The Atypical Rho Gtpase Rhou Interacts With
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intersectin 1 Forms Complexes with SGIP1 and Reps1 in Clathrin-Coated
Biochemical and Biophysical Research Communications 402 (2010) 408–413 Contents lists available at ScienceDirect Biochemical and Biophysical Research Communications journal homepage: www.elsevier.com/locate/ybbrc Intersectin 1 forms complexes with SGIP1 and Reps1 in clathrin-coated pits ⇑ Oleksandr Dergai a, ,1, Olga Novokhatska a,1, Mykola Dergai a, Inessa Skrypkina a, Liudmyla Tsyba a, Jacques Moreau b, Alla Rynditch a a Department of Functional Genomics, Institute of Molecular Biology and Genetics, NASU, 150 Zabolotnogo Street, 03680 Kyiv, Ukraine b Molecular Mechanisms of Development, Jacques Monod Institute, Development and Neurobiology Program, UMR7592 CNRS – Paris Diderot University, 15 rue Hélène Brion, 75205 Paris Cedex 13, France article info abstract Article history: Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein involved in clathrin-mediated endo- Received 7 October 2010 cytosis, cellular signaling and cytoskeleton rearrangement. ITSN1 gene is located on human chromosome Available online 12 October 2010 21 in Down syndrome critical region. Several studies confirmed role of ITSN1 in Down syndrome pheno- type. Here we report the identification of novel interconnections in the interaction network of this endo- Keywords: cytic adaptor. We show that the membrane-deforming protein SGIP1 (Src homology 3-domain growth Endocytosis factor receptor-bound 2-like (endophilin) interacting protein 1) and the signaling adaptor Reps1 (RalBP Adaptor proteins associated Eps15-homology domain protein) interact with ITSN1 in vivo. Both interactions are mediated Intersectin 1 by the SH3 domains of ITSN1 and proline-rich motifs of protein partners. Moreover complexes compris- Protein interactions SGIP1 ing SGIP1, Reps1 and ITSN1 have been identified. We also identified new interactions between SGIP1, Reps1 Reps1 and the BAR (Bin/amphiphysin/Rvs) domain-containing protein amphiphysin 1. -
Supplemental Figure 1. Vimentin
Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672 -
(Gefs & Gaps) of the Rho Family
Structural and biochemical investigation of the activity, specificity and regulation of regulators (GEFs & GAPs) of the Rho family Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Mamta Jaiswal aus Indien Düsseldorf, November 2012 Aus dem Institut für Biochemie und Molekularbiologie II der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Referent: PD. Dr. Reza Ahmadian Koreferent: Prof. Dr. Dieter Willbold Tag der mündlichen Prüfung: 23.01.2013 Eidesstattliche Erklärung Hiermit erkläre ich an Eides statt, dass ich die hier vorgelegte Dissertation eigenständig und ohne unerlaubte Hilfe angefertigt habe. Es wurden keinerlei andere Quellen und Hilfsmittel, außer den angegebenen, benutzt. Zitate aus anderen Arbeiten wurden kenntlich gemacht. Diese Dissertation wurde in der vorgelegten oder einer ähnlichen Form noch bei keiner anderen Institution eingereicht und es wurden bisher keine erfolglosen Promotionsversuche von mir unternommen. Düsseldorf, im November 2012 To my family Table of Contents Table of Contents TABLE OF CONTENTS .................................................................................................. I TABLE OF FIGURES .................................................................................................... III PUBLICATIONS ........................................................................................................... -
University of Cincinnati
UNIVERSITY OF CINCINNATI Date: 1-Oct-2010 I, Jason Matthew Puglise , hereby submit this original work as part of the requirements for the degree of: Doctor of Philosophy in Cell & Molecular Biology It is entitled: Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells Student Signature: Jason Matthew Puglise This work and its defense approved by: Committee Chair: Robert Brackenbury, PhD Robert Brackenbury, PhD 11/1/2010 1,117 Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Program of Cancer and Cell Biology of the College of Medicine by Jason M. Puglise M.Sc., Wright State University 2005 Committee Chair: Robert Brackenbury, Ph.D. ii ABSTRACT Puglise, Jason M. Ph.D., Cancer and Cell Biology Program. University of Cincinnati, 2010. Roles of the Rac/Cdc42 effector proteins Pak and PIX in cytokinesis, ciliogenesis, and cyst formation in renal epithelial cells. The p21-activated kinase 1 (Pak1) is a putative Rac/Cdc42 effector molecule and a multifunctional enzyme implicated in a wide range of cellular and biological activities. Although well-established as a regulator of cytoskeletal and microtubule dynamics, Pak1 influences centrosome behavior and plays a part in the cell cycle. We examine the role Pak1 and its binding partner Pak1-interacting exchange factor (PIX) play in centrosome dynamics and in cell cycle events in renal epithelial cells. -
The Role of the Rho Gtpases in Neuronal Development
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW The role of the Rho GTPases in neuronal development Eve-Ellen Govek,1,2, Sarah E. Newey,1 and Linda Van Aelst1,2,3 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 11724, USA; 2Molecular and Cellular Biology Program, State University of New York at Stony Brook, Stony Brook, New York, 11794, USA Our brain serves as a center for cognitive function and and an inactive GDP-bound state. Their activity is de- neurons within the brain relay and store information termined by the ratio of GTP to GDP in the cell and can about our surroundings and experiences. Modulation of be influenced by a number of different regulatory mol- this complex neuronal circuitry allows us to process that ecules. Guanine nucleotide exchange factors (GEFs) ac- information and respond appropriately. Proper develop- tivate GTPases by enhancing the exchange of bound ment of neurons is therefore vital to the mental health of GDP for GTP (Schmidt and Hall 2002); GTPase activat- an individual, and perturbations in their signaling or ing proteins (GAPs) act as negative regulators of GTPases morphology are likely to result in cognitive impairment. by enhancing the intrinsic rate of GTP hydrolysis of a The development of a neuron requires a series of steps GTPase (Bernards 2003; Bernards and Settleman 2004); that begins with migration from its birth place and ini- and guanine nucleotide dissociation inhibitors (GDIs) tiation of process outgrowth, and ultimately leads to dif- prevent exchange of GDP for GTP and also inhibit the ferentiation and the formation of connections that allow intrinsic GTPase activity of GTP-bound GTPases (Zalc- it to communicate with appropriate targets. -
The Long Isoform of Intersectin-1 Has a Role in Learning and Memory
ORIGINAL RESEARCH published: 25 February 2020 doi: 10.3389/fnbeh.2020.00024 The Long Isoform of Intersectin-1 Has a Role in Learning and Memory Nakisa Malakooti 1, Melanie A. Pritchard 2, Feng Chen 1, Yong Yu 2, Charlotte Sgambelloni 1, Paul A. Adlard 1*† and David I. Finkelstein 1*† 1Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia, 2Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, VIC, Australia Down syndrome is caused by partial or total trisomy of chromosome 21 and is characterized by intellectual disability and other disorders. Although it is difficult to determine which of the genes over-expressed on the supernumerary chromosome contribute to a specific abnormality, one approach is to study each gene in isolation. This can be accomplished either by using an over-expression model to study increased Edited by: gene dosage or a gene-deficiency model to study the biological function of the gene. Denise Manahan-Vaughan, Here, we extend our examination of the function of the chromosome 21 gene, ITSN1. Ruhr University Bochum, Germany We used mice in which the long isoform of intersectin-1 was knocked out (ITSN1- Reviewed by: Sajikumar Sreedharan, LKO) to understand how a lack of the long isoform of ITSN1 affects brain function. National University of Singapore, We examined cognitive and locomotor behavior as well as long term potentiation (LTP) Singapore and the mitogen-activated protein kinase (MAPK) and 3 -kinase-C2b-AKT (AKT) cell Mahesh Shivarama Shetty, 0 University of Iowa, signaling pathways. We also examined the density of dendritic spines on hippocampal United States pyramidal neurons. -
ITSN Protein Family: Regulation of Diversity, Role in Signalling and Pathology
ISSN 0233–7657. Biopolymers and Cell. 2013. Vol. 29. N 3. P. 244–251 doi: 10.7124/bc.00081E UDC 577.21 ITSN protein family: Regulation of diversity, role in signalling and pathology L. O. Tsyba, M. V. Dergai, I. Ya. Skrypkina, O. V. Nikolaienko, O. V. Dergai, S. V. Kropyvko, O. V. Novokhatska, D. Ye. Morderer, T. A. Gryaznova, O. S. Gubar, A. V. Rynditch Institute of Molecular Biology and Genetics, NAS of Ukraine 150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680 [email protected] Adaptor/scaffold proteins of the intersectin (ITSN) family are important components of endocytic and signalling complexes. They coordinate trafficking events with actin cytoskeleton rearrangements and modulate the activity of a variety of signalling pathways. In this review, we present our results as a part of recent findings on the func- tion of ITSNs, the role of alternative splicing in the generation of ITSN1 diversity and the potential relevance of ITSNs for neurodegenerative diseases and cancer. Keywords: adaptor/scaffold proteins, intersectin family, alternative splicing, endocytosis. Introduction. Adaptor/scaffold proteins are important on chromosome 21, were associated with the endocytic components of many cellular processes and signalling anomalies reported in patients with Down syndrome systems. Classical scaffolds typically do not posses any and Alzheimer’s disease [5–7]. enzymatic activity. They function as platforms for the In this review, we present our results and summa- assembly of multiprotein complexes and can help to lo- rize recent findings of other laboratories concerning the calize signalling molecules to a specific compartment role of ITSN family members in the formation of clath- of the cell or/and regulate the efficiency of a signalling rin-coated vesicles and regulation of signal transduc- pathway [1, 2]. -
Newly Identified Gon4l/Udu-Interacting Proteins
www.nature.com/scientificreports OPEN Newly identifed Gon4l/ Udu‑interacting proteins implicate novel functions Su‑Mei Tsai1, Kuo‑Chang Chu1 & Yun‑Jin Jiang1,2,3,4,5* Mutations of the Gon4l/udu gene in diferent organisms give rise to diverse phenotypes. Although the efects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two‑hybrid (Y2H) screening to identify interacting proteins in zebrafsh and mouse systems, confrmed the interactions by co‑immunoprecipitation assay, and found four novel Gon4l‑interacting proteins: BRCA1 associated protein‑1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu‑interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identifed include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these fndings indicate novel mechanisms of Gon4l/ Udu in regulating CpG methylation, histone expression/modifcation, DNA repair/genomic stability, and RNA binding/processing/export. Gon4l is a nuclear protein conserved among species. Animal models from invertebrates to vertebrates have shown that the protein Gon4-like (Gon4l) is essential for regulating cell proliferation and diferentiation. -
Supplementary Table 1
Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7 -
Evaluating the Therapeutic Potential of the Pak1 and Tbk1 Kinases in Pancreatic Ductal Adenocarcinoma
EVALUATING THE THERAPEUTIC POTENTIAL OF THE PAK1 AND TBK1 KINASES IN PANCREATIC DUCTAL ADENOCARCINOMA Nicole Marie Baker A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology Chapel Hill 2016 Approved by: Channing J. Der Adrienne D. Cox Lee M. Graves Gary L. Johnson M. Ben Major © 2016 Nicole Marie Baker ALL RIGHTS RESERVED ii ABSTRACT Nicole Marie Baker: Evaluating the therapeutic potential of the PAK1 and TBK1 kinases in pancreatic ductal adenocarcinoma (Under the direction of Channing J. Der) Pancreatic ductal adenocarcinoma (PDAC) is an extremely lethal cancer characterized by a high frequency (>95%) of activating mutations in the KRAS oncogene, which is a well-validated driver of PDAC growth. However, to date, no successful anti-KRAS therapies have been developed. Inhibitors targeting components of KRAS downstream signaling pathways, when used as monotherapy or in combination, have been ineffective for long-term treatment of KRAS -mutant cancers. Decidedly, the most studied and most targeted KRAS effector pathways have been the RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade and the PI3K-AKT-mTOR lipid kinase pathway. The apparent lack of success exhibited by inhibitors of these pathways is due, in part, to an underestimation of the importance of other effectors in KRAS-dependent cancer growth. Additionally, compensatory mechanisms reprogram these signaling networks to overcome the action of inhibitors of the ERK MAPK and PI3K pathways. Consequently, the central hypothesis of my dissertation research is that a better understanding of the role of less studied KRAS effector signaling pathways may lead to more effective therapeutic strategies to block KRAS effector signaling and PDAC growth. -
Rho Gtpases of the Rhobtb Subfamily and Tumorigenesis1
Acta Pharmacol Sin 2008 Mar; 29 (3): 285–295 Invited review Rho GTPases of the RhoBTB subfamily and tumorigenesis1 Jessica BERTHOLD2, Kristína SCHENKOVÁ2, Francisco RIVERO2,3,4 2Centers for Biochemistry and Molecular Medicine, University of Cologne, Cologne, Germany; 3The Hull York Medical School, University of Hull, Hull HU6 7RX, UK Key words Abstract Rho guanosine triphosphatase; RhoBTB; RhoBTB proteins constitute a subfamily of atypical members within the Rho fa- DBC2; cullin; neoplasm mily of small guanosine triphosphatases (GTPases). Their most salient feature 1This work was supported by grants from the is their domain architecture: a GTPase domain (in most cases, non-functional) Center for Molecular Medicine Cologne, the is followed by a proline-rich region, a tandem of 2 broad-complex, tramtrack, Deutsche Forschungsgemeinschaft, and the bric à brac (BTB) domains, and a conserved C-terminal region. In humans, Köln Fortune Program of the Medical Faculty, University of Cologne. the RhoBTB subfamily consists of 3 isoforms: RhoBTB1, RhoBTB2, and RhoBTB3. Orthologs are present in several other eukaryotes, such as Drosophi- 4 Correspondence to Dr Francisco RIVERO. la and Dictyostelium, but have been lost in plants and fungi. Interest in RhoBTB Phn 49-221-478-6987. Fax 49-221-478-6979. arose when RHOBTB2 was identified as the gene homozygously deleted in E-mail [email protected] breast cancer samples and was proposed as a candidate tumor suppressor gene, a property that has been extended to RHOBTB1. The functions of RhoBTB pro- Received 2007-11-17 Accepted 2007-12-16 teins have not been defined yet, but may be related to the roles of BTB domains in the recruitment of cullin3, a component of a family of ubiquitin ligases. -
Novel 2,7-Diazaspiro[4,4]Nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectom
Novel 2,7-Diazaspiro[4,4]nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectomized Mice without Affecting Bone Formation Lucile Mounier, Anne Morel, Yann Ferrandez, Jukka Morko, Jukka Vääräniemi, Marine Gilardone, Didier Roche, Jacqueline Cherfils, Anne Blangy To cite this version: Lucile Mounier, Anne Morel, Yann Ferrandez, Jukka Morko, Jukka Vääräniemi, et al.. Novel 2,7- Diazaspiro[4,4]nonane Derivatives to Inhibit Mouse and Human Osteoclast Activities and Prevent Bone Loss in Ovariectomized Mice without Affecting Bone Formation. Journal of Medicinal Chemistry, American Chemical Society, 2020, 10.1021/acs.jmedchem.0c01201. hal-03006787 HAL Id: hal-03006787 https://hal.archives-ouvertes.fr/hal-03006787 Submitted on 16 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Novel 2,7-Diazaspiro[4,4]nonane derivatives to inhibit mouse and human osteoclast activities and to prevent bone loss in ovariectomized mice without affecting bone formation. Lucile Mounier†, Anne Morel†, Yann Ferrandez‡, Jukka Morko∥, Jukka Vääräniemi∥, Marine Gilardone⊥, Didier Roche⊥, Jacqueline Cherfils‡, Anne Blangy†,* † Centre de Recherche de Biologie Cellulaire de Montpellier, CRBM, Univ Montpellier, CNRS, 34000 Montpellier, France.