tissue. 61 Transgenic animals overexpressing adiponectin or mitoNEET develop extreme 62 subcutaneous obesity; however, these animals remain metabolically healthy (Kim et al., 63 2007; Kusminski et al., 2012). 2 64 In humans, the location of visceral adipose tissue itself likely mediates some of 65 its detrimental effects on energy metabolism; lipids, metabolites, and cytokines can 66 drain directly into the portal circulation and affect liver function (Rytka et al., 2011). 67 Transplantation studies, cellular studies, and gene expression analyses, suggest that 68 factors intrinsic to these depots may also determine their effect on nutrient homeostasis 69 (Tran et al., 2008; Yamamoto et al., 2010). Anatomically distinct adipocytes are 70 functionally unique, differing in their ability to undergo lipolysis, lipogenesis, and activate 71 the thermogenic gene program (Lee et al., 2013; Macotela et al., 2012; Morgan-Bathke 72 et al., 2015; Wu et al., 2012). Along these lines, lineage analyses reveal that 73 anatomically distinct white adipocytes can originate from developmentally distinct 74 precursor cells, and emerge at different times during development (Billon and Dani, 75 2012; Chau et al., 2014). As such, it is now widely believed that visceral and 76 subcutaneous adipocytes represent distinct subtypes of fat cells. 77 In mice, visceral and subcutaneous white adipose depots differ remarkably in 78 their ability to remodel under physiological conditions (Hepler and Gupta, 2017). Upon 79 high-fat diet feeding, visceral adipose depots of mice expand by both adipocyte 80 hypertrophy and through the formation of new adipocytes (“adipogenesis”) (Wang et al., 81 2013). Inguinal subcutaneous WAT expands predominantly through adipocyte 82 hypertrophy. The differential capacity for adipogenesis is likely explained by factors 83 present in the local microenvironment (Jeffery et al., 2016). Another notable difference 84 between the inguinal and visceral adipose depots in rodents is the capacity to adopt a 85 thermogenic phenotype. Various stimuli, including β3-adrenergic receptor-agonism and 86 cold exposure, drive the rapid accumulation of beige adipocytes in subcutaneous 3 87 depots (Vitali et al., 2012; Wu et al., 2012). Genetic stimulation of subcutaneous beige 88 adipogenesis renders mice resistant to high-fat diet induced obesity and/or diabetes 89 (Seale et al., 2011; Shao et al., 2016), while inhibition of subcutaneous beiging leads to 90 an earlier onset of insulin resistance during obesity (Cohen et al., 2014). Most visceral 91 depots in mice, particularly the gonadal and mesenteric adipose tissues, are relatively 92 resistant to browning in response to physiological stimuli. With few exceptions (Kiefer et 93 al., 2012), most engineered mouse models of white adipose tissue browning exhibit 94 beige cell accumulation preferentially in subcutaneous WAT depots (Seale et al., 2011; 95 Stine et al., 2016). Visceral WAT depots may harbor mechanisms to suppress 96 thermogenesis in order to ensure its function as a white, energy-storing, depot. 97 We previously established a critical role for the transcription factor, Zfp423, in the 98 establishment and maintenance of the adipocyte lineage. Zfp423 is required for fetal 99 differentiation of subcutaneous white adipocytes (Gupta et al., 2010; Shao et al., 2017). 100 In adult mice, Zfp423 expression defines a subset of committed mural preadipocytes 101 (Gupta et al., 2012; Vishvanath et al., 2016). Upon high-fat diet feeding, these mural 102 cells undergo adipogenesis in visceral depots, contributing to adipocyte hyperplasia 103 (Vishvanath et al., 2016). Zfp423 is also expressed in nearly all mature adipocytes; 104 however, its expression is more abundant in white adipocytes than brown adipocytes 105 (Shao et al., 2016). In the mature adipocyte, Zfp423 acts to maintain the energy-storing 106 status of the white adipocyte through suppression of the thermogenic gene program 107 (Shao et al., 2016). Zfp423 likely exerts this function by serving as a transcriptional co- 108 repressor of the brown/beige lineage determining transcription factor, Ebf2. The loss of 109 Zfp423 in mature white adipocytes triggers a robust conversion of white to beige 4 110 adipocytes in subcutaneous WAT. Amongst the various adipose tissues, visceral WAT 111 expresses the highest levels of Zfp423. Importantly, we observed that visceral 112 adipocytes lacking Zfp423 were also capable of inducing their thermogenic gene 113 program when animals were stimulated pharmacologically with a 3 adrenergic receptor 114 agonist (Shao et al., 2016). This observation affords the possibility of examining 115 whether the thermogenic capacity of visceral white adipose depots can be unlocked 116 under physiological conditions, and whether thermogenic visceral WAT would be 117 ultimately harmful or beneficial to systemic metabolic health. 118 Here, we describe two mouse models of visceral adipose tissue browning 119 derived through selective ablation of Zfp423 in visceral adipose precursors. We reveal 120 that fetal visceral white preadipocytes can be redirected to a beige-like adipocyte fate 121 through the loss of Zfp423, leading to visceral depot mass reduction and fat 122 redistribution towards subcutaneous depots. The browning of visceral depots improves 123 cold tolerance and protects against the development of insulin resistance and 124 hyperlipidemia in obesity. Moreover, we demonstrate that visceral mural preadipocytes 125 in adult mice can also be directed to a thermogenic cell fate; this leads to beige-like, 126 rather than white, adipocyte hyperplasia, in the expanding visceral WAT depots of diet- 127 induced obese animals. Upon activation by β-3 adrenergic receptor
Recommended publications
  • Adipose Derived Mesenchymal Stem Cell Differentiation Into Adipogenic and Osteogenic Stem Cells
    vv ISSN: 2641-3000 DOI: https://dx.doi.org/10.17352/sscrt LIFE SCIENCES GROUP Hassan IH El Sayyad1*, Mohamed A Sobh2, Soad A Khalifa1 and Omnia KR Research Article 3 El-Sayyad Adipose Derived Mesenchymal Stem 1Zoology Department, Faculty of Science, Egypt 2Urology & Nephrology Center, Research Center, Egypt Cell Differentiation into Adipogenic 3Pediatric Mansoura University Hospital, Mansoura University, Egypt and Osteogenic Stem Cells Dates: Received: 08 December, 2016; Accepted: 23 December, 2016; Published: 29 December, 2016 *Corresponding author: Hassan IH El-Sayyad, Depart- Abstract ment of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt, Tel: 0020502254850; Objective: Lipoaspiration of human breast fats are important source of adipocyte stem cells E-mail: (hAMSCs) which play a great role in regenerative medicine. The present study illustrates its capability of its transformation and characterization of adipocyte, osteogenic or chondrogenic cells. https://www.peertechz.com Methods and results: The hAMSCs were positive for CD13, CD29, CD105 and CD90 and negative CD34 and CD 14. The hAMSCs were cultured in adipogenic or osteogenic culture for 4,7,14 & 21 days. Gene expression for adipogenic (PCR of leptin, peroxisome proliferator-activated receptor-γ and lipoprotein lipase) and osteogenic (osteocalcin) cells were carried out. Biochemical assessments of adipogenic (lipoprotein lipase enzyme and glycerol-3-phosphate dehydrogenase) and osteogenic (alkaline phosphatase, B-galactosidase and calcium content) markers. Also, light and transmission electron microscopic investigation of adipocyte stem cell culture were investigated at 4,7,14 & 21 days in both two models. Adipocyte derived from hAMSCs displayed fi broblastic morphology and confl uency at 7 days and fl at-shape with positive oil red staining at 14 &21 days.
    [Show full text]
  • Regulatory Micrornas in Brown, Brite and White Adipose Tissue
    cells Review Regulatory microRNAs in Brown, Brite and White Adipose Tissue Seley Gharanei 1,2, Kiran Shabir 3 , James E. Brown 3,4, Martin O. Weickert 1,2,5 , 1,2 1,2,3, 1,2,3, , Thomas M. Barber , Ioannis Kyrou y and Harpal S. Randeva * y 1 Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK; [email protected] (S.G.); [email protected] (M.O.W.); [email protected] (T.M.B.); [email protected] (I.K.) 2 Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK 3 Aston Medical Research Institute, Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] (K.S.); [email protected] (J.E.B.) 4 School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK 5 Centre of Applied Biological & Exercise Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK * Correspondence: [email protected] Joint senior authors; contributed equally to the manuscript. y Received: 30 September 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: MicroRNAs (miRNAs) constitute a class of short noncoding RNAs which regulate gene expression by targeting messenger RNA, inducing translational repression and messenger RNA degradation. This regulation of gene expression by miRNAs in adipose tissue (AT) can impact on the regulation of metabolism and energy homeostasis, particularly considering the different types of adipocytes which exist in mammals, i.e., white adipocytes (white AT; WAT), brown adipocytes (brown AT; BAT), and inducible brown adipocytes in WAT (beige or brite or brown-in-white adipocytes).
    [Show full text]
  • Human Skeletal Muscles Replaced to a High Degree by White Adipose Tissue
    Okajimas Folia Anat. Jpn.,Replacement 87(4): 165–170, of muscle February, by fat 2011165 Human skeletal muscles replaced to a high degree by white adipose tissue By Keisuke INA1, Hirokazu KITAMURA1, Takayuki MASAKI2, Shuji TATSUKAWA1, Hironobu YOSHIMATSU2 and Yoshihisa FUJIKURA1 1 Department of Molecular Anatomy, Faculty of Medicine, Oita University 2 Department of Internal Medicine 1, Faculty of Medicine, Oita University, 1-1, Idaigaoka, Hasama-machi, Yufu, Oita, 879-5593, Japan –Received for Publication, August 28, 2010– Key Words: fatty degeneration, skeletal muscle, diabetes mellitus, renal failure, hypothyroidism Summary: Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hy- pothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown. Introduction tally denerved muscle atrophy (Dulor et al., 19984)). A recent report has demonstrated that, when a muscle There are two distinct types of fat accumulation in is injured, the event which subsequently occurs is either skeletal muscles: intramyocellular fat deposits and extra- myocyte regeneration or fatty degeneration, depending myocellular adipocyte accumulation.
    [Show full text]
  • Altered Adipose Tissue and Adipocyte Function in the Pathogenesis of Metabolic Syndrome
    Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn, … , Guoxiao Wang, Kevin Y. Lee J Clin Invest. 2019;129(10):3990-4000. https://doi.org/10.1172/JCI129187. Review Series Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy). Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional signaling network that is central to metabolic homeostasis. Find the latest version: https://jci.me/129187/pdf REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME The Journal of Clinical Investigation Series Editor: Philipp E. Scherer Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome C. Ronald Kahn,1 Guoxiao Wang,1 and Kevin Y.
    [Show full text]
  • The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases
    International Journal of Molecular Sciences Review The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases 1, 1, 1,2 1,2 1,2, Jae Ho Lee y, Anna Park y, Kyoung-Jin Oh , Sang Chul Lee , Won Kon Kim * and Kwang-Hee Bae 1,2,* 1 Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea 2 Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Korea * Correspondence: [email protected] (W.K.K.); [email protected] (K.-H.B.) These authors contributed equally to this work. y Received: 28 August 2019; Accepted: 30 September 2019; Published: 4 October 2019 Abstract: Mitochondria play a key role in maintaining energy homeostasis in metabolic tissues, including adipose tissues. The two main types of adipose tissues are the white adipose tissue (WAT) and the brown adipose tissue (BAT). WAT primarily stores excess energy, whereas BAT is predominantly responsible for energy expenditure by non-shivering thermogenesis through the mitochondria. WAT in response to appropriate stimuli such as cold exposure and β-adrenergic agonist undergoes browning wherein it acts as BAT, which is characterized by the presence of a higher number of mitochondria. Mitochondrial dysfunction in adipocytes has been reported to have strong correlation with metabolic diseases, including obesity and type 2 diabetes. Dysfunction of mitochondria results in detrimental effects on adipocyte differentiation, lipid metabolism, insulin sensitivity, oxidative capacity, and thermogenesis, which consequently lead to metabolic diseases. Recent studies have shown that mitochondrial function can be improved by using thiazolidinedione, mitochondria-targeted antioxidants, and dietary natural compounds; by performing exercise; and by controlling caloric restriction, thereby maintaining the metabolic homeostasis by inducing adaptive thermogenesis of BAT and browning of WAT.
    [Show full text]
  • Adipose Tissue: SHH and Dermal Adipogenesis
    RESEARCH HIGHLIGHTS Nature Reviews Endocrinology | Published online 18 Nov 2016; doi:10.1038/nrendo.2016.192 ADIPOSE TISSUE SHH and dermal adipogenesis In the dermis, adipose tissue adipogenesis. SHH is secreted from overexpression increased skin thick- expands in sync with the growth of HF-TACs; by knocking out this ness, which was also associated with hair follicles, but the mechanism that protein specifically in HF-TACs of increased Pparg expression. couples the growth of the two tissues mice, the dermal adipose layer failed Hsu and his colleagues hope is unclear. In new research, investiga- to expand. that their findings will eventually tors have found that sonic hedgehog This effect was specific to SHH help to mitigate the adverse effects (SHH) secreted from hair follicle secreted from HF-TACs and not of chemotherapy, such as thinning transit-amplifying cells (HF-TACs) from hair follicles, as in mice with of the skin, hair loss and increased is required for expansion of both hair follicles lacking smoothened susceptibility to infections. “Some dermal adipocytes and hair follicles. (Smo), a protein that mediates the of these symptoms might be a con- “TACs are stem cell progeny downstream effect of SHH, dermal sequence of a compromised ability responsible for generating a large adipogenesis was unaffected but of HF-TACs to direct changes amount of downstream cell types the follicles are shorter. Moreover, in dermal adipocytes, which are directly,” explains Ya-Chieh Hsu by deleting Smo in different skin important for skin thickening and who led the study. “TACs might be cell types, Hsu and his colleagues innate immunity,” concludes Hsu.
    [Show full text]
  • Metabolism and Secretory Function of White Adipose Tissue: Effect of Dietary Fat
    “main” — 2009/7/27 — 14:26 — page 453 — #1 Anais da Academia Brasileira de Ciências (2009) 81(3): 453-466 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Metabolism and secretory function of white adipose tissue: effect of dietary fat CLÁUDIA M. OLLER DO NASCIMENTO1, ELIANE B. RIBEIRO1 and LILA M. OYAMA2 1Departamento de Fisiologia, Universidade Federal de São Paulo, Campus São Paulo Rua Botucatu, 862, 2◦ andar, 04023-060 São Paulo, SP, Brasil 2Departamento de Biociências, Universidade Federal de São Paulo, Campus Baixada Santista Av. Ana Costa, 95, 11060-001 Santos, SP, Brasil Manuscript received on August 21, 2008; accepted for publication on February 2, 2009; presented by LUIZ R. TRAVASSOS ABSTRACT Approximately 40% of the total energy consumed by western populations is represented by lipids, most of them being ingested as triacylglycerols and phospholipids. The focus of this review is to analyze the effect of the type of dietary fat on white adipose tissue metabolism and secretory function, particularly on haptoglobin, TNF-α, plasminogen activator inhibitor-1 and adiponectin secretion. Previous studies have demonstrated that the duration of the exposure to the high-fat feeding, amount of fatty acid present in the diet and the type of fatty acid may or may not have a significant effect on adipose tissue metabolism. However, the long-term or short-term high fat diets, especially rich in saturated fatty acids, probably by activation of toll-like receptors, stimulated the expression of proinflammatory adipokines and inhibited adiponectin expression. Further studies are needed to investigate the cellular mechanisms by which dietary fatty acids affect white adipose tissue metabolism and secretory functions.
    [Show full text]
  • Deciphering the Cellular Interplays Underlying Obesity-Induced Adipose Tissue Fibrosis
    Deciphering the cellular interplays underlying obesity-induced adipose tissue fibrosis Geneviève Marcelin, … , Adaliene V.M. Ferreira, Karine Clément J Clin Invest. 2019. https://doi.org/10.1172/JCI129192. Review Series Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess. Patients with higher visceral fat mass are at a higher risk of developing severe complications such as type 2 diabetes and cardiovascular and liver diseases. However, increased fat mass does not fully explain obesity’s propensity to promote metabolic diseases. With chronic obesity, adipose tissue undergoes major remodeling, which can ultimately result in unresolved chronic inflammation leading to fibrosis accumulation. These features drive local tissue damage and initiate and/or maintain multiorgan dysfunction. Here, we review the current understanding of adipose tissue remodeling with a focus on obesity-induced adipose tissue fibrosis and its relevance to clinical manifestations. Find the latest version: https://jci.me/129192/pdf The Journal of Clinical Investigation REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME Series Editor: Philipp E. Scherer Deciphering the cellular interplays underlying obesity- induced adipose tissue fibrosis Geneviève Marcelin,1 Ana Letícia M. Silveira,1,2 Laís Bhering Martins,1,2 Adaliene V.M. Ferreira,2 and Karine Clément1,3 1Nutrition and Obesities: Systemic Approaches (NutriOmics, UMRS U1269), INSERM, Sorbonne Université, Paris, France. 2Immunometabolism, Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. 3Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Paris, France. Obesity originates from an imbalance between caloric intake and energy expenditure that promotes adipose tissue expansion, which is necessary to buffer nutrient excess.
    [Show full text]
  • Shockwaves Suppress Adipocyte Differentiation Via Decrease in Pparγ
    cells Article Shockwaves Suppress Adipocyte Differentiation via Decrease in PPARγ Wonkyoung Cho y, SeoYeon Kim y, Myeongsook Jeong and Young Mi Park * Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 03760, Korea; [email protected] (W.C.); [email protected] (S.K.); [email protected] (M.J.) * Correspondence: [email protected]; Tel.: +82-2-6986-6269 These authors contributed equally to this work. y Received: 25 October 2019; Accepted: 7 January 2020; Published: 9 January 2020 Abstract: Adipogenesis is a crucial cellular process that contributes to the expansion of adipose tissue in obesity. Shockwaves are mechanical stimuli that transmit signals to cause biological responses. The purpose of this study is to evaluate the effects of shockwaves on adipogenesis. We treated 3T3L-1 cells and human primary preadipocytes for differentiation with or without shockwaves. Western blots and quantitative real-time reverse transcriptase PCR (qRT-PCR) for adipocyte markers including peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPα) were performed. Extracellular adenosine triphosphate (ATP) and intracellular cyclic adenosine monophosphate (cAMP) levels, which are known to affect adipocyte differentiation, were measured. Shockwave treatment decreased intracellular lipid droplet accumulation in primary human preadipocytes and 3T3-L1 cells after 11–12 days of differentiation. Levels of key adipogenic transcriptional factors PPARγ and/or C/EBPα were lower in shockwave-treated human primary preadipocytes and 3T3L-1 cells after 12–13 days of differentiation than in shockwave-untreated cells. Shockwave treatment induced release of extracellular ATP from preadipocytes and decreased intracellular cAMP levels. Shockwave-treated preadipocytes showed a higher level of β-catenin and less PPARγ expression than shockwave-untreated cells.
    [Show full text]
  • Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity
    nutrients Review Brown Adipose Tissue: New Challenges for Prevention of Childhood Obesity. A Narrative Review Elvira Verduci 1,2,*,† , Valeria Calcaterra 2,3,† , Elisabetta Di Profio 2,4, Giulia Fiore 2, Federica Rey 5,6 , Vittoria Carlotta Magenes 2, Carolina Federica Todisco 2, Stephana Carelli 5,6,* and Gian Vincenzo Zuccotti 2,5,6 1 Department of Health Sciences, University of Milan, 20146 Milan, Italy 2 Department of Pediatrics, Vittore Buzzi Children’s Hospital, University of Milan, 20154 Milan, Italy; [email protected] (V.C.); elisabetta.diprofi[email protected] (E.D.P.); giulia.fi[email protected] (G.F.); [email protected] (V.C.M.); [email protected] (C.F.T.); [email protected] (G.V.Z.) 3 Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy 4 Department of Animal Sciences for Health, Animal Production and Food Safety, University of Milan, 20133 Milan, Italy 5 Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; [email protected] 6 Pediatric Clinical Research Center Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20157 Milan, Italy * Correspondence: [email protected] (E.V.); [email protected] (S.C.) † These authors contributed equally to this work. Abstract: Pediatric obesity remains a challenge in modern society. Recently, research has focused on the role of the brown adipose tissue (BAT) as a potential target of intervention. In this review, we Citation: Verduci, E.; Calcaterra, V.; revised preclinical and clinical works on factors that may promote BAT or browning of white adipose Di Profio, E.; Fiore, G.; Rey, F.; tissue (WAT) from fetal age to adolescence.
    [Show full text]
  • Adipocyte-Based Cell Therapy in Oncology: the Role of Cancer-Associated Adipocytes and Their Reinterpretation As Delivery Platforms
    pharmaceutics Review Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms 1, 1, 1 1 Raluca Munteanu y , Anca Onaciu y, Cristian Moldovan , Alina-Andreea Zimta , Diana Gulei 1 , Angelo V. Paradiso 2, Vladimir Lazar 3 and Ioana Berindan-Neagoe 1,4,5,* 1 Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; [email protected] (R.M.); [email protected] (A.O.); [email protected] (C.M.); [email protected] (A.-A.Z.); [email protected] (D.G.) 2 Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy; [email protected] 3 Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France; [email protected] 4 Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania 5 Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania * Correspondence: [email protected] These authors have contributed equally to the work. y Received: 2 April 2020; Accepted: 23 April 2020; Published: 28 April 2020 Abstract: Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy.
    [Show full text]
  • A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet
    nutrients Article A Mix of Natural Bioactive Compounds Reduces Fat Accumulation and Modulates Gene Expression in the Adipose Tissue of Obese Rats Fed a Cafeteria Diet Albert Gibert-Ramos 1,* , Miguel Z. Martín-González 1, Anna Crescenti 2,* and M. Josepa Salvadó 1 1 Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, 43007 Tarragona, Spain; [email protected] (M.Z.M.-G.); [email protected] (M.J.S.) 2 Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, 43204 Reus, Spain * Correspondence: [email protected] (A.G.-R.); [email protected] (A.C.); Tel.: +34-97-7558-465 (A.G.-R.); +34-97-7752-965 (A.C.) Received: 24 August 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 0.91 g) compared to VH treatment (21.19 1.59 g), and the calorimetry results ± ± indicated a significant increase in energy expenditure and fat oxidation.
    [Show full text]