Wetland Plants This Plant List Shows Many of the Common Species That Are Found in Wetlands and That Are Available from Nurseries on the Wetland Plant Suppliers List

Total Page:16

File Type:pdf, Size:1020Kb

Wetland Plants This Plant List Shows Many of the Common Species That Are Found in Wetlands and That Are Available from Nurseries on the Wetland Plant Suppliers List Wetland Plants This plant list shows many of the common species that are found in wetlands and that are available from nurseries on the Wetland Plant Suppliers list. The wetland indicator status refers to how frequently a species is found in wetlands out of the range of habitats the species will grow in. The abbreviations for status in the table stand for: OBL - Obligate >99% occurrence in wetlands FACW - Facultative Wetland 66-99% occurrence in wetlands FAC - Facultative 33-66% occurrence in wetlands FACU - Facultative Upland 1-33% occurrence in wetlands A positive sign indicates a frequency toward the higher end of the category (more frequently found in wetlands), and a negative sign indicates a frequency toward the lower end of the category (less frequently found in wetlands). The wetland indicator status was found in the National List of Plant Species That Occur in Wetlands: 1988 Maryland. The area of the state in which species occur commonly as natives are also shown. The following abbreviations refer to physiographic regions of the state: S - Statewide A - Allegheny Mountain Section (Garrett County) R - Ridge and Valley Section (Allegany, Washington, and western Frederick Counties) P - Piedmont Section (eastern Frederick, Carroll, Montgomery, Howard, northern and central Baltimore and Harford, and northern Cecil Counties) C - Coastal Plain Section (St. Mary's, Charles, Calvert, Prince George's, Anne Arundel, southern Baltimore, Harford, and Cecil, Kent, Queen Anne's, Talbot, Caroline, Dorchester, Wicomico, Somerset, and Worchester Counties) N - Northern Coastal Plain Section (southern Baltimore, Harford, and Cecil, Kent, eastern Queen Anne's, and northern Caroline Counties) E - Lower Eastern Coastal Plain Section (western Queen Anne's, southern Caroline, Talbot, Dorchester, Wicomico, Somerset, and Worchester Counties) Pot- Potomac River area Indicator Area of Species Status State Trees Acer rubrum FAC S Red Maple Acer saccharinum FACW ARP Silver Maple Betula nigra FACW RPC River Birch Carpinus caroliniana FAC S American Hornbeam Chionanthus virginicus FAC+ PC White Fringe Tree Diospyros virginiana FAC- RPC Common Persimmon Fraxinus pennsylvanica FACW S Green Ash Ilex opaca FACU+ S American Holly Liquidambar styraciflua FAC C Sweet Gum Nyssa sylvatica FAC S Black Gum Platanus occidentalis FACW- S American Sycamore Populus deltoides FAC P Eastern Cotton-wood Quercus bicolor FACW+ C Swamp White Oak Quercus nigra FAC E Water Oak Quercus palustris FACW RPC Pin Oak Quercus phellos FAC+ C Willow Oak Indicator Area of Species Status State Salix nigra FACW+ S Black Willow Taxodium distichum OBL E Bald Cypress Shrubs Alnus serrulata OBL S Brook-side Alder Amelanchier canadensis FAC C Oblong-leaf Service-berry Aronia arbutifolia FACW S Red Chokeberry Aronia melanocarpa FAC A Black Chokeberry Cephalanthus occidentalis OBL S Common Buttonbush Clethra alnifolia FAC+ C Coast Pepper-bush Cornus amomum FACW RPC Silky Dogwood Cornus stolonifera FACW+ A Red-osier Dogwood Hamamelis virginiana FAC- S American Witch-Hazel Ilex verticillata FACW+ S Common Winterberry Itea virginica OBL C Virginia Willow Leucothoe racemosa FACW C Fetter-bush Lindera benzoin FACW- S Northern Spicebush Lyonia ligustrina FACW S Maleberry Indicator Area of Species Status State Magnolia virginiana FACW+ C Sweetbay Magnolia Myrica pensylvanica FAC C Northern Bayberry Physocarpus opulifolius FACW- Pot Eastern Ninebark Rhododendron maximum FAC AR Rosebay Rhododendron Rhododendron viscosum OBL S Swamp Azalea Sambucus canadensis FACW- S American Elder Vaccinium corymbosum FACW- S Highbush Blueberry Viburnum dentatum FAC C Arrow-wood Viburnum prunifolium FACU S Black-haw Sedges and Rushes Carex crinita OBL S Fringed Sedge Carex intumescens FACW+ ARC Bladder Sedge Carex lurida OBL S Shallow Sedge Carex stricta OBL S Upright Sedge Carex vulpinoidea OBL S Fox Sedge Cyperus esculentus FACW S Chufa Cyperus strigosus FACW S Straw-color Flatsedge Indicator Area of Species Status State Dulichium arundinaceum OBL S Three-way Sedge Eleocharis obtusa OBL S Blunt Spikerush Juncus effusus FACW+ S Soft Rush Scirpus pungens FACW+ S Three-square Bulrush Scirpus atrovirens OBL S Green Bulrush Scirpus cyperinus FACW+ S Wool-grass Scirpus validus OBL S Soft-stem Bulrush Emergents and Submerged Aquatics Acorus calamus OBL C Sweetflag Alisma plantago-aquatica OBL PC Broad-leaf Water-plantain Caltha palustris OBL ARPN Common Marsh-marigold Elodea canadensis OBL RPC Broad Water-weed Hibiscus moshuetos OBL C Swamp Rosemallow Iris versicolor OBL S Blueflag Orontium aquaticum OBL C Golden Club Peltandra virginica OBL C Arrow Arum Pontederia cordata OBL S Pickerel Weed Indicator Area of Species Status State Sagittaria latifolia OBL S Broad-leaf Arrow-head Saururus cernuus OBL C Lizard's Tail Typha angustifolia OBL C Narrow-leaf Cattail Typha latifolia OBL S Broad-leaf Cattail Vallisneria americana OBL RPC Wild Celery Wildflowers and Grasses Andropogon gerardi FAC S Big Bluestem Aquilegia canadensis FAC ARP Wild Columbine Arisaema triphyllum FACW- S Swamp Jack-in-the-pulpit Asclepias incarnata OBL S Swamp Milkweed Aster lateriflorus FACW- S Calico Aster Aster novae-angliae FACW- S New England Aster Aster novi-belgii FACW+ C New York Aster Aster puniceus OBL S Swamp Aster Campsis radicans FAC C Trumpet-creeper Chelone glabra OBL S White Turtlehead Cicuta maculata OBL S Spotted Water-hemlock Indicator Area of Species Status State Equisetum hyemale FACW S Rough Horsetail Eupatorium perfoliatum FACW+ S Common Boneset Glyceria canadensis OBL ARP Canada Manna Grass Glyceria striata OBL S Fowl Manna Grass Helianthus angustifolius FACW C Swamp Sunflower Impatiens capensis FACW S Spotted Touch-me-not Leersia oryzoides OBL S Rice Cutgrass Lobelia cardinalis FACW+ S Cardinal Flower Lobelia siphilitica FACW+ ARP Great Blue Lobelia Ludwigia alternifolia FACW+ S Bushy Seedbox Mertensia virginica FACW S Virginia Bluebells Mimulus ringens OBL S Alleghany Monkey-flower Monarda didyma FAC+ A Oswego Tea Beebalm Phalaris arundinacea FACW+ C Reed Canary Grass Poa trivialis FACW RPN Rough Bluegrass Rudbeckia lanciniata FACW S Cut-leaf Coneflower Saxifraga pensylvanica OBL AR Swamp Saxifrage Indicator Area of Species Status State Solidago rugosa FAC S Wrinkled Golden-rod Spartina pectinata OBL PC Prairie Cordgrass Thalictrum pubescens FACW+ PC Tall Meadow-rue Tiarella cordifolia FAC- AR Heart-leaf Foamflower Verbena hastata FACW+ S Blue Vervain Vernonia noveboracensis FACW+ S New York Ironweed Viola labradorica FAC A Alpine Violet Ferns Adiantum pedatum FAC- ARP Northern Maiden-hair Fern Athyrium filix-femina FAC C Subarctic Lady Fern Dryopteris cristata FACW+ S Crested Shield-fern Dryopteris carthusiana FAC+ ARP (spinulosa) Spinulose Woodfern Onoclea sensibilis FACW S Sensitive Fern Osmunda cinnamomea FACW S Cinnamon Fern Osmunda claytoniana FAC ARP Interrupted Fern Osmunda regalis OBL S Royal Fern Thelypteris noveboracensis FAC S New York Fern Indicator Area of Species Status State Thelypteris thelypteroides FACW+ S Marsh Fern Woodwardia areolata FACW+ C Netted Chainfern Woodwardia virginica OBL C Virginia Chainfern.
Recommended publications
  • Medical, Therapeutic and Pharmaceutical Use of Cyperus Articulatus L
    11 Medical, Therapeutic and Pharmaceutical Use of Cyperus articulatus L. – a Review Inês Ribeiro Machado1, Keila Rêgo Mendes2, Michel Rios Arévalo3, Aline Aparecida Munchen Kasper3, Kelly Christina Ferreira Castro3, Homero de Giorge Cerqueira2, Amanda Souza Silva3 & Lauro Euclides Soares Barata3 Recebido em 19/03/2020 – Aceito em 08/05/2020 1 Universidade Estadual do Norte Fluminense Darcy Ribeiro/UENF, Avenida Alberto Lamego 2000, Parque Califórnia, Campos dos Goytacazes/RJ, Brasil. CEP: 28.013-600. <[email protected]>. 2 Instituto Chico Mendes de Conservação da Biodiversidade/ICMBio, EQSW 103/104, Bloco “B”, Complexo Administrativo, Setor Sudoeste, Brasília/DF, Brasil. CEP: 70.670-350. <[email protected], [email protected]>. 3 Universidade Federal do Oeste do Pará/UFOPA, Rua Vera Paz s/n (Unidade Tapajós), Bairro Salé, Santarém/PA, Brasil. CEP: 68.040-255. <[email protected], [email protected], [email protected], [email protected], [email protected]>. ABSTRACT – Cyperus articulatus L., belonging to the Cyperaceae family, is a plant species that has almost insignificant flowers at its ends. The stalks of the species produce tubers that, when cut, give off a fresh, woody and spicy smell; they are traditionally used in baths and in the manufacture of artisanal colonies in northern Brazil. In addition to use in cosmetics and perfumery, the plant also has medicinal and pharmacological properties. Among the pharmacological properties are the antimalarial, sedative, hepatoprotective, contraceptive effects on the central nervous system (CNS), insecticide, antimicrobial, anticancer, antioxidant, anticonvulsant, anthococcosis. The metabolites found related to the mentioned activities were cyperotundone, alpha-cyperone, mustacone for antimalarial activity in the chloroform extract of the priprioca rhizomes.
    [Show full text]
  • Appendix 2: Plant Lists
    Appendix 2: Plant Lists Master List and Section Lists Mahlon Dickerson Reservation Botanical Survey and Stewardship Assessment Wild Ridge Plants, LLC 2015 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Acalypha rhomboidea Native 1 Forb 9 Acer palmatum Invasive 0 Tree 1 Acer pensylvanicum Native 7 Tree 2 Acer platanoides Invasive 0 Tree 4 Acer rubrum Native 3 Tree 27 Acer saccharum Native 5 Tree 24 Achillea millefolium Native 0 Forb 18 Acorus calamus Alien 0 Forb 1 Actaea pachypoda Native 5 Forb 10 Adiantum pedatum Native 7 Fern 7 Ageratina altissima v. altissima Native 3 Forb 23 Agrimonia gryposepala Native 4 Forb 4 Agrostis canina Alien 0 Graminoid 2 Agrostis gigantea Alien 0 Graminoid 8 Agrostis hyemalis Native 2 Graminoid 3 Agrostis perennans Native 5 Graminoid 18 Agrostis stolonifera Invasive 0 Graminoid 3 Ailanthus altissima Invasive 0 Tree 8 Ajuga reptans Invasive 0 Forb 3 Alisma subcordatum Native 3 Forb 3 Alliaria petiolata Invasive 0 Forb 17 Allium tricoccum Native 8 Forb 3 Allium vineale Alien 0 Forb 2 Alnus incana ssp rugosa Native 6 Shrub 5 Alnus serrulata Native 4 Shrub 3 Ambrosia artemisiifolia Native 0 Forb 14 Amelanchier arborea Native 7 Tree 26 Amphicarpaea bracteata Native 4 Vine, herbaceous 18 2015 MASTER PLANT LIST MAHLON DICKERSON RESERVATION SCIENTIFIC NAME NATIVENESS S-RANK CC PLANT HABIT # OF SECTIONS Anagallis arvensis Alien 0 Forb 4 Anaphalis margaritacea Native 2 Forb 3 Andropogon gerardii Native 4 Graminoid 1 Andropogon virginicus Native 2 Graminoid 1 Anemone americana Native 9 Forb 6 Anemone quinquefolia Native 7 Forb 13 Anemone virginiana Native 4 Forb 5 Antennaria neglecta Native 2 Forb 2 Antennaria neodioica ssp.
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • Appendix 1 Vernacular Names
    Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4.
    [Show full text]
  • Dryopteris Carthusiana (Vill.) H.P
    Dryopteris carthusiana (Vill.) H.P. Fuchs Dryopteris carthusiana toothed wood fern toothed wood fern Dryopteridaceae (Wood Fern Family) Status: State Review Group 1 Rank: G5S2? General Description: Adapted from the Flora of North America (1993): The stalk of this fern is ¼-1/3 the length of the leaf and scaly at the base. The fronds are light green, coarsely cut, relatively narrow, ovate-lanceolate in outline, and 6 to 30 in. (1.5-7.6 dm) long by 4 to 12 in. (1-3 dm) wide. The leaves are not persistent, except in years with mild winters. The leaflets are lanceolate-oblong; the lower leaflets are more lanceolate-triangular and are slightly reduced. The leaflet margins are serrate and the teeth spiny. Sori (spore clusters) are midway between the midvein and margin of segments. Identification Tips: Three other species of Dryopteris occur in this region, including D. arguta, D. filix-mas, and D. expansa, although only D. expansa has been found in association with D. carthusiana. D. carthusiana is distinguished from D. expansa by the color and shape of the frond. D. carthusiana has a duller, light green color, while D. expansa has a glossier, dark green frond color. D. carthusiana has a relatively narrow and ovate-lanceolate blade. D. expansa typically has a triangular shaped blade, with the lowest leaflets distinctly larger than succeeding pairs. The lowest leaflets of D. carthusiana blades are little, if any, larger than adjacent pairs and less deeply dissected than D. expansa tends to be. No hybrids between these two have been found. A technical key is recommended for identification.
    [Show full text]
  • (Cyperus Esculentus and C. Rotundus ) on Eggplant Yield
    Proc. Fla. State Hort. Soc. 117:4-7. 2004. IMPACT OF MIXED POPULATIONS OF YELLOW AND PURPLE NUTSEDGES (CYPERUS ESCULENTUS AND C. ROTUNDUS) ON EGGPLANT YIELD J. PABLO MORALES-PAYAN1 AND WILLIAM M. STALL Because nutsedges reproduce primarily by tubers, grow- University of Florida ers can readily estimate near-future nutsedge densities in a Horticultural Sciences Department field (and the percentage of yellow and purple nutsedges in P.O. Box 110690 the total density) by sampling the soil prior to planting. If Gainesville, FL 32611 crop yield were influenced by the percentage of one nutsedge species in the mixed stand, growers could make proper deci- Additional index words. Cyperus rotundus, Solanum melongena, sions regarding nutsedge management based on their assess- weed interference, yield loss ment of the expected composition of the nutsedge population. The effects of pure yellow nutsedge stands and Abstract. The effects of mixed populations of purple and yellow mixed stands of yellow and purple nutsedges on eggplant nutsedges (Cyperus rotundus L. and C. esculentus L.) on the yield have not been documented. The objective of this re- growth and yield of eggplant (Solanum melongena L.) were search was to determine the extent of eggplant yield loss studied in field experiments conducted in Florida. Tubers of caused by season-long interference of pure and mixed stands purple and yellow nutsedges were planted onto the eggplant of yellow and purple nutsedges. soil beds at a fixed density of 60 plants/m2 and were allowed to grow alongside the crop season-long. The percentages of yel- Materials and Methods low nutsedge:purple nutsedge in the mixed stands were 0:100 (pure purple nutsedge stand), 25:75, 50:50, 75:25, and 100:0 Field research was conducted in April-June 2003 at the (pure yellow nutsedge stand).
    [Show full text]
  • Maroc Oriental) Par Le Souchet À Tubercules (Cyperus Rotundus L.
    BerrichiActes Inst.et al.: Infestation Agron. deVet. la plaine (Maroc) des Triffa 2003, par Vol. Cyperus 23(1): rotundus 33-69 Actes Inst. Agron. Vet. (Maroc) © Actes 2003, Éditions,Vol. 23 (1) Rabat33 État d’infestation de la plaine des Triffa (Maroc oriental) par le souchet à tubercules (Cyperus rotundus L.) Abdelbasset BERRICHI1¤, Mohamed BOUHACHE2 & Mohamed REDA TAZI1 (Reçu le 13/11/2002; Accepté le 18/02/2003) ﺎﺔ إﺻﺎﺔ ﻬﻞ ﺮﻔﺔ (اﳌﻐﺮب اﺸﺮﻲ) ﺎﻌﺸﺔ اﻀﺎرة "Cyperus rotundus" ﻮ ﺪ اﻌﺸﺔ اﻀﺎرة Cyperus rotundus ﻲ ﻴﺮ ﻦ اﳌﺰرو ﺎت و ﺪﺪ ﻦ اﻠﺪان. ﺮ ﻘﺔ اﻌﺪوى اﳌﻮ ﻤﻴﺔ ﻴﺮ ﻌ?ﺮو ﺔ ﻲ اﳌ?ﻐ?ﺮ ب، ﻬﺬا ﻤﻨ?ﺎ ??ﻮ ﺔ ﻲ ﺪ?ﺪ ?ﻦ اﳌ?ﺰرو ﺎت ﻴﻠﺔ اﻨ?ﺔ ??ﻬ?ﻞ ?ﺮ ﻔﺔ ﺼﺪ ﲢ?ﺪ?ﺪ ا?ﻮﺿﻌ?ﻴ?ﺔ اﳊﺎﻴﺔ ﻻﺸﺎر ﺬه ا?ﻌ?ﺸ??ﺔ ا?ﻀ?ﺎرة ودر اﺔ ﻴﻬ?ﺎ اﳋ?ﺎﺻ?ﺔ و ذﻚ ﺎﻌﻤﺎل ﺮق اﳌﻈﺎﺮ اﳉ?ﺎ??ﻴ?ﺔ ا??ﻴ??ﻴ?ﺔ. ﻮ ﺪ اﻌﺸﺔ ?ﻲ ?ﻤ?ﻴ?ﻊ ?ﺰرو ﺎت اﻬ?ﻞ ا??ﻘ?ﻮ ي ?ﺮ ﻔ?ﺔ و ﺔ ا?ﻌ?ﺪو ى ﻠﻔ?ﺔ، ﲤ??ﻞ اﳊ?ﻮ ا?ﺾ و ﺰرو ?ﺎت اﻴ?ﻮ ت اﻼﻴﻜﻴ?ﺔ و اﻌﻨﺐ ﺔ اﻌ?ﺪوى اﳌ?ﺮ ﻔﻌﺔ ﻴﻨﻤﺎ اﻘ?ﻤ?ﺢ وزر اﺔ اﻜﻸ ﳝﻠﻮن ﺔ أ?ﻞ، و ﺪ ?ﲔ أن اﻌﺪو ى ﺮ ﻔﻌﺔ ﻲ ﺼﻞ اﺼﻴﻒ واﳋﺮ ﻒ. اﻜﻠﻤﺎت اﳌﻔﺎﻴﺔ : Cyperus rotundus ـ ﺸﺔ ﺿﺎر ة ـ ﺪو ى ـ ﻮ اﻢ ـ زر اﺔ État d’infestation de la plaine des Triffa (Maroc oriental) par le souchet à tubercules (Cyperus rotundus L.) Le souchet à tubercules (Cyperus rotundus L.) est une adventice redoutable de plusieurs cultures et dans plusieurs pays.
    [Show full text]
  • Weed Risk Assessment: Cyperus Esculentus L
    Weed Risk Assessment: Cyperus esculentus L. 1. Plant Details Taxonomy: Cyperus esculentus L. Varieties: C. esculentus L.var. esculentus (weedy), C. esculentus L. var. sativus Boeckeler (cultivated) C. esculentus L. var. macrostachyus Boeckeler, C. esculentus L. var. leptostachyus Boeckeler, C. esculentus L. var. hermanii (Buckl.) Britt, C. esculentus L. var. angustispictatus Britt, C. esculentus auct. non L. p.p. Family Cyperaceae (Sams 1999, USDA PLANTS database). Common names: nut grass, yellow nut grass, chufa flatsedge. Origins: Pan-tropical to temperate (GRIN database). Distribution: a weed in warm and temperate countries including southern Europe, Africa, Asia, most of the Americas from southern Canada to Argentina. Occurs on all continents (State Noxious Weed Control Board, Washington at www.nwcb.wa.gov, Crop Protection Compendium, 2004 ). Distribution maps from the Crop Protection Compendium. Red dots mean widespread in the region. Yellow dots mean present in the region. White dots mean present and localised Description: C. esculentus is an erect perennial sedge that may grow to 70cm high. Stems are erect, smooth, light-green and triangular in cross section. Leaves are V-shaped in cross section, green, glossy with a prominent mid-vein, coarse with small serrations and arising from three rows near the base of the plant. The inflorescence is a cluster of spikelets arising from a common point on the flower stalk in the fashion of an umbel. Each spikelet has many yellowish-brown or brown compressed florets. Seeds are yellow-brown and three angled. The root is an extensive system of fibrous rhizomes, tubers and basal bulbs. The tubers, also known as nuts, occur singly at the end of rhizomes while roots are produced from tubers and at the base of the plant.
    [Show full text]
  • Genetic Diversity Among Geographically Separated Cyperus Rotundus Accessions Based on RAPD Markers and Morphological Characteristics
    American Journal of Plant Sciences, 2019, 10, 2034-2046 https://www.scirp.org/journal/ajps ISSN Online: 2158-2750 ISSN Print: 2158-2742 Genetic Diversity among Geographically Separated Cyperus rotundus Accessions Based on RAPD Markers and Morphological Characteristics William T. Molin1*, Richard R. Kronfol2, Jeffery D. Ray3, Brian E. Scheffler4, Charles T. Bryson1 1Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS, USA 2Virginia Mason Medical Center, Seattle, WA, USA 3Crop Genetics Research Unit, USDA-ARS, Stoneville, MS, USA 4Genetics and Bioinformatics Research Unit, USDA-ARS, Stoneville, MS, USA How to cite this paper: Molin, W.T., Abstract Kronfol, R.R., Ray, J.D., Scheffler, B.E. and Bryson, C.T. (2019) Genetic Diversity The diversity of globally distributed populations of purple nutsedge was as- among Geographically Separated Cyperus sessed using molecular marker data and morphological traits. Cluster analysis rotundus Accessions Based on RAPD of binary random amplified polymorphic DNA (RAPD) data and morpho- Markers and Morphological Characteris- logical traits indicated that the global population of purple nutsedge consisted tics. American Journal of Plant Sciences, 10, 2034-2046. of two clades. Cluster analysis of the RAPD data supported separation of the https://doi.org/10.4236/ajps.2019.1011143 purple nutsedge accessions evaluated into two distinct clades of 11 and 33 ac- cessions. Except for accessions identified as California* and Arizona, all USA Received: October 8, 2019 accessions were clustered with accessions from Taiwan, Western Samoa, New Accepted: November 18, 2019 Published: November 21, 2019 Zealand, Malaysia, Japan, El Salvador, Columbia, Australia, Thailand and West Indies. A second cluster included accessions from Sudan, Greece, Iran, Copyright © 2019 by author(s) and California*, Arizona, Brazil, Argentina, Mauritius, Philippines, Indonesia and Scientific Research Publishing Inc.
    [Show full text]
  • Yellow Nutsedge (Cyperus Esculentus)
    Yellow Nutsedge (Cyperus esculentus) Description This native perennial sedge grows up to 80 cm tall with shallow root system is fibrous, rhizomatous, and tuberous. Tubers are more or less globes, usually soft, with rings around the tuber. The central stem is 3-angled, and mostly covered by the sheaths of the leaves. Leaves are grass-like, up to 30 cm long and 12 mm wide, expanded, glabrous, smooth and shiny. Originate from the base of the plant. There is an obvious channel along the central vein of each leaf blade, especially the larger ones. Has a compound or simple umbel inflorescence. Spikelets are up to 2 cm long, 8-14 flowered straw-colored or often yellow, compressed; glumes ovate. At the base of each John Cardina, The Ohio State University, Bugwood.org umbel or compound umbel of spikelets, there are several leafy bracts of varying length; the largest bract is usually longer than the inflorescence. Key Identifiers Perennial with rhizomes terminating in tubers or leafy plants Stems triangular Unbranched plant with hair-less grass-like leaves towards base or just below inflorescence Location in Canada In Canada, yellow nutsedge occurs in Nova Scotia, New Brunswick, southern Quebec and southern Ontario. Resources http://www.weedinfo.ca/weed.php?w=CYPES THE BIOLOGY OF CANADIAN WEEDS. 17. Cyperus esculentus L. Similar species Cyperus spp. Other species of nut sedge also occur in Alberta but are not troublesome and not likely to occur in cultivated land. Steve Dewey, Utah State University, Bugwood.org Cyperus esculentus can be distinguished from Cyperus species by the conspicuous scales on its rhizomes and by its terminal tubers.
    [Show full text]
  • Sabiu Et Al., Afr J Tradit Complement Altern Med., (2017) 14 (4): 46-53
    Sabiu et al., Afr J Tradit Complement Altern Med., (2017) 14 (4): 46-53 https://doi.org/10.21010/ajtcam.v14i4.6 KINETICS OF MODULATORY ROLE OF Cyperus esculentus L. ON THE SPECIFIC ACTIVITY OF KEY CARBOHYDRATE METABOLIZING ENZYMES Saheed Sabiu1,3*, Emmanuel Oladipo Ajani1, Taofik Olatunde Sunmonu2, Anofi Omotayo Tom Ashafa3 1Phytomedicine, Food Factors and Toxicology Research Laboratory, Biochemistry Unit, Department of Biosciences and Biotechnology, Kwara State University, Malete, Nigeria. 2Plant and Environmental Biochemistry Research Laboratory, Department of Biological Sciences, Al-Hikmah University, Ilorin, Nigeria. 3Phytomedicine and Phytopharmacology Research Group, Plant Sciences Department, University of the Free State, Qwaqwa campus, Phuthaditjhaba 9866, South Africa *Corresponding Author Email: [email protected] Abstract Background: The continuous search for new lead compounds as viable inhibitors of specific enzymes linked to carbohydrate metabolism has intensified. Cyperus esculentus L. is one of the therapeutically implicated botanicals against several degenerative diseases including diabetes mellitus. Materials and Methods: This study evaluated the antioxidant and mechanism(s) of inhibitory potential of aqueous extract of C. esculentus on α-amylase and α-glucosidase in vitro. The extract was investigated for its radical scavenging and hypoglycaemic potentials using standard experimental procedures. Lineweaver-Burke plot was used to predict the manner in which the enzymes were inhibited. Results: The data obtained revealed that the extract moderately and potently inhibited the specific activities of α-amylase and α-glucosidase, respectively. The inhibition was concentration-related with respective IC50 values of 5.19 and 0.78 mg/mL relative to that of the control (3.72 and 3.55 mg/mL).
    [Show full text]
  • Cyperus Esculentus): Differences in Nutritional, Antioxidant and Microbiological Properties
    Emirates Journal of Food and Agriculture. 2020. 32(10): 756-761 doi: 10.9755/ejfa.2020.v32.i10.2184 http://www.ejfa.me/ SHORRT COMMUNICATION Organic and conventional tiger nut (Cyperus esculentus): Differences in nutritional, antioxidant and microbiological properties Lourdes Bosch1, María Auxiliadora Dea-Ayuela1, Hortensia Rico2,3, Jose M. Soriano3,4* 1Departamento de Farmacia. Facultad de Ciencias de la Salud. Universidad CEU Cardenal Herrera. Alfara del Patriarca. Valencia. España, 2Laboratorio de Microbiología. Facultat de Farmacia. Universitat de València. Burjassot. Valencia. España, 3Unidad Mixta de Investigación en Endocrinología, Nutrición y Dietética Clínica. Universitat de València- Instituto de Investigación Sanitaria La Fe. Valencia. España, 4Food & Health Lab. Instituto de Ciencias de los Materiales. Universitat de València. Paterna. España ABSTRACT Tiger nut (Cyperus esculentus L.), also known as chufa (European sedge), is a member of the Cyperaceae family, which is used in organic and conventional agriculture for its small edible tubers and grown in temperate and tropical zones of the world being consumed raw, roasted or pressed for its juice as beverage. The aim of this study is analyzing the proximate composition (AOAC methods), total phenolic content (Folin-Ciocalteu method), total antioxidant capacity (Trolox equivalent antioxidant capacity, TEAC) and microbiological profile (International Standard Organization norms, ISO) of samples of Spanish organic and conventional, Nigerian conventional and unknown origin tiger nuts obtained from supermarkets and local markets in Spain. No significant differences in proximate composition and antioxidant properties were found between Spanish organic and conventional tiger-nuts, except in total phenolic level (p<0.005). No significant differences were found in all samples about ash, lipid, total sugar and carbohydrate values, but significant differences (p<0.005) were found for moisture, protein, fiber and antioxidant capacity between Spanish samples and Nigerian or unknown origin samples.
    [Show full text]