Urine Discoloration

Total Page:16

File Type:pdf, Size:1020Kb

Urine Discoloration Chemicals, Drugs and Disease Induced Urine Discoloration 04/29/2019 Executive Officers Drug Information Center Gujarat State Pharmacy Council Concerned about your urine color? Know its meaning Urine color and its shades, says lot about your body and overall health. Color of urine and its shades may indicate various conditions ranging from “need not to worry” to “something really serious”. Observing and noting the color of the urine may help you to spot disease conditions ahead of time and get preventative treatments. For a pharmacist, this knowledge is crucial and may help in patient counseling. This article features the drugs, chemicals or disease condition responsible for the discoloration of urine. Keywords: DMCR= Disease & Medical condition related, DR= Drug Related, AC = acid urine, AL = alkaline, F = fluorescent, H = hematuria, M = metabolite, OS = on standing, C = contact with hypochlorite solution from prior use of chlorine toilet bowl cleaner • DMCR • DR • Methyldopa • Acute hemolytic • Cascara (AL) Naphthalene (H) anemia (H) • Cotrimazine • Pamaquine (H) • Malaria (H) • Cotrimoxazole • Phenacetin (OS) • Extensive burns (H) • Cresols (OS) • Phenols (OS) • Hemoglobinuria • Fava bean (H) • Pyrogallol (OS) Black • Tyrosinosis (OS, AL) • Ferrous salts • Quinine (H) • Alcaptonuria (OS) • Iron Dextran (OS) • Rhubarb (AL) • Malignant melanoma • Levodopa (OS) • Sulfonamides (H) (OS) • Melanin (OS) • Thymol (OS) • • Methocarbamol (OS) • • DMCR Carbolic acid Pseudomonas Blue diaper syndrome Evans blue bacteriuria • DR Resorcinol Indigo blue Blue Anthraquinone Indigo carmine Tetrahydronaphthalene laxatives Methocarbamol (OS) Thymol Arbutin Methylene blue Tolonium Azuresin Mitoxantrone Triamterene (pale, F) Bile pigments Nitrofurans Drug Information Center- Gujarat State Pharmacy Council • DMCR Blutene Methylene blue Chronic obstructive Boric acid Pseudomonas Blue- jaundice Carbolic acid bacteriuria DR Resorcinol Green Dithiazanine iodide Anthraquinone laxatives Indigo blue Tetrahydronaphthalene Arbutin Indigo carmine Thymol Azuresin Indigotin sulfonate Tolonium Bile pigments Magnesium salicylate Typhus • DMCR Eosin dyes Phenols Acute febrile disease Danthron (OS)Phenylhydrazine Alcaptonuria Dipyrone Primaquine (H) Pyrogallol (OS) Black water fever Furazolidone Hemoglobinuria Furoxone Quinine (H) Brown DR Hydroquinone Rhubarb (AL) Aminopyrine Levodopa (OS) Rifabutin Rifampin Aniline Methocarbamol (OS) Anthraquinone dyes Methyldopa Senna (AL) (AL) Metronidazole (H) Sodium diatrizoate Blood Naphthalene (H) Sulfonamides (H) Cascara (AL) Nitrofurans Tannins Chloroquine Nitrofurantoin Thymol (OS) Cinchophen Pamaquine (H) Tiopronin Cresols (OS) Phenacetin (OS) Tyrosinosis (OS, AL) DR Methyldopa Povidone iodine Brownish Erythrityl tetranitrate Metronidazole Quinine (H) Black Isosorbide mono- or Nitrates Senna (AL) dinitrate Nitrofurans Tyrosinosis (AL) Methocabomol Phenacetin Drug Information Center- Gujarat State Pharmacy Council • DMCR • Hydroquinone • Primaquine • Alcaptonuria • Iron sorbitex Levodopa• Pyrogallol (OS) (homogentisic acid) (OS) • Quinine (H) • Dehydration • Melanin (OS) • Resorcinol DR • Metronidazole • Rhubarb (AL) • Aniline dyes • Naphthol • Riboflavin Dark • Cadmium • Niridazole • Santonin Yellow • Cascara (AL) • Nitrites • Senna • Chlorobenzenes • Nitrobenzene (OS) • Thymol (OS) • Chloronaphthalene • P-aminosalicylic acid • Tolcapone • Dacium • Phenacetin (OS) • Trinitrotoluene • Furazolidone • Phenol (OS) • Trinitrophenol • Furoxone • Phenyl salicylate • Tyrosinosis (OS, AL) • DMCR • Carbolic acid • Methocarbamol (OS) • Chronic obstructive • Chlorophyll, water • Methylene blue jaundice soluble Nitrofurans • Jaundice • Creosote • Phenols (OS) DR • Gadolinium • Phenyl salicylate • Acriflavine (F) texaphyrin • Propofol • Amitriptyline • Guaiacol • Pyrogallol (OS) • Anthraquinone • Hydroquinone • Resorcinol (OS) Green • Arbutin • Indigo blue • Santonin • Azuresin • Indigo carmine • Suprofen • Bile pigments • Indomethacin • Tetrahydronaphthalene • Bromoform (hepatotoxicity) • Thymol (OS) • • Green Orange Milky Purple Yellow Yellow • DMCR -Diffuse DR-Bromoform • DR-Fluorescein DMCR -Indwelling DeWitts Pills glomerulonephritis, sodium, urinary catheters Methylene Blue Bacteria Rifampin (long-term), DR -Phenolphthalein Nitazoxanide DR- Chloroguanide • Sulfasalazine Drug Information CenterPhosphates- Gujarat, Urates State Pharmacy Council • DMCR • Dihydroergotamine • Rhubarb (AL) • Dehydration in mesylate Entacapone • Rifabutin Orange children • Ethoxazene • Rifampin • DR • Heparin sodium • Salicylazosulfapyridine • Anisindione (AL) • Mannose • Sulfasalazine • Canthaxanthines • Paprika • Warfarin • Chlorzoxazone • Phenindione • Chrysophanic acid • Phenzaopyridine (AL) • • DR • Dipyrone • Porphyrins • Aminopyrine • Emodin (H) • Propofol Pink • Anisindione • Eosin dyes (H) • Rhodamine • Anthraquinone dyes • Ethoxazine • Salicylates (H) (AL) • Merbromin (F) • Santonin (AL) • Aspirin • Methyldopa • Senna • Benorilate • Phenazopyridine (AC) • Serenium 1. Amitriptyline• Cascara • Phenindione • Thiazolsulfone • Chrysophanic acid • Phenolphthalein (A) • Urates • Cinchophen • Phenothiazines • 1,8- • Danthron (AL) • Phensuximide Dihydroxyanthraquinone • Deferoxamine • Phenytoin • • Red- DMCR - Bile Doxidan with PSP Phenindione (AL) Orange • DR Ethoxazene Rifampin Anisindione (AL) Furazolidone Rifapentine -Brown Chlorzoxazone Phenazopyridine Warfarin Congo red (AL) Drug Information Center- Gujarat State Pharmacy Council DMCR Dimethylsulfoxide • Oxamniquine Beets Danthsone (AL) • Oxyphenbutazone Blackberries Daunorubicin • Phenacetin (M, H) Bile pigments Deferiprone • Phenazopyridine (AC) Blood Deferoxamine • Phenolphthalein (AL) Diffuse – Dihydroergotamine • Phenolsulfonphthalein glomerulonephritis mesylate (AL) Hematuria Dipyrone • Phenothiazines Hemoglobinuria DMSO • Phensuximide • Infectious - • Doxorubicine • Phenylbutazone mononucleosis • Emodin (AL) • Phenytoin • Myoglobinuria • Eosin dyes (H) • Propyphenazone • DR • Ethoxazene • Porphyrins Acetanilid • Fava bean (H) • Rhodamine Acetophenazine • Fuscin • Rifampin Aminopyrine • Heparin • Santonin Red Aniline • Homogenistic acid • Senna (AL) Aniline dyes • Ibuprofen • Serenium Anthraquinone (AL) • Iron sorbitol • Sulfonal Antipyrine • Logwood • Tolcapone Azo dye • Madder • Thiazolsulfone Cardiografin • Melanin • Trional Cascara (AL) • Methemoglobin • Tyrosinosis Chloroquine • Methyldopa (OS, in • Urates Chlorpromazine the presence of • Uro-Erythrin Chrysarobin (AL) hypochlorite) • 1, 8- Chrysophanic acid • Naphthalene (H) Dihydroxyanthraquinone Cinchophen • Nitrofurantoin Red • DR • Methemoglobin • Porphyrins Purple • Chlorzoxazone • Phenacetin • Senna (AL) • Ibuprofen • Phenolsulfonphthalein • Drug Information Center- Gujarat State Pharmacy Council DMCR • Chloroquine • Quinacrine • Acute febrile disease • Furazolidone (AC)Rhubarb (AC) • Dehydration • Furoxone • Riboflavin • DR • Metronidazole • Santoin Rust • Acetanilid • Nitrofurantoin • Senna (AC) • Acetophenazine • Pamaquine (H) • Sulfonal • Acriflavine • Phenacetin (OS) • Sulfonamides (H) • Trinitrophenol • Aloin • Picric acid • Bromoform • Primaquine • Trional • Carrots • Pyrogallol (OS) • Urates • Cascara (AC, AL) • Bright Brown Brown Dark Red Yellow Green Orange Brown yellow Acute febrile Flavin • Hydroquinone Entacapone disease Urates Drug Information Center- Gujarat State Pharmacy Council .
Recommended publications
  • Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects
    plants Review Breeding Buckwheat for Increased Levels of Rutin, Quercetin and Other Bioactive Compounds with Potential Antiviral Effects Zlata Luthar 1, Mateja Germ 1, Matevž Likar 1 , Aleksandra Golob 1, Katarina Vogel-Mikuš 1,2, Paula Pongrac 1,2 , Anita Kušar 3 , Igor Pravst 3 and Ivan Kreft 3,* 1 Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; [email protected] (Z.L.); [email protected] (M.G.); [email protected] (M.L.); [email protected] (A.G.); [email protected] (K.V.-M.); [email protected] (P.P.) 2 Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia 3 Nutrition Institute, Tržaška 40, SI-1000 Ljubljana, Slovenia; [email protected] (A.K.); [email protected] (I.P.) * Correspondence: [email protected]; Tel.: +386-1-3007981 Received: 9 October 2020; Accepted: 23 November 2020; Published: 24 November 2020 Abstract: Common buckwheat (Fagopyrum esculentum Moench) and Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) are sources of many bioactive compounds, such as rutin, quercetin, emodin, fagopyrin and other (poly)phenolics. In damaged or milled grain under wet conditions, most of the rutin in common and Tartary buckwheat is degraded to quercetin by rutin-degrading enzymes (e.g., rutinosidase). From Tartary buckwheat varieties with low rutinosidase activity it is possible to prepare foods with high levels of rutin, with the preserved initial levels in the grain. The quercetin from rutin degradation in Tartary buckwheat grain is responsible in part for inhibition of α-glucosidase in the intestine, which helps to maintain normal glucose levels in the blood.
    [Show full text]
  • ANNNNNNNNNNNNNNNNNNNN 100A 006 Left Eye Input Right Eye Input
    US 20190175049A1 ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2019 /0175049 A1 Welling ( 43 ) Pub . Date : Jun . 13 , 2019 ( 54 ) TECHNIQUES FOR ANALYZING (52 ) U . S . CI. NON -VERBAL MARKERS OF CONDITIONS CPC . .. A61B 5 /04842 (2013 . 01 ) ; A61B 5 / 7289 USING ELECTROPHYSIOLOGICAL DATA (2013 . 01) ; A61B 5 /0478 ( 2013 .01 ) ; A61B 5 /7225 ( 2013. 01 ) ; G06N 20 / 10 (2019 .01 ) (71 ) Applicant: Massachusetts Institute of Technology , Cambridge , MA (US ) ( 57 ) ABSTRACT (72 ) Inventor : Caroline Welling, Hanover, NH (US ) Embodiments related to analyzing brain activity of a subject to identify signs associated with binocular rivalry . Sensed ( 21 ) Appl. No. : 16 / 206, 639 electrical activity of a subject' s brain is received over a time period while the subject is exposed to a visual stimulus. The ( 22 ) Filed : Nov. 30 , 2018 sensed electrical activity comprises a first frequency band Related U . S . Application Data associated with a first frequency of a first image presented to the subject ' s left eye , a second frequency band associated (60 ) Provisional application No .62 / 593 , 535, filed on Dec . with a second frequency of a second image presented to the 1 , 2017 subject ' s right eye . A set of events in the time period is determined based on the frequency bands, wherein an event Publication Classification is associated with a change from a previous perceptual event (51 ) Int. Ci. to a new perceptual event. A metric for the subject is A61B 5 /0484 ( 2006 .01 ) determined based on the set of events . The metric is ana A61B 5 /00 ( 2006 .01 ) lyzed to determine whether the subject exhibits signs asso GO6N 20 / 10 (2006 .01 ) ciated with a condition that is associated with binocular A61B 5 /0478 ( 2006 .01 ) rivalry .
    [Show full text]
  • Sulphonmethane, Sulphonal, Diethylsulpho
    is a combination of amylene hydrate and chloral hydrate, superior to the corresponding compounds of other elements. while chloralose, a combination of chloral hydrate and glucose, Experience has shown that, in the main, these claims were un- partakes of the action of morphin and is rather expensive. founded, though many, even now, claim that strontium bro- Chloretone, a more recent product, is not entirely devoid of mid disturbs the stomach less than the corresponding sodium danger and is not always so certain in its action as chloral or potassium salt. Another claim that is frequently made by hydrate, while butyl chloral hydrate, or crotón chloral hydrate, manufacturers of nostrums, like "Peacock's Bromides," is that is one of the older compounds that has been found wanting and they use "chemically pure" salts. Exactly what is meant by is now little used. Of the official compounds of this group we this claim is difficult to say, but the Pharmacopeia gives us a have: number of readily applied tests by which the salts themselves Chloralamid and Paraldehyd. may be tested. The manufacturers of nostrums, on the other Chlobalformamidum.—TJ. S.—Chloralformamid. Chlorala- hand, not infrequently add the very substances that are consid- mid. This has practically the same action as therapeutic ered contaminations. doses of chloral hydrate, the latter being formed in the body by {To be continued.) decomposition of chloralformamid. Average dose: 1 gm. (15 grains). Paraldehtdum.—TJ. S.—Paraldehyd is slower in its action transparent liquid, slower in its action than chloral hydrate, but also safer. It has the disadvantage of a persistently dis- A NEW NEEDLE HOLDER.
    [Show full text]
  • Mofoch&MICAL Mhsfcrulsioks' of SANTONIN Fhesis Submitted By
    MOfOCH&MICAL mHSFCRULSIOKS' Of SANTONIN fhesis submitted by Mohammed Shafiq for the degree of Doctor of Philosophy of the University of Glasgow Qhemistrv Department 1958 ProQuest Number: 13850357 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13850357 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENTS The author wishes to express his deep appreciation to Prof.B.H.R. Barton, E.B.S, and Dr.P.d© Mayo, for their unfailing encouragement and help during the course of this work. Mieroanalyses were by Mr. Cameron and staff and Miss J .Cuckney and staff. CONTENTS Page 1. SESQUITERPENOIDS a) Biogenesis 1 b) Sesquiterpenoid lactones 4 c) Stereochemistry of sesquiterpenoid 9 compounds d) Constitution of santonin 10 ©) Some interesting reactions of santonin 12 f) Stereochemistry of santonin 13 2. PH0T0A0TIYATI0H OP CARBONYL COMPOUNDS a) General 20 b) Photochemical reactions of carbonyl 22 compounds 3. STRUCTURE OF 1S0PH0T0SANT0NIC LACTONE a) Theoretical 29 b) Experimental 39 4. STRUCTURE OP LUMISANTONIN a) Theoretical 50 b) Experimental 63 5. CONSTITUTION OF PHOTOSANTONIC ACID a) Theoretical 70 b) Experimental 77 6 .
    [Show full text]
  • Emodin Inhibits Viability, Proliferation and Promotes Apoptosis of Hypoxic Human Pulmonary Artery Smooth Muscle Cells Via Target
    Yi et al. BMC Pulm Med (2021) 21:252 https://doi.org/10.1186/s12890-021-01616-1 RESEARCH Open Access Emodin inhibits viability, proliferation and promotes apoptosis of hypoxic human pulmonary artery smooth muscle cells via targeting miR-244-5p/DEGS1 axis Li Yi1, JunFang Liu2, Ming Deng3, Huihua Zuo3* and Mingyan Li4* Abstract Objective: This study aimed to determine the efects of emodin on the viability, proliferation and apoptosis of human pulmonary artery smooth muscle cells (PASMCs) under hypoxia and to explore the underling molecular mechanisms. Methods: PASMCs were cultured in a hypoxic environment (1% oxygen) and then treated with emodin. Cell viabil- ity, proliferation and apoptosis were evaluated using CCK-8 assay, EdU staining assay, western blot and Mito-tracker red CMXRos and Annexin V-FITC apoptosis detection assay. The microRNA (miRNA)/mRNA and protein expression levels were assessed by quantitative real-time PCR and western blotting, respectively. Based on transcriptomics and proteomics were used to identify potential signaling pathways. Luciferase reporter assay was utilized to examine the interaction between miR-244-5p and DEGS1. Results: Emodin at 40 and 160 µM concentration-dependently suppressed cell viability, proliferation and migration, but enhanced cell apoptosis of PASMCs under hypoxia. Transcriptomic and proteomic analysis revealed that emodin could attenuate the activity of PI3K/Akt signaling in PASMCs under hypoxia. In addition, delta 4-desaturase, sphin- golipid 1 (DEGS1) was found to be a direct target of miR-244-5p. Emodin could signifcantly up-regulated miR-244-5p expression and down-regulated DEGS1 expression in PASMCs under hypoxia. Furthermore, emodin-mediated efects on cell viability, migration, apoptosis and PI3K/Akt signaling activity of PASMCs under hypoxia were signifcantly attenuated by miR-244-5p knockdown.
    [Show full text]
  • Putative Prophylaxes of Aloe Vera Latex and Inner Gel As Immunomodulator
    Journal of Gastroenterology and Hepatology Research Online Submissions: http://www.ghrnet.org/index./joghr/ Journal of GHR 2015 May 21 4(5): 1585-1598 doi:10.17554/j.issn.2224-3992.2015.04.506 ISSN 2224-3992 (print) ISSN 2224-6509 (online) EDITORIAL Putative Prophylaxes of Aloe vera Latex and Inner Gel as Immunomodulator Akira Yagi Akira Yagi, Emeritus Professor, Fukuyama University, Kasuya- pharmacological substance, such as protein, antibodies and vaccines. machi, Kasuya-gun, Fukuoka-ken, 811-2310, Japan Inhibition of galectin-3 mediated cellular interaction by pectin from Correspondence to: Akira Yagi, Emeritus Professor, Fukuyama dietary sources, such as citrus pectin, was revealed through haemag- University, Kasuya-machi, Kasuya-gun, Fukuoka-ken, 811-2310, glutination significantly. The up-regulation of galectin-3 expression Japan by potential therapeutics, such as emodin, aloe emodin, aloe pectin Email: [email protected] was focused in present review. In addition, protein and/or lectin hav- Telephone:+81-92-938-2717 Fax:+81-92-938-2717 ing anti-inflammatory, radical scavenging and anti-oxidant enzymes’ Received: January 2, 2015 Revised: February 9, 2015 activity in Aloe vera gel were fully expected as putative prophylactic Accepted: February 12, 2015 and biological response modifiers in the treatment of a broad range of Published online: May 21, 2015 inflammatory diseases such as RA. ABSTRACT © 2015 ACT. All rights reserved. Some of the phytochemicals present in Aloe vera can provide relief to Key words: Putative prophylaxes; Aloe vera latex and inner gel; rheumatoid arthritis (RA) patients through promoting wound healing Aloe pectin/protein/lectin; Immunomodulator as well as reducing inflammation and relieving pain, which are com- mon symptoms of RA patients.
    [Show full text]
  • Differential Effects of Polyphenols on Proliferation and Apoptosis in Human Myeloid and Lymphoid Leukemia Cell Lines
    Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines. MAHBUB, Amani A, LE MAITRE, Christine <http://orcid.org/0000-0003-4489- 7107>, HAYWOOD-SMALL, Sarah <http://orcid.org/0000-0002-8374-9783>, MCDOUGALL, Gordon J, CROSS, Neil <http://orcid.org/0000-0003-2055- 5815> and JORDAN-MAHY, N. Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/7504/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version MAHBUB, Amani A, LE MAITRE, Christine, HAYWOOD-SMALL, Sarah, MCDOUGALL, Gordon J, CROSS, Neil and JORDAN-MAHY, N. (2013). Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines. Anti-cancer agents in medicinal chemistry, 13 (10), 1601-1613. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk Send Orders for Reprints to [email protected] Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 1601-1613 1601 Differential Effects of Polyphenols on Proliferation and Apoptosis in Human Myeloid and Lymphoid Leukemia Cell Lines Amani A Mahbub1, Christine L. Le Maitre1, Sarah L. Haywood-Small1, Gordon J. McDougall2, Neil A. Cross1 and Nicola Jordan-Mahy1,* 1Biomedical Research Centre, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, S1 1WB; 2The James Hutton Institute, Environmental and Biochemical Sciences Group, Invergowrie, Dundee Scotland, DD2 5DA Abstract: Background: Mortality rates for leukemia are high despite considerable improvements in treatment.
    [Show full text]
  • Emodin Inhibits Tumor Cell Adhesion Through Disruption of the Membrane Lipid Raft-Associated Integrin Signaling Pathway
    Research Article Emodin Inhibits Tumor Cell Adhesion through Disruption of the Membrane Lipid Raft-Associated Integrin Signaling Pathway Qing Huang,1 Han-Ming Shen,1 Guanghou Shui,2 Markus R. Wenk,2,3 and Choon-Nam Ong1 Departments of 1Community, Occupational, and Family Medicine, 2Biochemistry and 3Biological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Abstract cytoplasmic proteins are recruited into focal adhesions, such as Cell adhesion and spreading is a crucial step in the metastatic focal adhesion kinase (FAK), c-Src, paxillin, and vinculin (5). Specifically, FAK is a key regulator of cell adhesion and migration. cascade of cancer cells, and interruption of this step is h considered to be a logical strategy for prevention and Interaction of subunit of integrins and FAK causes kinase treatment of tumor metastasis. Emodin is the major active autophosphorylation at Y397 of FAK where c-Src targets. c-Src component of the rhizome of Rheum palmatum L., with known further fully phosphorylates and activates FAK, which recruits anticancer activities. Here, we first found that emodin additional structural and signaling molecules to contribute to the significantly inhibited cell adhesion of various human cancer assembly of focal adhesion complex (FAC; refs. 5, 6). cells. This inhibition was achieved through suppressing the Lipid rafts are distinct plasma membrane microdomains, composed of cholesterol tightly packed with sphingolipids, recruitment of focal adhesion kinase (FAK) to integrin B1 as well as the phosphorylation of FAK followed by the decreased particularly sphingomyelins, and may serve as signaling platforms formation of focal adhesion complex (FAC). In understanding to recruit essential proteins for intracellular signal transduction the underlying mechanisms, we found that emodin inhibited and coordinate transmembrane signaling and cell adhesion (7, 8).
    [Show full text]
  • (12) STANDARD PATENT (11) Application No. AU 2015276941 B2 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2015276941 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Parasiticidal compositions comprising indole derivatives, methods and uses thereof (51) International Patent Classification(s) C07D 401/04 (2006.01) C07D 209/10 (2006.01) A01N 43/38 (2006.01) C07D 401/12 (2006.01) A01N 43/40 (2006.01) HO3K 5/04 (2006.01) A01P 15/00 (2006.01) HO3K 7/00 (2006.01) C07D 209/08 (2006.01) (21) Application No: 2015276941 (22) Date of Filing: 2015.06.19 (87) WIPO No: W015/196014 (30) Priority Data (31) Number (32) Date (33) Country 62/014,245 2014.06.19 US (43) Publication Date: 2015.12.23 (44) Accepted Journal Date: 2018.07.19 (71) Applicant(s) Merial, Inc. (72) Inventor(s) Meng, Charles;Le Hir De Fallois, Loic (74) Agent / Attorney FB Rice Pty Ltd, L 23 44 Market St, Sydney, NSW, 2000, AU (56) Related Art Spycher, S., et al. "Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories."(2008) SAR and QSAR in Environmental Research vol 19(5-6) page 433-463. JOHN F. POLETTO ET AL, "Synthesis and antiinflammatory evaluation of certain 5-alkoxy-2,7-dialkyltryptamines", JOURNAL OF MEDICINAL CHEMISTRY, (1973), vol. 16, no. 7, pages 757 - 765 CONDE J J ET AL, "Towards the synthesis of osteoclast inhibitor SB-242784", TETRAHEDRON LETTERS, (2003), vol. 44, no. 15, pages 3081 - 3084 WANG ET AL, JOURNAL OF FLUORINE CHEMISTRY, (2007), vol. 128, no. 10, pages 1143 - 1152 WO 2012088431 Al WO 2011060746 Al HONG X ET AL, "Photodesulfonylation of indoles initiated by electron transfer from triethylamine", TETRAHEDRON LETTERS, (2006) vol.
    [Show full text]
  • Aloe-Emodin Suppresses Esophageal Cancer Cell TE1 Proliferation by Inhibiting AKT and ERK Phosphorylation
    2232 ONCOLOGY LETTERS 12: 2232-2238, 2016 Aloe-emodin suppresses esophageal cancer cell TE1 proliferation by inhibiting AKT and ERK phosphorylation XIAOBIN CHANG1*, JIMIN ZHAO1*, FANG TIAN1*, YANAN JIANG1, JING LU1, JUNFEN MA1, XIAOYAN ZHANG1, GUOGUO JIN1, YOUTIAN HUANG1, ZIGANG DONG1,2, KANGDONG LIU1,3 and ZIMING DONG1 1Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China; 2Department of Chemical Prevention, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; 3Department of Science Research, The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China Received May 8, 2015; Accepted July 1, 2016 DOI: 10.3892/ol.2016.4910 Abstract. Aberrant AKT and extracellular signal-regulated of EC (2), with ESCC being the main form of EC in Asian coun- kinase (ERK) activation is often observed in various human tries, and EAC being the most common type of EC in Western cancers. Both AKT and ERK are important in the phos- countries (3). The incidence of EC is increasing worldwide (4). phoinositide 3-kinase/AKT and mitogen-activated protein In the USA in 2012, 17,460 patients were diagnosed with EC, kinase kinase/ERK signaling pathways, which play vital and 15,070 patients succumbed to the disease (5). Upon initial roles in cell proliferation, differentiation and survival. diagnosis, the majority of EC patients already present with Compounds that are able to block these pathways have there- metastasis, which results in poor prognosis (6,7). fore a promising use in cancer treatment and prevention. The Accumulating evidence indicates that numerous molecular present study revealed that AKT and ERK are activated in changes are associated with EC tumorigenesis, including esophageal cancer TE1 cells.
    [Show full text]
  • International Classification of Diseases
    INTERNATIONAL CLASSIFICATION OF DISEASES MANUAL OF THE INTERNATIONAL STATISTICAL CLASSIFICATION OF DISEASES, INJURIES, AND CAUSES OF DEATH Based on the Recommendations of the Eighth Revision Conference, 1965, and Adopted by the Nineteenth World Health Assembly Volume 2 ALPHABETICAL INDEX WORLD HEALTH ORGANIZATION GENEVA 1969 Volume 1 Introduction List of Three-digit Categories Tabular List of Inclusions and Four-digit Sub- categories Medical Certification and Rules for Classification Special Lists for Tabulation Definitions and Recommendations Regulations Volume 2 Alphabetical Index PRINTED IN ENGLAND CONTENTS Introduction Page General arrangement of the Index ....................................... VIII Main sections ............................................................... VIII Structure ..................................................................... IX Code numbzrs .............................................................. x Primary and secondary conditions. ................................... x Multiple diagnoses. ........................................................ XI Spelling....................................................................... XI Order of listing ............................................................. Conventions used in the Index ........................................... XII Parentheses. ................................................................. XII Cross-referexes ........................................................... XI1 Abbreviation NEC. ......................................................
    [Show full text]
  • Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock
    Parasiticides: Fenbendazole, Ivermectin, Moxidectin Livestock 1 Identification of Petitioned Substance* 2 3 Chemical Names: 48 Ivermectin: Heart Guard, Sklice, Stomectol, 4 Moxidectin:(1'R,2R,4Z,4'S,5S,6S,8'R,10'E,13'R,14'E 49 Ivomec, Mectizan, Ivexterm, Scabo 6 5 ,16'E,20'R,21'R,24'S)-21',24'-Dihydroxy-4 50 Thiabendazole: Mintezol, Tresaderm, Arbotect 6 (methoxyimino)-5,11',13',22'-tetramethyl-6-[(2E)- 51 Albendazole: Albenza 7 4-methyl-2-penten-2-yl]-3,4,5,6-tetrahydro-2'H- 52 Levamisole: Ergamisol 8 spiro[pyran-2,6'-[3,7,1 9]trioxatetracyclo 53 Morantel tartrate: Rumatel 9 [15.6.1.14,8.020,24] pentacosa[10,14,16,22] tetraen]- 54 Pyrantel: Banminth, Antiminth, Cobantril 10 2'-one; (2aE, 4E,5’R,6R,6’S,8E,11R,13S,- 55 Doramectin: Dectomax 11 15S,17aR,20R,20aR,20bS)-6’-[(E)-1,2-Dimethyl-1- 56 Eprinomectin: Ivomec, Longrange 12 butenyl]-5’,6,6’,7,10,11,14,15,17a,20,20a,20b- 57 Piperazine: Wazine, Pig Wormer 13 dodecahydro-20,20b-dihydroxy-5’6,8,19-tetra- 58 14 methylspiro[11,15-methano-2H,13H,17H- CAS Numbers: 113507-06-5; 15 furo[4,3,2-pq][2,6]benzodioxacylooctadecin-13,2’- Moxidectin: 16 [2H]pyrano]-4’,17(3’H)-dione,4’-(E)-(O- Fenbendazole: 43210-67-9; 70288-86-7 17 methyloxime) Ivermectin: 59 Thiabendazole: 148-79-8 18 Fenbendazole: methyl N-(6-phenylsulfanyl-1H- 60 Albendazole: 54965-21-8 19 benzimidazol-2-yl) carbamate 61 Levamisole: 14769-72-4 20 Ivermectin: 22,23-dihydroavermectin B1a +22,23- 21 dihydroavermectin B1b 62 Morantel tartrate: 26155-31-7 63 Pyrantel: 22204-24-6 22 Thiabendazole: 4-(1H-1,3-benzodiazol-2-yl)-1,3- 23 thiazole
    [Show full text]