“Non-Food Crops-To-Industry Schemes in EU27” WP 1 Task 1.4 Other
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological Variability of the Bulgarian Endemic Betonica Bulgarica Degen Et Neič
Acta Bot. Croat. 75 (1), 81–88, 2016 CODEN: ABCRA 25 DOI: 10.1515/botcro-2016-0020 ISSN 0365-0588 eISSN 1847-8476 Morphological variability of the Bulgarian endemic Betonica bulgarica Degen et Neič. (Lamiaceae) from Sinite Kamani Natural Park, Eastern Balkan Range Neli H. Grozeva1*, Mariya A. Gerdzhikova2, Dimitar H. Pavlov2, Galia D. Panayotova2, Mima H. Todorova2 1 Trakia University, Faculty of Agriculture, Department of Biology and Aquaculture, Stara Zagora, Bulgaria 2 Trakia University, Faculty of Agriculture, Department of Plant Growing, Stara Zagora, Bulgaria Abstract – Four populations of Betonica bulgarica Degen et Neič. at Sinite Kamani Natural Park were mor- phologically tested. Intrapopulation and interpopulation variabilities were established. The rеlationship be- tween morphological variability, number, area and ecological appurtenance of the studied populations were explored. The results demonstrated that the main source of phenotype variation is intrapopulation variability, mainly due to the age structure of populations. The most variable traits are height of stem and dimensions of leaves. The registered interpopulation variability was affected by the differences in altitude, soil type and dif- ferences in environmental conditions and soil properties. Indumentum and morphology of generative organs had taxonomic signifi cance for distinguishing B. bulgarica from the other species in the genus, including the species that were morphologically most similar to it – Betonica offi cinalis L. Keywords: Betonica bulgarica, morphology populations, variations Introduction not been subjected to detailed morphological studies. The polyphenol content in roots and above-ground parts has Endemic plants are an emblematic symbol of the Bul- been studied (Bankova et al. 1999). Data about the state of garian fl ora and one of the most sensitive and vulnerable B. -
Flowering Plants Eudicots Apiales, Gentianales (Except Rubiaceae)
Edited by K. Kubitzki Volume XV Flowering Plants Eudicots Apiales, Gentianales (except Rubiaceae) Joachim W. Kadereit · Volker Bittrich (Eds.) THE FAMILIES AND GENERA OF VASCULAR PLANTS Edited by K. Kubitzki For further volumes see list at the end of the book and: http://www.springer.com/series/1306 The Families and Genera of Vascular Plants Edited by K. Kubitzki Flowering Plants Á Eudicots XV Apiales, Gentianales (except Rubiaceae) Volume Editors: Joachim W. Kadereit • Volker Bittrich With 85 Figures Editors Joachim W. Kadereit Volker Bittrich Johannes Gutenberg Campinas Universita¨t Mainz Brazil Mainz Germany Series Editor Prof. Dr. Klaus Kubitzki Universita¨t Hamburg Biozentrum Klein-Flottbek und Botanischer Garten 22609 Hamburg Germany The Families and Genera of Vascular Plants ISBN 978-3-319-93604-8 ISBN 978-3-319-93605-5 (eBook) https://doi.org/10.1007/978-3-319-93605-5 Library of Congress Control Number: 2018961008 # Springer International Publishing AG, part of Springer Nature 2018 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. -
Try These Olive Oil & Balsamic Vinegar Combinations
Try these Olive Oil & Balsamic Vinegar Combinations Olive Oil + Balsamic (Swirl to mix) Lemon + Honey - Ginger , Oregano or Raspberry Lemon + Comice Pear, Lavender or Passion Fruit Baklouti Green Chili + Grapefruit, Peach or Honey Ginger Lemon + Cascadian Wild Raspberry or Cranberry-Pear Baklouti Green Chili + Pineapple or Pomegranate-Quince Milanese Gremolata + Grapefruit or Neapolitan Herb Basil + Strawberry, Comice Pear or Black Mission Fig Milanese Gremolata + Lemongrass-Mint or Oregano Basil + Blackberry-Ginger, Vanilla, Lavender or Blueberry Milanese Gremolata + Sicilian Lemon or Black Mission Fig Blood Orange + Cinnamon-Pear or Dark Chocolate Wild Mushroom/Sage + Sicilian Lemon or Blenheim Apricot Blood Orange + Espresso, Maple, Blueberry or Tangerine Wild Mushroom/Sage + Cranberry-Pear or Black Cherry Blood Orange + Lavender, Peach or Black Mission Fig Persian Lime + Blackberry-Ginger or Cinnamon-Pear Butter + Maple, Lemon, Coconut or Dark Chocolate Persian Lime + Honey-Ginger, Key Lime, Lavender or Vanilla Cayenne Chili + Mango, Peach or Cara-Cara Orange/Vanilla Persian Lime + Red Apple, Coconut or Gravenstein Apple Cayenne Chili + Coconut, Cascadian Wild Rasp. or Pineapple Rosemary + Sicilian Lemon, Comice Pear or Pomegranate Chaabani Chili + Neapolitan Herb or Sicilian Lemon Rosemary + Neapolitan Herb, Cranberry-Pear or Blenheim Apricot Chaabani Chili + Comice Pear or Gravenstein Apple Rosemary + Blackberry-Ginger, Mango or Black Cherry Chipotle + Dark Chocolate, Jalapeño or Strawberry Rosemary + Cascadian Wild Raspberry Chipotle -
Chapter Vii Table of Contents
CHAPTER VII TABLE OF CONTENTS VII. APPENDICES AND REFERENCES CITED........................................................................1 Appendix 1: Description of Vegetation Databases......................................................................1 Appendix 2: Suggested Stocking Levels......................................................................................8 Appendix 3: Known Plants of the Desolation Watershed.........................................................15 Literature Cited............................................................................................................................25 CHAPTER VII - APPENDICES & REFERENCES - DESOLATION ECOSYSTEM ANALYSIS i VII. APPENDICES AND REFERENCES CITED Appendix 1: Description of Vegetation Databases Vegetation data for the Desolation ecosystem analysis was stored in three different databases. This document serves as a data dictionary for the existing vegetation, historical vegetation, and potential natural vegetation databases, as described below: • Interpretation of aerial photography acquired in 1995, 1996, and 1997 was used to characterize existing (current) conditions. The 1996 and 1997 photography was obtained after cessation of the Bull and Summit wildfires in order to characterize post-fire conditions. The database name is: 97veg. • Interpretation of late-1930s and early-1940s photography was used to characterize historical conditions. The database name is: 39veg. • The potential natural vegetation was determined for each polygon in the analysis -
Carnivorous Plant Responses to Resource Availability
Carnivorous plant responses to resource availability: environmental interactions, morphology and biochemistry Christopher R. Hatcher A doctoral thesis submitted in partial fulfilment of requirements for the award of Doctor of Philosophy of Loughborough University November 2019 © by Christopher R. Hatcher (2019) Abstract Understanding how organisms respond to resources available in the environment is a fundamental goal of ecology. Resource availability controls ecological processes at all levels of organisation, from molecular characteristics of individuals to community and biosphere. Climate change and other anthropogenically driven factors are altering environmental resource availability, and likely affects ecology at all levels of organisation. It is critical, therefore, to understand the ecological impact of environmental variation at a range of spatial and temporal scales. Consequently, I bring physiological, ecological, biochemical and evolutionary research together to determine how plants respond to resource availability. In this thesis I have measured the effects of resource availability on phenotypic plasticity, intraspecific trait variation and metabolic responses of carnivorous sundew plants. Carnivorous plants are interesting model systems for a range of evolutionary and ecological questions because of their specific adaptations to attaining nutrients. They can, therefore, provide interesting perspectives on existing questions, in this case trait-environment interactions, plant strategies and plant responses to predicted future environmental scenarios. In a manipulative experiment, I measured the phenotypic plasticity of naturally shaded Drosera rotundifolia in response to disturbance mediated changes in light availability over successive growing seasons. Following selective disturbance, D. rotundifolia became more carnivorous by increasing the number of trichomes and trichome density. These plants derived more N from prey and flowered earlier. -
Report of a Working Group on Forages: Eighth Meeting
European Cooperative Programme for Crop Genetic 2525 Report of a Working Resources Networks ECP GR Group on Forages Eighth Meeting, 10 –12 April 2003, Linz, Austria B. Boller, E. Willner, L. Maggioni and E. Lipman, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) European Cooperative Programme for Crop Genetic 2525 Report of a Working Resources Networks ECP GR Group on Forages Eighth Meeting, 10 –12 April 2003, Linz, Austria B. Boller, E. Willner, L. Maggioni and E. Lipman, compilers ii REPORT OF A WORKING GROUP ON FORAGES: EIGHTH MEETING The International Plant Genetic Resources Institute (IPGRI) is an independent international scientific organization that seeks to improve the well-being of present and future generations of people by enhancing conservation and the deployment of agricultural biodiversity on farms and in forests. It is one of 15 Future Harvest Centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and poverty, improve human nutrition and health, and protect the environment. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through four programmes: Diversity for Livelihoods, Understanding and Managing Biodiversity, Global Partnerships, and Improving Livelihoods in Commodity-based Systems. -
Trees and Plants for Bees and Beekeepers in the Upper Mara Basin
Trees and plants for bees and beekeepers in the Upper Mara Basin Guide to useful melliferous trees and crops for beekeepers December 2017 Contents Who is this guide for? .......................................................................................................................................................................................................................................................................... 1 Introduction to the MaMaSe Project .................................................................................................................................................................................................................................................. 1 Market driven forest conservation initiatives in the Upper Mara basin ............................................................................................................................................................................................. 2 Water, apiculture, forests, trees and livelihoods ................................................................................................................................................................................................................................ 3 Types of bees ....................................................................................................................................................................................................................................................................................... 4 How this -
Savory Guide
The Herb Society of America's Essential Guide to Savory 2015 Herb of the Year 1 Introduction As with previous publications of The Herb Society of America's Essential Guides we have developed The Herb Society of America's Essential The Herb Society Guide to Savory in order to promote the knowledge, of America is use, and delight of herbs - the Society's mission. We hope that this guide will be a starting point for studies dedicated to the of savory and that you will develop an understanding and appreciation of what we, the editors, deem to be an knowledge, use underutilized herb in our modern times. and delight of In starting to put this guide together we first had to ask ourselves what it would cover. Unlike dill, herbs through horseradish, or rosemary, savory is not one distinct species. It is a general term that covers mainly the educational genus Satureja, but as time and botanists have fractured the many plants that have been called programs, savories, the title now refers to multiple genera. As research and some of the most important savories still belong to the genus Satureja our main focus will be on those plants, sharing the but we will also include some of their close cousins. The more the merrier! experience of its Savories are very historical plants and have long been utilized in their native regions of southern members with the Europe, western Asia, and parts of North America. It community. is our hope that all members of The Herb Society of America who don't already grow and use savories will grow at least one of them in the year 2015 and try cooking with it. -
Carnivorous Plant Newsletter Vol 48 No 4 December 2019
Drosera in the western USA—an update Barry A. Rice • Center for Plant Diversity • University of California • One Shields Avenue • Davis • California 95616 • USA • [email protected] Keywords: Taxonomy: Drosera, western USA, Drosera anglica, Drosera intermedia, Drosera linearis, Drosera × obovata, Drosera rotundifolia, Drosera × woodii. One of my primary research activities focuses on carnivorous plants in the US states of Montana, Wyoming, Colorado, New Mexico, and westward (but excluding Alaska). Throughout most of this range, the only native species of Drosera are Drosera rotundifolia L., Drosera anglica Huds., and the hybrid Drosera × obovata Mert. & Koch. These species are well-known to readers of this jour- nal, and need no further description. In this region, these plants quite often occur in sites that are widely separated, and in some states these taxa are of considerable rarity (for example, in Colorado D. rotundifolia and D. anglica are known at only 4 and 1 sites, respectively; Wolf et al. 2006). In addition to these species, there have been reports of two additional native Drosera—Drosera intermedia Hayne in northern Idaho (and perhaps adjacent eastern Washington), and Drosera lin- earis Goldie in Montana. Drosera intermedia was reported in Boundary County, Idaho by Bursik (1993), as growing with Drosera anglica, but being quite different in form. Additional populations were subsequently found in Custer County, Idaho (L. Kinter, pers. comm. 2017). Of course, the closest other Drosera inter- media plants were on the other side of the continent, so this was considered a find of great interest, and the plants were treated as of special significance. A few years ago, I decided I needed to visit and assess these plants. -
Okmen Et Al., Afr J Tradit Complement Altern Med., (2017) 14 (1): 213-218 Doi:10.21010/Ajtcam.V14i1.23
Okmen et al., Afr J Tradit Complement Altern Med., (2017) 14 (1): 213-218 doi:10.21010/ajtcam.v14i1.23 THE BIOLOGICAL ACTIVITIES OF HYPERICUM PERFORATUM L. Gulten Okmen1, Neslihan Balpınar2 1Department of Biology, Faculty of Science, University of Mugla Sitki Kocman, 48000 Mugla, Turkey 2 Department of Biology, Mehmet Akif Ersoy University, Istiklal Campus, 15030 Burdur, Turkey Corresponding author E-mail: [email protected] Abstract Background: Mastitis reduces milk yield and alters milk composition. Antibiotics are widely used in the treatment of the disease. However, this widespread use of antibiotics causes both antibiotic residues in milks and antibiotic resistance developed in bacteria. Today’s researches are focused on discovering and using new antibiotics against bacteria. Objective: The aim of this work was to discover the antibacterial effects of Hypericum perforatum L. extracts against mastitis pathogens, and its other biological activities. Material and Methods: Kirby-Bauer assay was applied to the extracts. The other antibacterial activity was MIC for plant extracts. The non-enzymatic antioxidant activity was found using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH). Results: The extract was showed maximum inhibition zone against two bacteria (Coagulase-negative Staphylococci- 33 and 37; CNS 33 and 37), and the zone was 17 mm. A bacterium (CNS – 22) showed the lowest sensitivity to 812.5 µg /mL concentration. In addition, the extract was tried against the stable DPPH for antioxidant activity. As a result, the extract showed -
Delectus Seminum 53/2020 – 2021
DELECTUS SEMINUM 5 3 / 2 0 20- 202 1 Botanical Garden of Plant Breeding & Acclimatization Institute – National Research Institute Bydgoszcz, POLAND INSTITUTE DIRECTOR Prof. Henryk Bujak, D. Sc. DIRECTOR OF NATIONAL CENTRE FOR PLANT GENETIC RESOURCES Wiesław Podyma, Ph. D. DIRECTOR OF BOTANICAL GARDEN OF PBAI Włodzimierz Majtkowski, Ph. D. Botanical Garden staff: Joanna Chodkiewicz, Włodzimierz Majtkowski, Lidia Michałowska, Małgorzata Nowakowska, Kinga Smolińska, Adrianna Szmyd, Bartosz Tomaszewski Address: Ogród Botaniczny IHAR - PIB ul. Jeździecka 5, 85 - 687 Bydgoszcz, POLAND e-mail: [email protected] tel: (+4852) 3813193 Part One. Seeds collected in the wild 31. Carex paniculata L. [046/2020] 1. Achillea millefolium L. [004/2020] Strzmiele, Zachodniopomorskie; 53.656667N 15.559722E; meadow Józefowo, Pomorskie; 53.783611N 17.585833E; meadow 32. Carex paniculata L. [068/2020] 2. Achillea millefolium L. [017/2020] Rudniki, Pomorskie; 53.829722N 17.206111E; meadow Pęczerzyno, Zachodniopomorskie; 53.686389N 15.731944E; wasteland 33. Centaurea jacea L. [030/2020] 3. Achillea millefolium L. [021/2020] Klęcinko, Pomorskie; 54.60956N 17.36235E; meadow Siodłonie, Pomorskie; 54.593889N 17.347778E; meadow 34. Centaurea jacea L. [096/2020] 4. Achillea millefolium L. [039/2020] Chociwel, Zachodniopomorskie; 53.485N 15.509444E; wasteland Karzcino, Pomorskie; 54.547778N 17.081111E; meadow 35. Cirsium acaule (L.) A.A.Weber ex Wigg. [012/2020] 5. Achillea millefolium L. [044/2020] Gwda Wielka, Zachodniopomorskie; 53.759444N 16.790278E; meadow Strzmiele, Zachodniopomorskie; 53.656667N 15.559722E; meadow 36. Cirsium oleraceum (L.) Scop. [005/2020] 6. Achillea millefolium L. [089/2020] Józefowo, Pomorskie; 53.783611N 17.585833E; meadow Linówko/ Ścienne, Zachodniopomorskie; 53.463333N 15.488611E; meadow 37. -
NVEO 2017, Volume 4, Issue 4, Pages 14-27
Nat. Volatiles & Essent. Oils, 2017: 4(4): 14-27 Celep & Dirmenci REVIEW Systematic and Biogeographic overview of Lamiaceae in Turkey Ferhat Celep1,* and Tuncay Dirmenci2 1 Mehmet Akif Ersoy mah. 269. cad. Urankent Prestij Konutları, C16 Blok, No: 53, Demetevler, Ankara, TURKEY 2 Biology Education, Necatibey Education Faculty, Balıkesir University, Balıkesir, TURKEY *Corresponding author. E-mail: [email protected] Abstract Lamiaceae is the third largest family based on the taxon number and fourth largest family based on the species number in Turkey. The family has 48 genera and 782 taxa (603 species, 179 subspecies and varieties), 346 taxa (271 species, 75 subspecies and varieties) of which are endemic (ca. 44%) (data updated 1th February 2017) in the country. There are also 23 hybrid species, 19 of which are endemic (82%). The results proven that Turkey is one of the centers of diversity for Lamiaceae in the Old World. In addition, Turkey has about 10% of all Lamiaceae members in the World. The largest five genera in the country based on the taxon number are Stachys (118 taxa), Salvia (107 taxa), Sideritis (54 taxa), Phlomis (53 taxa) and Teucrium (49 taxa). According to taxon number, five genera with the highest endemism ratio are Dorystaechas (1 taxon, 100%), Lophantus (1 taxon, 100%), Sideritis (54 taxa, 74%), Drymosiphon (9 taxa, 67%), and Marrubium (27 taxa, 63%). There are two monotypic genera in Turkey as Dorystaechas and Pentapleura. Turkey sits on the junction of three phytogeographic regions with highly diverse climate and the other ecologic features. Phytogeographic distribution of Turkish Lamiaceae taxa are 293 taxa in the Mediterranean (37.4%), 267 taxa in the Irano-Turanian (36.7%), 90 taxa in the Euro-Siberian (Circumboreal) phytogeographic region, and 112 taxa in Unknown or Multiregional (14.3%) phytogeographical elements.